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Abstract—Resource management in heterogeneous wireless
networks has been approached from various angles by the
research community. The complexity of the network and the
heterogeneity of clients make the conclusive comparison of the
various resource allocations challenging. This work introduces
superBS, an approach defining a theoretical optimal resource
allocation that adheres to the required resource management
policies and can be used as a reference for the performance
of considered algorithms, mitigating the heterogeneity of the
system. Two applications that leverage superBS are developed, an
implementation of a heuristic resource management algorithm,
and the enhancement of a popular fairness metric with support
for clients of different classes and traffic demands. Simulations
demonstrate the performance of superBS and the proposed
algorithms.

Keywords—Heterogeneous Wireless Network, Network Selec-
tion, Priority Class, Resource Management, Heuristic, Fairness

I. INTRODUCTION

Traditional cellular service providers are increasingly ex-
panding their networks with new Radio Access Technologies
(RAT), such as femtocells, LTE and WiFi hotspots, creating
partially overlapping Heterogeneous Wireless Networks. Most
modern client devices are also equipped with multiple wireless
interfaces, enabling them to connect to any RAT operated
by the Wireless Service Provider (WSP). However, they are
configured to preferably attach to the faster RAT, even if
this causes congestion, while leaving the slower ones under-
utilised. In our previous work, we described Utility-based
Resource Management (URM), an approach that differentiates
the offered service level between different classes of clients,
and utilises all available wireless resources to achieve network-
wide provision of comparable level of service to users of the
same class regardless of their attachment point, while offering
premium service level to users of higher classes [1].

In order to ensure that the network resources stay optimally
utilised over time, URM has to be run in short intervals.
However, its computational complexity deems it unfit for
real-time operation and precipitates the need for heuristic
algorithms that follow the same intra-class fairness, inter-
class differentiation policy. URM maximises the total per-client
utility, a logarithmic function of the allocated throughput,
different for every class and mathematically bound to follow
the defined policy and provide Max-Min fairness [2]. The

heuristics however, provide sub-optimal solutions that are not
guaranteed to perfectly adhere to the policy.

Deriving from our work in URM, this paper introduces a
process for comparing the performance of resource manage-
ment algorithms (RMA) for heterogeneous wireless networks.
The idea of superBS is presented, a single virtual Base Station
(BS) that supersedes all available BSs in the real network. The
superBS theoretically serves all clients at once, considering
a number of parameters affecting the performance of the
multi-BS network. It provides an upper limit to the total
utility, ideally differentiates the allocated throughput of clients
that belong to different classes while maintaining Max-Min
fairness among clients of the same class. This allocation
method assures that there is a single maximum throughput
in a class, achieved by all clients unless their demand is
lower. The superBS resource allocation vector can be used
as a benchmark, i.e. a normalisation factor, for comparing and
grading the performance of RMAs.

This work makes two additional contributions. First, it
presents Ideal-aware Resource Management (IRM), a novel
heuristic RMA based on superBS theoretical allocation. IRM
approaches the optimal resource allocation problem with linear
complexity, in contrast to URM’s analytic exponential com-
plexity, while adhering to the intra-class fairness and inter-class
differentiation requirements. Second, it discusses the compli-
cations in defining fairness in a heterogeneous wireless net-
work. The well-known fairness metrics have difficulty dealing
with different traffic demands and service differentiation. Jain
Fairness considering the superBS resource allocation vector as
optimal is shown to be able to cope with such client, traffic,
and network heterogeneity.

