Positon Paper

Software Defined Adaptive Networking - IoT and Beyond

Jason J. Quinlan

Dept. of Computer Science, University College Cork Ireland j.quinlan@cs.ucc.ie

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant 13/IA/1892, and is co-funded under the European Regional Development Fund under Grant 13/RC/2077

Motivation

- explosion in quantity of IoT devices (from 30 billion in 2020 to 75 billion by 2025 – statista.com)
- vast variety of underlying protocols
- range of tasks from single to chained to multi-hop
- generally loosely coupled
- typically with limited impact on system architecture
- different delay demands
- resource-constrained with bursty traffic
- network integration is challenging but with great opportunities

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Control and Management

Control and Management

Examples of separation of control and data planes:

- Allocating rates to different IoT task [1]
- data-plane in-sensor packet forwarding [2]
- defined scheduling over static routes [3]
- mass data analytics [4]

<u>lssues</u>:

- static routes, static controllers, inadequate global view, simple packet forwarding
- this is management of routing rather than efficient control

Vision

Software Defined adaptive Networking (SDaN)

- higher level holistic abstraction on the north and south SDN interfaces
- distributed approach with improved global view
- platform(s)/network(s)/device(s) viewed as a single abstraction
- adaptive "inter-operative function calls", such as:
 - energy analysis in device
 - adaptive timing for task instruction execution
 - network slicing and prioritisation

Use Case

IoT Edge Computing – extending wireless networks

- 5G: increased physical data rates, low-latency, resiliency and reliability
- small cell adaptive networking devices adapt not only in physical location but also connection(s) to the network
- SDaN utilises "inter-operative function calls" to:
 - extract workflow knowledge from devices
 - predict network demands
 - provide fairness between wireless devices

Use Case

IoT Edge Computing – extending wireless networks

- SDN permits routing of traffic to local Edge Computing Servers, with:
 - improved location awareness
 - dynamic computation resource allocation
 - local data analysis (transparent to the device)
 - reduced delay for geo-local content (producer and consumer geographically close together)
 - access to radio network information from device(s) and network(s)
 - IoT-centric service provisioning, such as slicing and prediction
 - improved mediation between end devices

Conclusion/Summary

- SDaN, proposed to finally brings system control to SDN
- workflow knowledge rather than workflow routing
- predict rather than react to network demands
- fairness between devices, irrespective of platform
- harmonised resource management, such as:
 - energy consumption
 - triggering of work tasks
 - synchronisation of network interactions
- for IoT and beyond

Questions?

Jason J. Quinlan

An Internet Infrastructure for Video Stream Optimisation (iVID) Project

Mobile and Internet Systems Lab University College Cork, Cork

j.quinlan@cs.ucc.ie

Check out the iVID Datasets and Software

- mCast: Prototyping SDN-based Multicast Architectures
- miniNAM: A network animator for Mininet
- D-LiTE: A platform for evaluating DASH in a simulated LTE network
- D-LiTE-ful: An platform for DASH SDN offloading in LTE
- DASH: AVC (H.264) and HEVC (H.265)
- Datasets trace and stream-based - QoE metrics: PSNR and VQM
- SAP: Stall-Aware Pacing for DASH in Cellular Networks

http://www.cs.ucc.ie/misl/research/current/ivid/

Open Questions

- from interactions to function call deployment
- end-2-end and device-2-device
- controller sychronisation issues
- can network function virtualization (NFV) be used for dynamic instantiation of *inter-operative function calls* on devices
- adaptive energy usage management in WSNs due to increased interactions
- scalability concerns

