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Abstract 
 
Energy consumption is arguably the key factor in the design 
and operation of Wireless Sensor Networks (WSNs).  This 
holds both for normal operation and maintenance operations – 
such as software updates. Whereas software updates will 
probably be infrequent, they must still not consume a 
significant fraction of a WSN’s energy reserve; also, the 
required consumption must be known before triggering an 
update, in order to ensure that it can complete.  Software 
updates are an expensive operation: there can be a significant 
volume of data, guaranteed delivery is required, and normal 
data fusion algorithms cannot be used to reduce the 
communication load. In this paper we present a node-level 
energy consumption model for the evaluating the efficiency of 
software updates on wireless sensor nodes. This model is then 
used to derive a novel minimum energy benchmark equation. 
This paper also presents some new power measurements, and 
uses these, along with published data, to interpret the 
benchmark in quantitative terms for some specific hardware 
platforms. This benchmark provides a standardized and 
quantitative figure to use in comparing software update 
algorithms. The methodology is also applicable to establishing 
energy benchmarks for other tasks in the WSN domain. 
 
1 Introduction 
 
Energy consumption is arguably the key factor in comparing 
different algorithms for use in Wireless Sensor Networks 
(WSNs) [17,18]. Ultimately, energy is consumed by the node 
hardware – and this sets a lower limit on the energy 
consumption of any algorithm. Design of progressively more 
efficient hardware has been a characteristic feature of research 
into WSNs [8]. But the energy consumed also depends on the 
system software that runs on a node: the operating system, 
device drivers, and networking stack. For example, disabling 
the receiver [20] during overheard/unwanted radio messages, 
or using different modes of operation [22] allows the hardware 
to be used more efficiently. 

At a higher level than the individual nodes, is the entire 
network, and the distributed algorithms that run on this. Again, 
the energy efficiency of the network as a whole depends on 
how effectively these distributed algorithms use the underlying 
node hardware and software. 
 
In this work we examine the energy consumed by the various 
components of a software update operation and build a general 
model to describe the total energy used. This model is then 
used to derive a minimum energy equation which can be used 
as an energy benchmark in evaluating and comparing software 
update algorithms. Sensor node energy measurements are then 
presented, and used in the calculation of the minimum 
benchmark for two similar sensor nodes. 
 
In Section 2 we describe some representative work in WSN 
software updating, and discuss their energy reduction 
mechanisms. In Section 3 we show the derivation of our model. 
In Section 4 we show how this model is used to derive a 
minimal energy benchmark. Section 5 shows how 
measurements were made to derive the figures required in 
Section 6 to calculate actual benchmark figures. 
 
2 Background and related work 

 
Software updating has always been identified as an important 
topic for wireless sensor network research [15]. As with all 
WSN mechanisms, reducing and optimizing energy use is a 
critical concern. Identified requirements include low overheads, 
and resource awareness – especially to minimize flash 
rewriting [10]; minimizing the impact on sensor network 
lifetime, and limiting the use of memory resources [21]; 
minimizing processing, limiting communication to save energy 
and only interrupting the application for a short period while 
updating the code [3,16]; operating within the hardware 
constraints of different platforms [12]. 
 
Power measurements for WSNs have been used to extend the 
capabilities of simulators (for example [19]), and work on 



 

energy evaluation[4] uses a mixture of theoretical, simulation, 
and real-world results to evaluate energy efficiency. But these 
results do not provide an absolute benchmark against which to 
evaluate protocols. Many of the protocols and algorithms 
developed for WSNs include specific provision for optimizing 
energy performance, and we consider the energy related 
aspects of a few representative examples here. A fuller 
treatment of software updating in wireless sensor networks is 
available in [1]. 
 
Deluge [6] is a data dissemination protocol and algorithm for 
propagating large amounts of data throughout a WSN using 
incremental upgrades for enhanced performance. It is 
particularly aimed at disseminating software image updates, 
identified by incremental version numbers. The same image is 
disseminated to all nodes in the network. The program image is 
split into fixed size pages, and each page is split into fixed size 
packets to suit the packet size of the TinyOS[7] network stack. 
A bit vector of pages received can also fit in a single packet. 
Nodes broadcast advertisements containing a version number 
and a bit vector for any new pages received, using a variable 
period based on updating activity. To upgrade part of its image 
to match a newer version, a node listens to further 
advertisements for a time, and then requests the page 
number/packets required from a selected neighbour. A sender 
collects several requests before selecting a page and 
broadcasting the requested packets. When a node receives the 
last packet required to complete a page, it broadcasts an 
advertisement before requesting further pages - this enhances 
pipelining of the update within the network. State data takes a 
fixed amount of space, independent of the number of 
neighbours. There are no ACKs or NACKs - requesters either 
request new pages, or missing packets from a previous page. 
Radio network contention is reduced through heuristics used to 
select more remote senders. Rateless Deluge and ACKless 
Delugs [5] improve on this work by using rateless codes to 
reduce the need for rebroadcasts, and FEC to reduce the 
number of control packets. 
 