II. RELATED WORK

Utility-based resource allocation in telecommunications
networks was first presented by Kelly [3], where a Network
Utility Maximisation (NUM) problem is formulated to ex-
press the source rates, link capacities and design goals of
the modeled network. NUM is used by many researchers
to model a number of different resource allocation problems
and network protocols. A survey paper [4] summarises the
theories, algorithms and applications that derive from NUM,
including research on resource management packet level dy-
namics, mainly focusing on stohastic wireless network models.
Bellavista et al. [9], in an extensive survey paper, provide a
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TABLE I. INDEX OF TERMS

Term Symbol
Client i ∈ (1, · · · , n)

Base Station (BS) s ∈ (1, · · · , S)
Priority class of Client i Pi

Priority class tuning parameter αi

Bandwidth allocated for Client i
Biat the associated BS

Throughput of Client i Ti

List of visible BS to Client i Li

Bandwidth of BS s Cs

Maximum achievable throughput
T̂i,sestimation of Client i associated to BS s

Spectral Efficiency of Client i
Ri,sassociated to BS s

Maximum and minimum Demand
Dmax

i , Dmin
iof Client i (BS-independent)

Theoretical Bandwidth allocated for Client i
Bi,sBSat superBS

Theoretical Throughput of Client i at superBS Ti,sBS

classification model for resource management and network se-
lection algorithms. They identify three first-level classification
directions, namely management scope, evaluation process, and
continuity management.

Resource allocation in wireless networks is inextricably
entwined with the notion of fairness, with many models
defining different fairness types. The ones most commonly
considered are max-min fairness, proportional fairness, utility-
based fairness, the popular Jain fairness index, the Gini index,
and other approaches based on the theory of majorization [3],
[5]–[7]. It is common to extend these fairness metrics to better
fit specific resource allocation problems. For example, Dianati
et al. [8] demonstrate the need for an appropriate definition and
a clear methodology for quantization of fairness, and propose
a fairness index suitable for a single-hop, single cell wireless
network. The effect that different types of objective functions
in NUM-based resource management have on fairness has been
questioned in recent research. Collucia et al. [2] identify and
study a number of objective function families that can be used
to achieve max-min fairness.

Corci et al. [10] exploit the different mobility profiles of
cellular clients. They demonstrate the benefits of simplifying
the mobility management support for low-mobility clients.
Heterogeneity in the context of competing WSPs is also a
popular research topic. Previous work, such as [11], often
assumes that clients are comfortable with opportunistically
switching providers in order to optimise session cost, QoS,
or bandwidth. However, customers churn to different WSPs
at much coarser intervals, and generally prefer to subscribe
for flat-rate service plans with a single WSP [12]. On this
principle Hassan et al. [13] describe a non-cooperative game
that optimises the WSP revenue against user churning due
to low Quality of Experience for wireless VoIP. Our work
considers users with different flat-rate service plans, in the
context of heterogeneous wireless networks operated by a
single WSP, as is the common situation today.

III. SYSTEM DESCRIPTION

A. Problem Statement

We now describe the problem of optimal resource manage-
ment in a heterogeneous wireless network for clients belonging
to different priority classes. The operating scenario assumes a

number of partially overlapping heterogeneous BSs, nomadic
users requesting connections at the beginning of their sessions,
and that a number of parameters are known to the optimising
entity. The optimal allocation offers the same throughput to
clients of the same class and differentiates between users of
different classes across all BSs controlled by the Wireless
Service Provider (WSP). In order to achieve this optimal
allocation, the WSP uses the utility function to quantify the
value of the throughput offered to the clients of each class.
We defined a single optimisation problem, that combines the
BS selection and the resource allocation subproblems, solved
by maximising the total per-client utility. As we reported in
[1], the utility function used for URM is:

fPi
(Ti) = αi ln

(
e− 1

αi
Ti + 1

)
, (1)

where Ti is the throughput offered to client i and αi is a
class-specific tuning parameter to change the curvature of the
utility function, different for each priority class Pi. Table I lists
all the optimisation parameters and notation used in the rest
of this paper. The objective is to maximise the sum of user
utility (eq. 2), and thus, optimise the intra-class fairness and
inter-class differentiation across all BSs.

