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Article history: The increasing ubiquity of smartphones coupled with the mobility of their users will allow
Available online 12 July 2013 the use of smartphones to enhance the operation of wireless sensor networks. In addition

to accessing data from a wireless sensor network for personal use, and the generation

Ilfl?n‘:/;r:d;obilit of data through participatory sensing, we propose the use of smartphones to collect
Smartphone y data from sensor nodes opportunistically. For this to be feasible, the mobility patterns of

Wireless sensor network smartphone users must support opportunistic use. We analyze the dataset from the Mobile
Opportunistic data collection Data Challenge by Nokia, and we identify the significant patterns, including strong spatial
and temporal localities. These patterns should be exploited when designing protocols and
algorithms, and their existence supports the proposal for opportunistic data collection

through smartphones.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As wireless sensor networks mature, we expect to see many long-term and large-scale deployments for various
applications, such as environmental monitoring, domestic utility meter reading, and urban monitoring. Since the increas-
ingly ubiquitous smartphones are tightly-coupled with their users, the interaction between smartphones and wireless
sensor networks will play a very important role in future pervasive computing. For instance, a smartphone could get vari-
ous information (temperature, air quality, etc.) from sensor nodes around its user and assist in making informed decisions.
In such cases, it is normally assumed that smartphones and sensor nodes can communicate through some low power ra-
dios, such as Bluetooth and IEEE 802.15.4. Also, smartphones have been proposed to act as sensor nodes in participatory
sensing [1]. In this paper, instead of the above classical paradigms, we consider using smartphones to provide a service to
wireless sensor networks, i.e., using smartphones to collect data from sensor nodes opportunistically (and relay to their
corresponding servers).

As illustrated in Fig. 1, we have proposed to use smartphones carried by people in their daily life to collect sensor data
opportunistically when their users pass by sensor nodes [2-5]. Under this scenario, smartphones will gather data from
sensor nodes autonomously (without any user intervention or route change). To participate in opportunistic data collection,
a smartphone user just needs to run a background application on the phone, and many users could be motivated with a
very low reward. For instance, the owners of wireless sensor networks could reward these users by allowing them to access

* The preliminary results have been presented in The Mobile Data Challenge 2012 (by Nokia) Workshop, in conjunction with Pervasive 2012, Newcastle,
UK.
* Corresponding author. Tel.: +353 (0)21 4205892.
E-mail address: cjs@cs.ucc.ie (CJ. Sreenan).
1 Bluetooth is distributed with almost all smartphones and it is also adopted by many sensor nodes, such as IMote and BTnode. IEEE 802.15.4 is the most
widely used radio on sensor nodes and it starts to appear on smartphones. In Mobile World Congress 2012, TazTag released the first smartphone with both
ZigBee (IEEE 802.15.4 radio, protocol stack, etc.) and Near-Field Communication (NFC) features (http://www.taztag.com/).
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Fig. 1. Opportunistic data collection through smartphones.

the current sensor readings (temperature, humidity, etc.). In case that the sensor readings are not needed by smartphone
users or the sensor readings cannot be publicized due to confidential and privacy reasons, these users could be rewarded
by a small amount of virtual/real money through the cellular network system. Consequently, the cost of data collection can
be reduced through exploiting the uncontrolled mobility of smartphone users. The incentive, security, and privacy issues
that arise in opportunistic data collection through smartphones have been discussed further in [5] and they are beyond the
scope of this paper.

Considering that the main point of opportunistic data collection is to exploit the uncontrolled mobility of smartphone
users, we need to establish that the mobility of smartphone users could support this scheme, especially for wireless sensor
networks in which sensor nodes are duty-cycled aggressively for longevity. The Mobile Data Challenge by Nokia [6] made
available a large dataset consisting of, among other things, detailed mobility traces for smartphone users around the Lake
Geneva Region, and we use the traces to establish whether or not the mobility of smartphone users is suitable. When
analyzing the traces, we ask the following key questions:

1. In opportunistic data collection, is the smartphone’s overhead (energy consumption, CPU, etc.) low enough so that the
participation of smartphone users could be motivated with a very low reward?