Imapla[11] is the event-based middleware layer of the 
ZebraNet wireless sensor network. It is designed to allow 
applications to be updated and adapted dynamically by 
dispatching events through a application adapters. ZebraNet 
nodes are expected to be inaccessible, and deployed in large 
numbers, so ZebraNet supports high node mobility, constrained 
network bandwidth, and a wide range of updates (from bug 
fixes, through updates, to adding and deleting entire 
applications). Applications consist of multiple, shareable 
modules, organized in 2KB blocks. The Application Updater 
allows applications to continue running during updates, and 
can process multiple contemporaneous updates; version 

numbering is used to ensure compatibility of updates with 
existing modules. It also handles incomplete updates, and 
provides a set of simple sanity checks before linking in a new 
module. Software updates are performed in a three-step 
process: firstly the nodes exchange an index of modules, then 
they make unicast requests for updated modules, and finally 
they respond to requests from other nodes. An exponentially 
increasing backoff timer reduces management traffic, but can 
delay updates when separated groups of nodes reconnect. 
When software reception is complete, then after performing 
simple sanity checks, the old version application is terminated, 
the modules in the new version are linked in, and the new 
application is initialised prior to use. 
 
MNP [23] is targeted at nodes running TinyOS and the XNP 
boot loader [9]. The protocol operates in four phases. During 
Advertisement/Request sources advertise the new version of 
the code, and interested nodes make requests. Sources listen 
overhead all other advertisements and requests - a suppression 
scheme to avoid network overload. During Forward/Download 
a source broadcasts a StartDownload message to prepare the 
receivers, and then sends the program code a packet at a time - 
there is no ack. During Query/Update the source broadcasts a 
Query to all its receivers, which respond by unicast asking for 
the missing packets. Receivers, having received the full image, 
now become source nodes and start advertising. During 
Reboot, entered when a source receives no requests in response 
to an advertisement, the new program image is transferred to 
program memory, and the node reboots with the new code. 
Download requests are sent to all sources to reduce the hidden 
terminal effect, and select only one active sender in a 
neighborhood. Flow control is rate based, determined by the 
EEPROM write speed. 
 
The selected algorithms described above use various 
techniques to reduce energy use, but there is no standardized 
method to compare them from an energy viewpoint. In the next 
sections we present a new model and benchmark approach that 
does provide a standardized baseline for these energy 
comparisons. 

 
3 The model 

 
WSN software upgrades require energy for: 

1. receiving the upgrade (including retransmissions), 
2. transmitting necessary packets to initiate the upgrade 

and cause retransmissions, 
3. processing the upgrade (e.g. security, decompression, 

dynamic linking), and 
4. writing the upgrade to permanent program memory. 

 



 

The energy used during a software upgrade is the sum of these 
four factors: 

 

storeprocesstransmitreceivetotal EEEEE +++=  (1) 

 
Note that, in this work, we are not considering the cost of 
distributing the upgrade throughout the network (this is 
addressed in the section on future work). We also are not 
considering the cost of writing the upgrade to temporary 
storage: we argue that it is not in general necessary to do this, 
though it may be on some specific hardware platforms, or used 
with particular algorithms. Finally we are not considering the 
energy required to restart or reboot the software: in general this 
is insignificant, but further work is needed to investigate this. 
 
In the rest of the paper we are using the term energy in the 
general sense. All equations are based on electrical charge 
(measured in micro-Amp-seconds) to represent the energy 
used. To compare different algorithms on the same platform, 
this provides an accurate relative measure. To calculate the 
electrical energy (in Joules) requires a voltage factor. 
 
 The formulae for modeling the energy consumed by a software 
upgrade operation are shown in Equations (1) through (6) – 
note: all charge is expressed in micro-Amp-seconds. See Table 
1 for a description of the equation parameters. 
 