Maximise
Ti

U =
∑
i

fPi
(Ti) (2)

This work takes a closer look into the problem of band-
width management in a heterogeneous wireless network and
more specifically examines the issues of optimality and fair-
ness. URM showed that the identification of the optimal
resource allocation is computationally demanding, hindering
real-time operation. This paper considers the same problem by
reducing its dimensions and contributes three computationally
feasible applications. It first defines superBS, a simplified view
of the network that considers a theoretical single-BS scenario
and estimates the optimal allocation of the clients, used for
benchmarking. Second, it implements an efficient heuristic
resource management algorithm using the superBS outcome.
Third, it discusses the notion of fairness and augments Jain In-
dex with superBS to support client and demand heterogeneity.

B. Network Model and Assumptions

A heterogeneous wireless network with partially overlap-
ping BSs is assumed, with their bandwidth Cs considered
known and constant. A number of clients are randomly placed
in the network coverage area, with at least one visible BS per
client.

Each BS offers a number of nominal connection data
rates, corresponding to adaptive modulation and coding (AMC)
techniques used in different technologies. For each client i the
maximum achievable throughput T̂i,s via BS s is assumed to
be known.

When a client connects to a BS, a portion of its available
bandwidth is allocated to that client. It is worth noting that
this allocated bandwidth, denoted as Bi, would correspond to
a user throughput, denoted as Ti, according to

Ti = Ri,sBi, (3)
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where Ri, s represents the spectral efficiency of user i at BS s.
Typically, the spectral efficiency is dependent on the user-BS
channel condition and the adopted AMC.

Each client has a maximum and minimum traffic demand.
The maximum demand reflects the maximum throughput of the
session, such as the download bitrate offered by a web server,
or the bitrate of a video stream. The demand can be com-
municated to the WSP, or estimated with stohastic prediction
methods on monitored traffic. As the WSP is considered to be
context-agnostic and differentiates users solely based on their
class, traffic is viewed as greedy. Clients connect to only one
RAT and BS, keeping in line with current routing and power
conservation practices. The network is considered as a series
of independent snapshots, so as to focus on the performance
and effectiveness of the proposed algorithms, rather than the
effects of continuous wireless sessions.

IV. PROPOSED ALGORITHMS

A. SuperBS

The complexity of resource allocation in heterogeneous
wireless networks makes the comparison of various RMA
extremely difficult. Different factors influence the performance
of a client, some of them RMA-dependent (e.g. BS congestion
and resource allocation), while others such as channel capacity
are RMA-independent. Such complexity is further increased
with the presence of multiple user classes. Deciding which
RMA performs better requires the definition of the optimal
resource allocation and a comparison methodology able to
capture the relative ranking of competing algorithms.

The combination of the resource pools significantly reduces
the dimensions of the resource management problem, allowing
for a computationally simple approach. The optimal resource
allocation of a multi-BS network scenario can be upper-
bounded by defining and solving an equivalent problem for
a single BS. The superBS algorithm presented in this section
defines this single BS problem by combining a number of
parameters for each client of the network, and provides an
optimistic resource allocation vector, with the following steps.

1) Compute the superBS bandwidth.

CsBS =
∑
s

Cs, s ∈
⋃
Li (4)

The superBS has bandwidth equal to the sum of the
bandwidth of all BSs visible by the clients.

2) Set the Estimated Maximum Throughput ( ̂Ti,sBS) of
clients. ̂Ti,sBS = max(T̂i,s),∀s ∈ Li (5)

Use the maximum T̂ each client gets from any of the
visible BSs.

3) Set the user spectral efficiency (R).

Ri,sBS = max(Ri,sBS),∀s ∈ Li (6)

Use the maximum R each client gets from any of the
BSs visible.

4) Calculate the optimal bandwidth allocation vector
(Bi,sBS and Ti,sBS). For the considered policy this
is achieved by solving URM on superBS.

The superBS algorithm considers a virtual BS and client
properties based on the real network. Steps 2 and 3 identify
the connection quality of the clients. Due to the heterogeneity
of the network, for different demand and actual throughput,
T̂ and R may have a different effect on the overall resource
consumption in the real network. Hence, the selection of T̂ and
R is not linked for the definition of the superBS environment.