2. For each encounter between a smartphone and a sensor node, does the smartphone stay in the communication range of
the sensor node long enough to collect data opportunistically?

3. Could smartphone users visit a sensor node frequently enough to support a variety of applications?

4. How does the smartphone users’ mobility distribute in time and space? How do these distributions influence the design
and operation of the protocols and algorithms for opportunistic data collection?

This paper is organized as follows. The analysis methodology is first introduced in Section 2. We also describe how the
dataset is trimmed. The results of analysis are then presented and discussed in Section 3. Finally, Section 4 discusses related
work and Section 5 concludes this paper with several key findings, such as the feasibility of opportunistic data collection
through smartphones and the strong spatial and temporal localities that should be considered when designing the protocols
and algorithms for opportunistic data collection.

2. Data preparation

In this paper, the mobility of smartphone users is studied through analyzing the dataset from the Mobile Data Challenge
by Nokia. Although a wide variety of information was collected for each smartphone user, we are mainly interested in the
GPS readings recorded when a user was moving around outside. More specifically, we only use the following information
of a GPS reading, (time, latitude and longitude, speed), i.e., the time, the location, and the movement speed when this GPS
reading was logged.

For opportunistic data collection, we are interested in how the encounters between smartphones and sensor nodes
distribute in both space and time. Hence, the area visited by smartphone users is divided into grid cells with a size of one
thousandth of a degree in both directions.> Approximately, a cell in the Lake Geneva Region is a rectangle with a size of
111 m % 77 m and it matches well with the outdoor communication range of the current sensor node platform [7]. The
duration of the Data Collection Campaign by Nokia is also divided into slots in units of hour, day, or week based on the
analysis to be carried out. The distributions of GPS readings in time and space are then calculated and analyzed in this paper.

Before carrying out analysis, the dataset is first trimmed. We have removed a few GPS readings that are far away from
the Lake Geneva region so that the number of cells to be considered can be reduced significantly. For reducing the number of
time slots to be considered, the GPS readings which were logged when most of users had quit the Data Collection Campaign
by Nokia are also removed. By trimming the dataset in this way, we are able to speed up the computation significantly
without losing important data. Through removing these GPS readings, we can also avoid that the conclusions are skewed

2 Note that a cell here is totally different from the cell in cellular networks (i.e., the area covered by a base station). Instead of a circle/hexagon/square, it
is just a small rectangle for simplifying our analysis. The two-dimensional GPS position of the northeast corner is (x + 0.001°, y + 0.001°), assuming that
(x, y) is the GPS coordinates of the southwest corner.
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(a) Users’ active periods. (b) Active users vs. time.

Fig. 2. The participation of 37 smartphone users.

by the large areas and long periods in which the level of user participation is very low. Any GPS readings which have been
truncated for user anonymity are also removed since we cannot associate such a reading to a specific cell.

Consequently, 893,920 GPS readings from 37 smartphone users are used in our analysis.> The latitude range is [46.1,
46.8], the longitude range is [6.4, 7.4], there are 700,000 cells, and the whole area is referred as the Lake Geneva Region.
Sometimes, we only analyze the cells of the Lausanne Urban Area (one major city of the Lake Geneva Region), in which the
latitude range is [46.50 46.55], the longitude range is [6.54, 6.66], and there are 6000 cells. The duration is from 05/09/2009
to 07/01/2011 and the time span is 70 weeks. Considering that smartphone users may not have participated for the whole
period, based on the timestamps in their GPS readings, Fig. 2(a) plots the periods that these 37 users did actually participate
in the Data Collection Campaign by Nokia. The level of user participation, i.e., the number of active smartphone users, is also
plotted in Fig. 2(b).

3. Results of analysis

3.1. Percentage of movement time

Considering that a sensor node is normally powered by un-rechargeable battery, its radio must be duty-cycled for
longevity. Hence, it is preferred to let a smartphone, with its rechargeable battery, always keep its radio on so that they
can discover each other in a timely manner [3]. However, the energy consumed by a smartphone’s radio for opportunistic
data collection might become a serious concern.