Name Description Units 

Ereceive Energy consumed for the wireless 
reception of the upgrade J 

Eprocess Energy consumed for the processing of a 
software upgrade J 

Estore Energy consumed for the storage of a 
software upgrade into permanent program 
memory 

J 

Erestart Energy consumed for the restarting of the 
software following an upgrade (e.g. a 
reboot) 

J 

S Size of the upgrade (in Bytes) Bytes 
N Number of processing operations required 

for a software upgrade Instructions 

fi Fixed overhead for processing operation i Instructions 
vi Variable overhead for processing 

operation i 
Instructions 

/Byte 
Einst Energy consumed by executing a single 

instruction (a single, average energy figure 
is used as a simplification here) 

uAS 
(micro-
Amp-

Seconds) 
k Wireless packet payload Bits 
H Wireless packet overhead (preamble, 

header, checksum, etc.) Bits 

Ρ The average bit-error-rate Errors/Bit 
Table 1: Energy Equation Parameters 
 
The receive energy Ereceive is the product of the energy used per 

bit (Ebit), the bits per packet (k+h), and the number of packets 
received ( )

k
S*8  including a factor to account for 

retransmissions:  
( )( )hk+− ρ1

1  [23].  

 

( ) ( )
( )( )hkbitreceive k

ShkEE +−
+=

ρ1
1**8**  (2)  

 
The transmit energy Etransmit is the product of the energy used 
per bit (Ebit), the bits per packet transmitted (Stx), and the 
number of packets transmitted (Ntx).  
 

txtxtxbittransmit NSEE **=  (3)  
The processing energy Eprocess is the sum of the energy of each 
processing operation; for each operation, the energy is the 
product of the average per-instruction cost (Einst) and the sum 
of the fixed cost (fi) and the variable per-byte cost (S*Vi). 
 

( )( )∑
=

+=
N

i
instiiprocess EvSfE

1
**  (4) 

 
The storage energy Estore is the product of the number of bytes 
(S) and the per-byte permanent storage cost (Eperm). 

 

permstore ESE *=  (5) 

 
The following characteristic parameters must be measured for a 
specific hardware platform: N, fi, vi, Einst, Eperm.  
 
Based on this energy equations (1)-(5), we can now derive an 
expression for the minimum energy required on a node to 
perform a software upgrade. Note that the form of the equation 
presented in this paper relates to energy required locally on the 
node to receive and process the upgrade, and not to the energy 
required network-wide to distribute the upgrade throughout the 
network. 
 
4 The minimum energy benchmark 
 
The minimum energy benchmark for a particular platform 
(reflecting the minimum energy required) is derived by 
calculating the minimum value for the energy consumption 
each of the energy consumption Equations (1)-(5), as shown in 
Equation (6). 

minminminmin
storeprocesstransmitreceivebenchmark EEEEE +++=  (6) 

 



 

This minimum energy level may not be achievable by any 
particular algorithm, but it sets a quantified minimum baseline 
below which no algorithm can go: thus it acts as an objective 
and standardized benchmark both for evaluating a particular 
software update mechanism for the potential to reduce energy 
consumption, and for comparing software update mechanisms 
for to determine their energy efficiency on an absolute scale. 
 
The treatment of retransmissions is a good example of the 
philosophy behind the minimum energy benchmark approach: 
for reliable data reception, any missing packets must be 
retransmitted – but there is no particular algorithm that 
optimally minimizes the energy for control traffic (e.g. ACKs, 
NACKs, or other feedback mechanisms), as there is always a 
time/energy tradeoff to be made. Therefore, the minimum (and 
unachievable) power benchmark energy figure for the 
retransmission control traffic is zero – the energy figures for 
the retransmitted data are of course included. 
 
The (locally) optimum values for the parameters k and h are 
determined by the hardware platform (wireless hardware 
parameters) and the bit-error-rate ρ. The optimal value for k in 
the presence of bit errors, kopt, can be calculated as shown for 
example in [2], but in this paper we use typical packet sizes. 

 
In the rest of this paper we will use a simplified version of the 
benchmark – see Equation (7) – assuming no significant 
processing. The same way as retransmissions overheads are 
handled by using an ideal zero cost, we also assign an ideal 
zero cost to the base processing for a software update (i.e. 
iniating the data transfer from RAM to Flash). Energy costs 
associated with compression and/or dynamic linking need to be 
considered separately; the following assumes a simple upgrade. 

 
minminmin
storetransmitreceivebenchmark EEEE ++=  (7) 

 
This represents the simplest case where there is no processing  
required for a software update: e.g. where 0min =processE . 

 
For this benchmark, the minimum number of feedback packets 
required (either to request the upgrade, or to request 
retransmissions) is taken to be 1 packet.  
 