For example, let’s consider a network comprising 2 BSs,
A and B, with CA = 100 and CB = 15 bandwidth units (Bu),
and a client with Dmax = 20 throughput units (Tu), T̂A = 50
Tu, RA = 0.5, and T̂B = 15 Tu, RB = 1. The client can
connect to BS A, consuming BA = 20/0.5 Bu for TA = 20
Tu, or to BS B with BB = 15/1 = 15 Bu for TB = 15 Tu.
The client can get 15 Tu of throughput from BS B, or 20 Tu
from BS A and meet his demand, albeit this increase comes
with 25 Bu of bandwidth overhead. Since superBS is only
aware of the maximum demand and not the final throughput the
client will have on the virtual BS, it avoids limiting the client’s
performance by considering the most optimistic combination
of T̂sBS = 50 Tu, and RsBS = 1. This design decision is
a cause for possible under-estimation of consumed resources,
and the reason why the superBS bandwidth allocation vector
may be infeasible in the real network. For clarity, bandwidth
units should be considered similar to bandwidth in Hz, used
for a wireless data transmission, while throughput units similar
to the bit rate of the transmission in bits/sec.

While step 4 finds the policy-optimal resource allocation
for the simplified single-BS network by running URM, other
RMAs can be used for different policies. The solution of the re-
source allocation problem for a single BS is considered trivial,
and various policies and algorithms exist in the bibliography.
SuperBS provides a useful upper bound that can be utilised in
a number of applications, as we demonstrate in the remainder
of the paper.

B. Heuristics

SuperBS produces a best-case bandwidth allocation so-
lution, but does not provide an indication for the client as-
signment to BSs. This section describes Ideal-aware Resource
Management (IRM), a simple heuristic algorithm that uses
SuperBS as an input to assign clients to BS. IRM uses Bi,sBS
as a metric for BS selection. The steps of the algorithm are:

1) Sort clients in a descending Bi,sBS order. Initialise
the theoretical available bandwidth: availCs = Cs.

2) For each client calculate the expected resource con-
sumption for all visible BSs. B̂i,s = Ti,sBS/Ri,s.

a) If the theoretical available bandwidth of the
BS with the maximum R is enough, assign
client to this BS. (if availCs > B̂i,s).

b) Else assign client to the BS with maximum
(availCs − B̂i,s)/Cs.

3) Update the theoretical available bandwidth of the
BS: availCs = availCs − B̂i,s. Negative values are
allowed.

4) With all clients assigned to BSs, perform the Class
Sharing (CS) bandwidth assignment with weighted
water filling. The weight for each client is αi.
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IRM first considers the clients with the highest impact on
the overall network, i.e., the clients with the highest expected
bandwidth consumption at the superBS. It selects which BS
they should be assigned to by minimising their impact on the
real network. This is done by either assigning the client to
the BS with the lowest R, minimising the consumed resources
(step 2a), or to the BS that, relatively, would be affected less
(step 2b). The relative effect a client has on the BS is measured
with (availCs− B̂i,s)/Cs. It calculates the expected available
resources, or, if negative, resources clients assigned to the BS
will have to share, if the client was to connect to each BS,
normalised to the BS’s bandwidth.

A second heuristic is proposed, Dmax-CS, that uses the
same algorithm, albeit with a fundamental change. It considers
the maximum estimated demand (Dmax

i ) instead of Bi,sBS .
Dmax-CS does not need a prior computation of superBS as
B̂i,s is defined as: B̂i,s = Dmax

i /Ri,s. Clients are sorted
to a descending order of their respective minimum B̂i,s.
Comparison of the two RMAs will demonstrate the benefits,
if any, of using superBS as a guide to resource allocation.

V. PERFORMANCE ANALYSIS

The performance of the proposed heuristics is examined
with MATLAB simulations as we focus on the decision-
making methods and not on specific protocols and network
types. Two additional RMAs, that were used in [1], are also
considered for the performance analysis, the Most Available
Bandwidth (MAB-CS) and the RSS-equivalent (RSS-CS).
They perform network selection by considering clients in a
random order and selecting the BS with the most available
bandwidth or the one offering the best T̂i, respectively. RSS-
CS resembles the current BS selection practice where the client
attaches to the BS of the best technology with the best signal
strength. MAB-CS is a simplistic load-balancing improvement
of RSS-CS, where clients are attached to the BS with the least
traffic load.