Fortunately, we can reduce its energy consumption based on context information. A smartphone can deduce whether it
is moving using its accelerometer [8,9]. It can then keep its radio on only when its user is moving around. In cases when its
user is static, the smartphone can turn on its radio occasionally for collecting data and turn off its radio for most of the time
to save energy. To study the energy overhead with this scheme, we need to know the percentage of time that a smartphone
user is moving around.

In the dataset, a GPS reading is recorded every 10 s only when a user is moving around outside. Hence, if the interval
between two consecutive GPS readings is too long (>300 s), we assume that the user is static and the radio can be turned
off during that interval.* We then calculate the percentage of movement time for each smartphone user. Fig. 3(a) plots
the cumulative distribution function (CDF) of the percentage of movement time across 37 users. It shows that for most
smartphone users, the movement time is less than 10%. Hence, smartphone users are usually static and the radio for
opportunistic data collection can be turned off most of the time. The overhead of opportunistic data collection in terms
of energy consumption could therefore be low, thus encouraging user participation.

3.2. Movement speed

Since a sensor node is normally duty-cycled, a smartphone still needs to take time to discover a sensor node even
when they are in close proximity. Furthermore, a smartphone and a sensor node normally belong to different authorities,
and authentication must be carried out before collecting data. Hence, for opportunistic data collection, it is desired that
a smartphone could stay in the communication range of a sensor node for a period that is sufficient for discovery,
authentication, and data collection.

To check this issue, the cumulative distribution function of the movement speed in these smartphone users’ GPS readings
is plotted in Fig. 3(b). This plot indicates that the movement speed is quite low in many cases. In the Lausanne Urban Area,

3 In the dataset obtained from Nokia, there are in total 1,553,154 GPS readings from 38 smartphone users. 491,566 GPS readings are purged because
they have been truncated for user anonymity. Since only GPS readings in a few sensitive locations are truncated, these purged GPS readings do not affect
the analysis results in this paper.

4 Note that GPS readings could be absent due to many reasons. Here, we assume the dominant reason is that a smartphone user stops moving.



884 X. Wu et al. / Pervasive and Mobile Computing 9 (2013) 881-891

1 T T T 1
0.8 E 0.8 B
w 06 E w 06 R
=) o
O 04t g © 04 .
02 - 0.2 :L Lake Geneva Region ,
Lausanne Urban Area
0 1 1 1 1 1 O 1 1 1 1 1
0 2 4 6 8 10 12 0O 5 10 15 20 25 30 35 40
Percentage of Movement Time (%) Speed (m/s)
(a) Movement time. (b) Movement speed.

Fig. 3. CDFs of movement time and movement speed.

T T T T T ey
Lake Geneva Region =
0.8 - Lausanne Urban Area /,/x/ 7]
w 06 /—/ i
a Ve
O 04t / i
02F 0.1 /// }
0 ! J% 1 1 1 ]
0 0.5 1 1.5 2 25 3 35

Relative Standard Deviation

Fig. 4. Analysis of per-cell visits by smartphone users.

the speed for 85% of GPS readings is less than 10 m/s. Even for the much larger Lake Geneva Region with many roads, there
are still 75% GPS readings whose speed is less than 10 m/s. Considering that the outdoor communication range of a sensor
node is around 100 m, a lot of data could be collected during the encounter between a smartphone and a sensor node. With
the assumptions that IEEE 802.15.4 radio is used (the data rate is 250 kbps) and the duration for data collectionis 10 s, 312 K
bytes can be collected per visit. Considering that the size of a sensor reading is normally small, thousands of sensor readings
can be collected per visit. Fig. 3(b) also indicates that the movement speed may be high with non-negligible probability,
even when only the Lausanne Urban Area is considered. This fact justifies our sensor node-initiated probing mechanism for
timely discovery of these short encounters between sensor node and the fast-moving smartphone [3].