4 Energy measurement results 
 
To demonstrate the use of the minimum energy benchmark we 
have picked two wireless sensor nodes based on the same 
processor (ATMEL ATMega128L) and used energy 
measurement data to determine value for the required 
parameters in the energy equation. 

Energy measurements for the MICA2 node [2] have been 
presented in a number of publications, we use the figures from 
[19] to estimate the values in Table 2. Note that the energy 
parameters include the CPU executing during receive and 
transmit operations. The Flash access energy is estimated from 
the DSystem25 results (see Table 4) and the MICA2 figures. 
 

Parameter Value [mA] 
Eperm 0.581 uAs/byte 
Erxbit 0.539 uAs/bit 
Etxbit 0.420 uAs/bit 

 
Table 2: MICA2 energy parameters 
 
Current measurements were made on the DSystem25 Module 
[14], and from these the energy consumption parameters for 
this platform were calculated. This node contains the following 
components that use energy during operation: 
 

• Atmel ATMega128L processor; 
• a Nordic nRF2401 radio transceiver; 
• an LP2966 3.3V regulator; 
• a 4 Mhz external oscillator (part IQX0-71). 

 
The measurements were made using a specially developed  
program running directly on the hardware, using the AVR C 
library, but no operating system. This allows the hardware-
specific energy costs to be measured without the effects of any 
operating system algorithms. Radio transmission was using 32-
byte packets in Shockburst mode at 250Kbps. 

 
The current consumption of the module was measured by 
placing a 1-ohm resistor (±5% of its nominal value) in series 
with the power supply for the module: a power-measurement 
methodology for wireless sensor nodes described in other 
research publications [10]. The power measurements were 
performed using a Thandor TS1541S power supply providing 
6.00V (±0.005V). Some sample results were compared against 
two new 3v batteries (CR2430) to ensure that the power supply 
was not introducing anomalies. No significant differences were 
seen, and so all measurement presented in this paper were 
made using the lab power supply to guard against voltage drops 
as the batteries are drained during multiple measurements. 
 
The measurements were made at a sample rate of 1 Mega-
samples/second with 16-bit precision using an PCI-6251 NI-
DAQ card from National Instruments, with the input voltage 
configured in the range of +100mV to -100mV. A higher 
frequency oscilloscope (20MHz) was used to ensure that the 1 
MHz sampling rate was sufficient. 
 



 

The raw measurements show current oscillations (see Fig. 2 for 
an example). A smoothing capacitor was not used in order to 
avoid any distortion to sharp transitions in the graphs. 
Unsmoothed graphs are presented here: the average current 
consumption and time for each operation was calculated in 
order to derive the figures shown in Table 3. 
 
A dedicated ‘power-signature’ program was used that 
performed the various operations to allow the current 
consumption (and thus the energy parameters) of each 
operation to be determined. A companion node was used to 
provide suitable wireless traffic for reception. 
 
Screenshots of the current measurements are provided in Figs. 
1-8 to give the reader an overview of the large data-sets: 
 
• Flash memory erase & write (Fig. 1) – this shows the 

operation for 1 Flash memory page, 256 bytes 
• EEPROM read & write (Fig. 2) – two erase & write 

operations: of 1 byte followed by 2 bytes 
• Wireless transmission (Figs. 3-6)  – these show 

transmission at -20, -10, -5, and 0 dBm. The data 
transfer, and transmission phases use 28-byte payloads 
(for a total of 33 bytes on the air including preamble) 

• Wireless reception (Fig. 7) - with the receiver enabled, 
and a single packet received 

• CPU executing  (Fig. 8) – all peripherals, including the 
wireless transceiver, are disabled or configured in the 
lowest available power mode 

• CPU sleep mode with all peripherals disabled (Fig. 8) 
 
 
 

 

 
Figure 1: Flash Memory Access current vs Time 

 Vertical scale: 5mA – 15mA 
Horizontal scale: 132mS – 149mS 

 
Figure 2: EEPROM Access current vs Time 

Vertical scale: 5mA – 15mA 
Horizontal scale: 181mS – 264mS 

 
Figure 3: Transmit at 0dBm current vs Time 

Vertical scale: 0mA – 100mA 
Horizontal scale: 307mS – 319mS 

 
Figure 4: Transmit at -5dBm current vs Time 

Vertical scale: 0mA – 50mA 
Horizontal scale: 381mS – 392mS 



 

 
Figure 5: Transmit at -10dBm current vs Time 

Vertical scale: 0mA – 50mA 
Horizontal scale: 427mS – 439mS 

 
Figure 6: Transmit at -20dBm current vs Time 

Vertical scale: 0mA – 50mA 
Horizontal scale: 473mS – 85mS 

 
Figure 7: Receive current vs Time 

Vertical scale: -50mA – 50mA 
Horizontal scale: 510mS – 598mS 

 
Figure 8: Wireless Standby & CPU Sleep current vs Time 

Vertical scale: 0mA – 10mA 
Horizontal scale: 613mS – 649mS. 