The network consists of one Fast, one Medium, and one
Slow BSs, all partially overlapping. The bandwidth of these
generic BS types roughly corresponds to LTE, WiFi and
UMTS. We consider three distinct user classes, namely Gold
Class (GC), Silver Class (SC), and Bronze Class (BC), with
α values of 0.6, 0.3, and 0.1 respectively. α has an effect
analogous to weights in weighted water filling, and different
sets of α values demonstrate similar qualitative behaviour.
Results are averaged over 100 experiments, each based on a
randomly generated snapshot, as explained in Section III-B.
The number of clients is chosen so that the total maximum
demand is 1.5 times the network capacity, and each is assigned
a priority class with a discrete uniform distribution. The
network is saturated to showcase the effect of the bandwidth
sharing mechanism of the RMAs. The clients are randomly
assigned data rates (that define T̂i, s) and their respective Ri,s
from Table II, simulating a random placement on the coverage
area. The client traffic is considered greedy, with Dmin

i 0 and
Dmax
i set with a uniform distribution between 0 and 40 Tu.

The maximum demand of a client can overwhelm the Slow BS,
and consume a considerable portion of the Medium and Fast
BSs, similar to clients with demands that saturate a UMTS BS.

Fig. 1 shows the average utility, throughput, fairness and

TABLE II. BS DATA AND UTILISATION RATES

BS type Min Max Step Size
Fast BS Data Rates (Tu) 30 300 30

Medium BS Data Rates (Tu) 10 100 10
Slow BS Data Rates (Tu) 1.5 15 1.5

R (respective to Data Rate for all BS) 1/2.8 1 1/0.2

TABLE III. AVERAGE CORRELATION OF Ti WITH Ti,sBS .

URM 0.9119
IRM-CS 0.8663

Dmax-CS 0.8123
MAB-CS 0.6016
RSS-CS 0.6654

denied throughput per class. Fairness is computed using Jain
Index with Dmax

i as optimal, and is discussed in more detail
in the next section. Denied throughput considers Dmax

i − Ti,
and expresses the dissatisfaction of the demand of the clients.
URM shows the utility-optimal resource allocation for the
heterogeneous wireless network. SuperBS, due to the ex-
pected under-estimation of resource utilisation, noticeably but
not excessively outperforms URM in terms of utility and
throughput, while achieving similar levels of fairness. The
analytical, utility-based approach of URM is able to closely
match the policy-optimal allocation of superBS, unfortunately
with significantly higher computational cost.

IRM-CS and Dmax-CS make well-informed selections of
which BS should serve each client, and consistently achieve
comparable throughput with URM and superBS, as shown in
Table III. On the other hand, MAB-CS with its simplistic
network selection algorithm, fails to be as consistent. This
happens as clients are sub-optimally assigned to BSs without
considering the actual throughput they will get, resulting in
varying per-client throughputs, even between the same class.
The CS bandwidth allocation algorithm is still able to dif-
ferentiate between the classes, making the average throughput
seem comparable to URM. However, throughput greatly varies
between clients, and has a very low correlation to superBS.
Jain Index is not able to capture this irregular behaviour,
showing only a slight decrease in fairness, as it is masked
by the co-existence of users with low demand that satisfy it
and high demand that are not getting enough throughput.

RSS-CS performs the worst in terms of throughput and
utility, but has a better correlation of throughput to superBS
than MAB-CS. This happens as RSS-CS selects the fast BS for
most clients, resulting in an assignment similar to a single-BS
scenario, albeit with the bandwidth of only the fast BS.