3.3. Per-cell visits

As mentioned earlier, a smartphone and a sensor node normally belong to different authorities, and some authentication
scheme based on public key cryptography is needed for secure data collection. Hence, a smartphone and a sensor node may
consume significant CPU, time, and energy for carrying out the related public key cryptography operations. In cases where a
sensor node is repeatedly visited by a few smartphones, a hash-chain-based authentication scheme could be used by them
to avoid carrying out the expensive public key cryptography operations during each encounter [10]. To verify whether a
hash-chain-based authentication scheme could be applied, we quantified the cells that are visited at least once per day and
by more than one user.

We investigated the visits that occur within each cell. For each smartphone user we counted the number of times that
this user passed through this cell, by studying the relevant GPS readings. We then calculated the average and the standard
deviation of these visit frequencies across all the users. Consequently, the relative standard deviation is calculated through
dividing the standard deviation by the average.

Fig. 4 plots the CDF of the relative standard deviation across these cells. It indicates that for most cells, the distribution
of per-cell visits among smartphones has a large relative standard deviation (>1.0), and thus we observe that the visits to
a cell are mainly contributed by a few users. We conclude that a hash-chain-based authentication scheme would be viable
and the overhead of authentication in opportunistic data collection would be reasonable.

3.4. Spatial analysis

3.4.1. Spatial distribution

In the following analysis, we first calculate the number of GPS readings in each cell. We then plot the spatial distribution
of GPS readings among all cells of the Lake Geneva Region in Fig. 5(a). The spatial distribution among cells of the Lausanne
Urban Area is also plotted in Fig. 5(b).

Fig. 5(a) shows that the mobility traces of just 37 smartphone users still cover a large area, while Fig. 5(b) indicates that
many cells in an urban area are visited frequently. Our analysis shows that 19% of cells in the Lausanne Urban Area are visited
at least once per week and 2.466% of cells are visited at least once per day. Hence, we can expect that opportunistic data
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Fig. 5. Spatial distributions of GPS readings.

collection through smartphones can support many applications, especially when sensor nodes are deployed in urban areas
where we live in most of the time.

3.4.2. Spatial locality

Fig. 5(a) and (b) also indicate that a strong spatial locality exists in these distributions of GPS readings and different cells
are visited by smartphone users with different frequencies. Through checking the map of Lake Geneva Region shown in Fig. 6,
we find that Fig. 5(a) clearly illustrates that most of these GPS readings are within the towns alongside the A9 motorway of
Switzerland. Fig. 5(b) indicates that even in the urban area, there are still some cells that have never been visited. There are
also some hot cells that are visited much more frequently than other cold cells.

To study the spatial locality quantitatively, we have calculated the relative standard deviation of the spatial distribution
of GPS readings in the Lausanne Urban Area. For each cell, we have the times that it is visited by smartphone users. We first
calculate the average and the standard deviation of these numbers across all cells. The relative standard deviation is then
calculated through dividing the standard deviation and the average, and its value is as high as 5.23. Hence, a strong spatial
locality is identified and sensor data should flow among sensor nodes to improve the performance of opportunistic data
collection through exploiting this spatial locality [4].

To study the feasibility of exploiting spatial locality, for the Lausanne Urban Area, a cell is marked as a hot cell if it is
visited at least once per day. Otherwise, the cell is marked as cold cell. We then calculate the distance between a cold cell
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and its nearest hot cell. The cumulative distribution function of these distances is plotted in Fig. 7(a) and this plot shows
that for 63.5% cold cells, the distance is less than ten cells. The distance could be reduced if the mobility traces of more users
are considered. However, considering that human mobility is normally constrained by roads and streets, cold cells should
continue to exist. Hence, sensor data should be exchanged among sensor nodes for exploiting spatial locality and the data
could reach a hot cell through a few hops. We have also calculated the distance between a hot cell and its nearest hot cell.
The result in Fig. 7(b) shows that for most of hot cells, one of its direct neighbors is also a hot cell. Hence, opportunistic data
collection through smartphones is robust to the failure of sensor nodes in a hot cell. It also indicates that the neighboring
hot cells tend to be visited sequentially and this characteristic should be exploited if the duty cycle of sensor nodes is not
too low.

