Terrestrial Laser Scanning for Forest Biodiversity Assessment - LASERBIO

Steven Keady¹, Barry O’Sullivan¹, Sandra Irwin¹, John O’Halloran¹

¹Dept. of Zoology, Ecology and Plant Science, University College Cork, Enterprise Centre, Distillery Fields, North Mall, Cork, Ireland
²Dept. of Computer Science, University College Cork, Western Gateway Building, Western Rd, Cork, Ireland

Introduction

The Convention on biological diversity defines biodiversity as the variability among living organisms from all sources including that of terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are a part; this includes diversity within species, between species and of ecosystems.

Forest biodiversity is influenced by structural complexity in the forest. Problems for forest biodiversity assessment are known to be expensive due to their reliance on labour intensive field visits. Precise repeatable measures are difficult to achieve using traditional methods.

Methods

The utility of Terrestrial Laser Scanning (TLS) as a basis for biodiversity prediction in a variety of forest settings was evaluated. TLS was conducted at the locations shown on Figure 3.

Sites selected were:

- Four native woodland sites which were scanned during summer and winter (leaf-on and leaf-off condition)
- Six conifer plantation forest sites which were scanned during summer (3 mid rotation and 3 mature). One of the mature conifer plantation sites was also scanned during winter.

The specific biodiversity measures selected for prediction using machine learning techniques were population abundance and species richness of:

- Birds
- Beetles
- Spiders

The correlation coefficients achieved between true biodiversity measure and the predictions one gets from the concepts generated by each technique are presented in Table 1. We used 10-fold cross validation. We conducted measurements for 37 different forest locations, so correlation coefficients in excess of 0.025 (0.410) are statistically significant at the 95% (99%) level; this was determined using R, the statistical computing system.

An example of the predictor we obtained for the specific case of beetle species richness (BSR) using the concept generated by pace regression is shown in Figure 5. The concept generated in this case was as follows, where the age of the forests in the data-sets is either mature or mid-rotation, which were numerically interpreted as 0 and 1, respectively:

\[\text{BSR} = 34.8974 - 13.0242 \times \text{Age} - 0.062 \times \text{Average Stem Diameter} \]

Results

The correlation coefficients achieved between true biodiversity measure and the predictions one gets from the concepts generated by each technique are presented in Table 1. We used 10-fold cross validation. We conducted measurements for 37 different forest locations, so correlation coefficients in excess of 0.025 (0.410) are statistically significant at the 95% (99%) level; this was determined using R, the statistical computing system.

An example of the predictor we obtained for the specific case of beetle species richness (BSR) using the concept generated by pace regression is shown in Figure 5. The concept generated in this case was as follows, where the age of the forests in the data-sets is either mature or mid-rotation, which were numerically interpreted as 0 and 1, respectively:

\[\text{BSR} = 34.8974 - 13.0242 \times \text{Age} - 0.062 \times \text{Average Stem Diameter} \]

Conclusions

We have shown how several standard machine learning / data mining techniques can accurately predict biodiversity measures, the species richness and abundance of birds, spiders and beetles.

Research in this area has the potential to automate the development of a world inventory of forests rich with biological diversity.

This solution could be used to measure the environmental impact of harvesting trees in a particular forest.

Future Work

To expand the set of features that we extract from the laser scans and to factor in measurements of standing deadwood.

This project is co-funded by the EPA and COFORD under the NDP 2007-2013

Steven Keady - s.keady@ucc.ie - www.ucc.ie/en/planforbio/people/stevenkeady