The complexity of the various RMAs should be noted.
URM, with a worst-case analytic approach, has a complexity of
O(nSn). SuperBS, since it is essentially URM in a single BS
is O(n), as are MAB-CS and RSS-CS. IRM-CS and Dmax-CS
are significantly lower than URM with O(nS)

VI. ON THE ISSUE OF FAIRNESS

Various notions have been proposed to define fairness,
such as the Max-Min fairness and index, the Jain Index, and
the Gini Index, each appropriate for specific problems and
generally best for greedy traffic. Unfortunately, none can cope
with the complexity of a heterogeneous wireless network,
especially when traffic has a maximum sustainable throughput,
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Fig. 1. Average statistics over 100 snapshots.

as demonstrated with the example that follows. Things become
more complicated with multiple client classes, as there is an
interdependency of the available bandwidth of one class with
the utilised bandwidth of the other.

Let’s consider the Max-Min index, a simple metric defined
as Imaxmin = min{xi}/max{xi}, and a throughput assign-
ment of (1, 1, 1, 2) Tu to 4 clients of the same class. The
first three clients have a maximum demand of 1 Tu and the
fourth is greedy. This assignment would have Imaxmin = 0.5,
even though it follows exactly the idea of Max-Min fairness,
namely that the increase of the throughput of client 4 has
not affected negatively any other clients by lowering their
throughput. Additionally, if a RMA was able to additionally
allocate 2 Tu to this class (1, 1, 1, 4), it would result to
Imaxmin = 0.25, indicating even less fairness. Similarly, the
Gini index would give values of 0.1 and 0.21 for the same
throughput allocations (Gini index notes fairness with 0 and
unfairness with 1).

Jain Fairness Index (eq. 7) is a relative fairness measure,
comparing the throughput assignment (xi) with an optimal one
(Oi). Oi is commonly set equal to the average xi.

IJain =

(∑
i

xi
Oi

)2

n
∑
i

(
xi
Oi

)2 (7)

Figure 1d considers Oi = Dmax
i , and shows the inability

to distinguish between clients with low demand fulfilling
their need and clients with high demand receiving throughput
noticeably lower than Dmax

i . Figure 2a shows the CDF of the
demand satisfaction rate for all clients. As expected from a
congested network, a number of clients fulfill their demand,

while others receive reduced throughput, since the traffic
demand between clients is different.

A fair resource allocation could be considered to be the one
that complies with the policy requirements. SuperBS provides
a reference for that, namely it provides an estimation of the
throughput each client should receive under a strict policy-
adhering RMA. Figure 2b shows the CDF of the demand sat-
isfaction against the throughput allocation of superBS (Ti,sBS).
The closer the curve is to x = 1, the more policy-compliant
the bandwidth allocation is. Sub-optimal BS selection causes
some clients to have Ti/Ti,superBS > 1 at the expense of other
clients in more saturated BSs. By visual inspection it can be
seen that URM is the one closest to optimal, while IRM-CS
and Dmax-CS outperform MAB-CS and RSS-CS.

As differences between two RMAs are becoming less
obvious, the need for the quantification of Figure 2b becomes
prominent. The Jain Index is computed again, this time with
Oi = Ti,sBS . The superBS allocation acts as a normalisation
factor, allowing the direct comparison of Jain fairness between
clients of different classes, since the optimal allocation for a
client already considers the class of the client, the existence of
other clients and their demands. Table IV shows the fairness
index across the 100 snapshots, while Figure 3 plots the
average fairness per class and the reliability of each RMA.
URM, as expected, is the best performing RMA, consistently
achieving fairness higher than 0.9, with very small confidence
intervals. IRM-CS follows next, with fairness 0.85 to 0.95,
albeit with slightly wider confidence intervals. Dmax-CS per-
forms slightly worse, while RSS-CS and especially MAB-
CS have significantly lower fairness, with considerably wider
confidence intervals, meaning that they deliver these fairness
levels unreliably. The performance of IRM-CS and Dmax-
CS show that computationally simple RMAs with an intricate
knowledge of the network can achieve near-optimal results.
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95% confidence intervals.