3.4.3. Seasonal changes

To exploit the spatial locality for opportunistic data collection, a hot cell should continue to be a hot cell for a long time
so that sensor data will not chase the moving hot cells and consume too much energy to arrive at a current hot cell and be
collected by a smartphone. Hence, for each week, we calculate the number of GPS readings for each cell and these numbers
have been plotted into a 3-D figure. Several animations are then produced based on these figures to demonstrate the changes
of the spatial distribution as time elapses. These animations are available at the official webpage of the Mobile Data Challenge
by Nokia [11].

To study the seasonal changes of hot cells quantitatively, for each week, a cell in the Lausanne Urban Area is first marked
as a hot cell according to the same criteria used in Section 3.4.2 (i.e., a hot cell is visited at least once per day). We then plot
the percentage of hot cells that continue to be hot cells with the elapse of time. Fig. 8 shows that 34% of hot cells are still
hot cells after two weeks. Hence, spatial locality is quite steady and it could be exploited in opportunistic data collection.
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Fig. 10. Autocorrelations with different time lags.

However, it also indicates that some changes do exist in long term and sensor nodes must learn and exploit the spatial
locality online. These long-term changes may be caused by our choice of a low value for defining when a cell is hot. Some
cells may be classified as hot or cold cell alternatively in different weeks. This issue merits further investigation as part of a
broader user mobility study.

3.5. Temporal analysis

To carry out temporal analysis, the whole duration is divided into time slots of one-hour length. The number of GPS
readings in each time slot is then counted and this temporal distribution is plotted in Fig. 9.

3.5.1. Period analysis

Previous studies find that human mobility normally follows some repeated patterns (diurnal, etc.) [ 12]. To check whether
repeated patterns exist in smartphone users’ mobility, autocorrelations of the above time series are calculated with different
time lags and the results are plotted in Fig. 10(a). This plot indicates that the mobility of smartphone users does have a
repeated pattern whose epoch length is 24 h.

However, the diurnal pattern is not obvious since there is no negative autocorrelation at a 12 h lag.> As illustrated
in Figs. 2(b) and 9, one potential reason is that the number of active users and the number of GPS readings are reduced
significantly in the late phase of the Data Collection Campaign by Nokia. Hence, period analysis is carried out again for the
GPS readings between the 15th and the 35th week (2520-5880 h) during which the number of active users and the number
of GPS readings are stable. The corresponding results of period analysis are then plotted in Fig. 10(b), which demonstrates
the existence of the diurnal pattern clearly.

Furthermore, neither Fig. 10(a) nor (b) shows the common weekly pattern in human mobility. When the time lag is one
week (7 *x 24 = 168 h), the autocorrelation is only slightly higher than other time lags that are multiples of 24 h. This issue
will be discussed later when we carry out per-cell analysis.

3.5.2. Temporal locality

In opportunistic data collection, if there are rush hours in which a sensor node is visited by smartphones much more
frequently, a sensor node can discover smartphones mainly during rush hours so that it can upload the same amount
of data with much less energy consumption [2]. Hence, we will check the existence of rush hours, i.e., temporal locality,
in the mobility of smartphone users. Considering that the mobility of smartphone users has a strong diurnal pattern, the
distribution of all GPS readings among 24 h of a day is then calculated and plotted in Fig. 11. This plot indicates that rush
hours do exist in the morning (8 am) and evening (4-6 pm).

5 Due to the diurnal pattern followed by human mobility, for two time slots that are separated by 12 h, the mobility level during the time slot in daytime
should be higher than the average and the mobility level during the other time slot in nighttime should be lower than the average. Thus, the autocorrelation
at a 12 h lag should be negative.
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Fig. 13. Temporal distributions of two cells.

If an hour continues to be a rush hour for many days, a sensor node can learn and exploit the temporal locality easily. To
study this issue quantitatively, for each day, an hour is marked as a rush hour if its number of GPS readings is larger than two
times the average across 24 h. This large threshold is used to avoid too many hours being marked as rush hours. Fig. 12 then
plots the percentage of rush hours that continue to be rush hours with the elapse of time. It shows that 56% of rush hours are
still rush hours even after 20 days. Hence, temporal locality is quite steady and it could and should be exploited. However,
Fig. 12 also indicates that rush hours stop being rush hours after a long period, seasonal changes do exist, and a sensor node
should learn and exploit rush hours autonomously. These seasonal changes may be caused by our strict standard that one
hour is a rush hour continuously. Even though one hour is a rush hour in most days, a few exceptional days will affect the
results significantly. This issue merits further investigation as part of a broader user mobility study.

3.5.3. Per-cell analysis

We notice that in Fig. 11, the number of GPS readings in a rush hour is not much higher than the average. The possible
reason is that the rush hours of various cells are different. They will cancel each other since we study the temporal locality
for the whole area. To validate this conjecture, we carried out the following per-cell temporal analysis.

For two cells that are visited frequently, their distributions of GPS readings among 24 h of a day are calculated and plotted
in Fig. 13(a). This plot clearly validates the above conjecture since these cells have different rush hours.

In the above period analysis in Section 3.5.1, we noticed that no weekly pattern existed in Fig. 10(a) or (b). This issue
might be caused by the same reason, i.e., the period analysis is carried out for the whole area. Hence, for the above two
cells, their distributions of GPS readings over 7 days of a week are plotted in Fig. 13(b). This plot shows that cell 1 is visited
more frequently in weekdays and cell 2 is visited more frequently in weekends. Hence, weekly pattern may exist for some
cells. However, due to the small numbers of GPS readings per cell, per-cell period analysis does not produce any meaningful
results and these results are not reported here.

We note that cell 1 is around the A1 motorway between Geneva and Lausanne. Its rush hours are in late night and it is
visited more frequently in weekdays. One possible explanation is that smartphone users visited cell 1 may be the drivers of
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heavy good vehicles who work at night. Cell 2 is in the city center of Vevey, Switzerland and it is much easier to understand
its temporal distributions. The rush hours are in the morning since commuters arrive to offices during that period. It is visited
more frequently in weekends because more persons come to city center for shopping and entertainment. Hence, different
locations may have different facilities and they may be visited by different kinds of persons. It is hard for engineers to figure
out the temporal distribution of smartphone users’ visits for each sensor node and it should be worthwhile to let a sensor
node learn its own situation autonomously.

To let smartphones and sensor nodes find each other efficiently, it could be helpful to design the probing scheme based
on the distribution of the inter-arrival times of their encounters [ 13]. Hence, for each of the above two cells, we also calculate
the intervals between the consecutive visits of smartphone users. Fig. 14 plots the cumulative distribution functions of their
inter-arrival times. It indicates that the smartphone arrival patterns observed by cells are location-dependent. Instead of
designing a probing scheme for all sensor nodes, it is better to let each sensor node adapt to its own situation.

In summary, the results of per-cell analysis indicate that there are no common repeated patterns, temporal locality, or
inter-arrival times across all cells and a sensor node must autonomously learn and exploit the temporal distribution of its
own location.

4. Related work
4.1. Mobile data collection

Due to the limited computing capability and storage size of sensor nodes, these nodes normally send their data to an
application server through some dedicated static sink nodes with the aim of further processing [14]. However, due to
environmental constraints and/or cost issues, sensor nodes tend to be deployed sparsely and these networks tend to be
partitioned. Consequently, deploying large numbers of static sink nodes for collecting sensor data from these sensor nodes
would incur prohibitive costs in terms of deployment, maintenance, and data backhaul. The cost of equipping each sensor
node with a cellular network interface is even higher.