TABLE IV. FAIRNESS ACROSS ALL SNAPSHOTS WITH SUPERBS AS
OPTIMAL

URM 0.9420
IRM-CS 0.8691

Dmax-CS 0.8397
MAB-CS 0.6522
RSS-CS 0.6986

Moreover, the computation of superBS allows IRM to achieve
noticeably better utility, throughput and fairness than Dmax.
On the other hand, MAB and RSS follow an over-simplistic
approach for BS selection that leads to significant deviation
from the optimal allocated throughput.

VII. CONCLUSION & FUTURE WORK

This work presented the process of representing a multi-
BS heterogeneous wireless network as a single theoretical
BS to simplify the approximation of the optimal resource
allocation. It is shown that this theoretical optimal solution
can be used effectively in heuristic resource management
algorithms and benchmarking of the various approaches. In
particular, with this theoretical optimal solution, Jain fairness
is able to cope with the heterogeneity of the different user
classes and demands, and conclusively determine whether the
clients are allocated a fair amount of resources in respect to
what the resource sharing policy commands.

The main future direction is to support client mobility and
handoffs, making the network model more realistic. A major
resource allocation question arises when ongoing sessions
collide with a new one. Moreover, the heterogeneous nature
of the network implies significant costs for vertical handovers,
making the definition of the optimal resource management
problem challenging. The applicability and effectiveness of the

various RMAs needs to be examined with the increase of the
network model complexity and realism.

ACKNOWLEDGMENT

This work is supported by Science Foundation Ireland
(SFI) under Research Grant 10RFP/CMS2952. The authors
would like also to acknowledge the support of the National
Telecommunication Regulation Authority (NTRA) of Egypt.

REFERENCES

[1] I. Tsompanidis, A. Zahran, and C. Sreenan, “Towards utility-based
resource management in heterogeneous wireless networks,” in ACM
MobiArch, Aug. 2012.

[2] A. Coluccia, A. D’Alconzo, and F. Ricciato, “On the optimality of max–
min fairness in resource allocation,” Annals of Telecommunications,
vol. 67, no. 1-2, pp. 15–26, 2012.

[3] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.

[4] Y. Yi and M. Chiang, “Stochastic network utility maximisation-a tribute
to Kelly’s paper published in this journal a decade ago,” European
Transactions on Telecommunications, vol. 19, no. 4, pp. 421–442, 2008.

[5] D. Bertsekas, R. Gallager, and P. Humblet, Data networks. Prentice-
Hall International, 1992, vol. 2.

[6] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
DEC-TR-301, Digital Equipment Corporation, Tech. Rep., Sep. 1984.

[7] A. Marshall, Inequalities: Theory of majorization and its applications.
New York: Academic Press, 1979.

[8] M. Dianati, X. Shen, and S. Naik, “A new fairness index for radio
resource allocation in wireless networks,” in IEEE WCNC, Mar. 2005.

[9] P. Bellavista, A. Corradi, and C. Giannelli, “A unifying perspective on
context-aware evaluation and management of heterogeneous wireless
connectivity,” Communications Surveys Tutorials, IEEE, vol. 13, no. 3,
pp. 337–357, 2011.

[10] M. Corici, J. Fiedler, D. Vingarzan, and T. Magedanz, “Optimized
low mobility support in massive mobile broadband evolved packet
core architecture,” in Networks (ICON), 2011 17th IEEE International
Conference on, Dec. 2011.

[11] O. Ormond, G. Muntean, and J. Murphy, “Economic model for cost
effective network selection strategy in service oriented heterogeneous
wireless network environment,” Symp. Network Operations and Man-
agement, Jan. 2006.

[12] T. J. Gerpott, “Biased choice of a mobile telephony tariff type: Ex-
ploring usage boundary perceptions as a cognitive cause in choosing
between a use-based or a flat rate plan,” Telematics and Informatics,
vol. 26, no. 2, pp. 167–179, 2009.

[13] J. Hassan and et al., “Managing Quality of Experience for Wireless VoIP
Using Noncooperative Games,” Selected Areas in Communications,
IEEE Journal on, vol. 30, no. 7, pp. 1193–1204, 2012.

1295


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