In [15-20], the use of mobile nodes has been proposed to move around in the deployed area and collect data from sensor
nodes. Depending on the applications, their mobility can be either controlled or not, and these mobile nodes may collect
data from sensor nodes within the range of one or multiple hops. In [21], the use of mobile phones had also been proposed
to collect data from static sensor nodes purposely or opportunistically. However, none of them studied the scenario when
the uncontrolled mobility of the public is considered.

Apart from the low data collection cost discussed in Section 1, opportunistic data collection through smartphones also
has some benefits of adopting mobile sinks, such as the increased network reliability through removing the dependency on
static sink nodes and the extended network lifetime through removing hot-spots near the static sink nodes [ 18,19]. Although
data delivery latency could be high in opportunistic data collection, there are many promising wireless sensor network
applications which are delay-tolerant. Thus, we have proposed opportunistic data collection through smartphones in [5].
Several protocols [2-4] are also designed for efficient data collection through exploiting the temporal and spatial localities
of human mobility reported in [12,22,23]. The findings in this paper validate these human mobility patterns in a more
appropriate spatial granularity and provide more directions to improve the performance of opportunistic data collection
through smartphones.

One might consider using buses and/or postal carriers to collect data from sensor nodes, exploiting their regular mobility.
This represents a special case of our proposal, one in which mobility patterns are somewhat more deterministic. Of course
this approach is only suitable if the routes that are traversed by the bus/postal carrier provide sufficient overlap with the
area of interest.

4.2. Human mobility analysis

Based on Wi-Fi users observed by two Wi-Fi access points (one is deployed in a residence building and the other is
deployed in an academic building) in a one year period, human mobility was studied in [24]. It is confirmed that rush hours,
i.e., temporal locality, does exist in human mobility. As for seasonal changes of rush hours, the existence depends on the
locations of access points.
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The mobility datasets of phone users have also been studied by the research community [12,22,23], and it has been
pointed out that their mobility follows some repeated patterns and demonstrates strong temporal and spatial localities.
However, in these datasets, only the current base station is recorded when a phone user communicates through a cellular
network (call, short message, etc.). Hence, the phone user’s location accuracy is as coarse as several kilometers or even
tens of kilometers due to the large communication range of a cellular base station. Although the mobility analysis based on
these datasets is valuable for urban planning, the location accuracy is too coarse for opportunistic data collection since the
communication range of a sensor node is normally less than 100 m [7].

We believe that our study based on the dataset from the Mobile Data Challenge by Nokia is extremely valuable to
opportunistic data collection through smartphones. It is the mobility traces of smartphone users that are analyzed in this
paper and the location accuracy of GPS readings could be tens of meters, which is sufficient for opportunistic data collection.

5. Conclusion and future work

For the purpose of opportunistic data collection through smartphones, the smartphone users’ mobility traces from the
Mobile Data Challenge by Nokia are analyzed in this paper and our findings are summarized below.

1. Opportunistic data collection through smartphones should be a very promising solution. The overhead for the
smartphone in terms of energy consumption and CPU can be very low and the mobility of smartphone users could provide
a performance level that is sufficient for many wireless sensor network applications, especially when sensor nodes are
deployed in urban areas.

2. The mobility of smartphone users follows some repeated patterns (diurnal, etc.) and the distributions in time and space
have strong localities. When designing the protocols and algorithms for opportunistic data collection, these localities
should be considered and exploited. For instance, a sensor node should try to discover smartphones mainly during rush
hours [2], and sensor data should also be exchanged among sensor nodes to exploit the spatial locality of smartphone
users’ mobility [4]. Due to the existence of seasonal changes and the location-dependent mobility patterns observed by
sensor nodes, sensor nodes should learn and exploit these localities autonomously.

In this paper, the used dataset only includes the mobility traces of 37 smartphone users. Some planned analysis (per-cell
period analysis, etc.) cannot produce any meaningful results since there is insufficient data. In the case that a larger dataset
becomes available, we will carry out this analysis to get more extensive results. Based on the above findings, we will refine
our protocols proposed for opportunistic data collection through smartphones [2-4]. With the dataset from the Mobile Data
Challenge by Nokia, these proposals will also be re-evaluated through trace-based simulations.
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