The results of these measurements are summarized in Table 3, 
and the Dsystem25 parameters derived from these results are 
presented in Table 4. 
 

Measurement Current Duration 
Transmitting at 0 dBm 19.46mA  11,727us 
Transmitting at -5 dBm  19.28mA  11,790us 
Transmitting at -10 dBm 19.16mA  11,721us 
Transmitting at -20 dBm 19.10mA  11,688us 
Receiver in power-down mode 8.32mA  
Receiver in idle mode  26.5mA  
Receiving  10.2mA  10,622us 
Read EEPROM (1 Byte) 8.32mA  
Write EEPROM (1 Byte) 9.85mA 4.2ms 
CPU in sleep/power-down 1.82mA  
CPU in active mode 8.32mA  
Write Flash (256 Bytes) 10.19mA  4022us 
Erase Flash (256 Bytes) 10.16mA  4021us 

 
Table 3: Dsystem25 current measurement results 
 
The measurements were repeated three times for one node, and 
then repeated on two additional nodes, resulting in 5 different 
data sets. Analysis of these results provides a 95% confidence 
limit of ± 10.5% of the measured current figures. 
 

Parameter Value [mA] 
Eperm 0.058 uAs/byte 
Erxbit 0.484 uAs/bit 
Etxbit 0.100 uAs/bit 

 
Table 4: Dsystem25 energy parameters 
 
Based on the current measurements for each operation shown, 
the time and average current for the operation was calculated.  
 



 

The parameter values are derived by calculating the energy 
consumed by the node for each operation (power * time), and 
dividing this by the number of bytes to derive the per-byte 
figures used in the benchmark equation. 
 
5 Results 
 
Using the power benchmark Equation (6), the parameters from 
Tables 3 and 4, and representative values for parameters S, h, k, 
and ρ we derive the following minimum power benchmarks for 
software updates. 

A. MICA2 node benchmark result 
h = 40 bits 
k = 232 bits (29 bytes) 

=benchmarkE 37960 uA-seconds 

B. DSystem25 node benchmark result 
h =  40 bits 
k = 224 bits (28 bytes) 

=benchmarkE 41622 uA-seconds 
 
The following parameter values were used to represent a 
typical software update: 
 

S = 8192 (a significant, 8KByte software update) 
ρ = 0.000010 (1 bit per 100,000) 

 
These results can be interpreted as follows: on the MICA2 
node, the minimum charge required to receive and store an 
8KByte software upgrade is 0.037 Coulombs. On the 
DSystem25 node, the minimum charge required is 0.042 
Coulombs. 
 
Note that the intention is not to provide a comparison of 
hardware platforms, but to provide a benchmark against which 
software providing software upgrade functionality can be 
objectively assessed (including both system and ‘software-
upgrade-application’ software). To compare hardware 
platforms the voltage would need to be taken into account to 
measure electrical energy in Joules. 
 
6  Future Work 
 
This work presented in this paper represents the completion of 
this stage of the research. In the next stage, a new model will 
be built that accounts for the energy consumption associated 
with distributing the software throughout the network. This will 
include factors to account for the energy used during 
advertisement, data transfer, and lost-packet re-requests. The 

same methodology will be applied to derive a minimal energy 
equation. It is planned to complete this future stage by taking 
power measurements for a number of different software update 
algorithms to compare them with the ‘ideal’ minimum charge 
consumption. 
 
The energy models and minimum-energy benchmark 
methodology presented here could also be used as the basis for 
developing a minimum energy benchmark for other tasks that 
run on wireless sensor networks: for example routing and data 
collection. Future research will involve using the methodology 
shown here to develop these benchmarks. 
 
7 Conclusions 
 
A model is presented for estimating the minimum charge 
required to perform a software update on a wireless sensor 
node. This model is used to produce a minimum energy 
benchmark equation.  
 
Measurement results from real nodes are presented, and are 
used with this equation to produce a quantitative and objective 
benchmark against which the energy effectiveness of software 
updates mechanisms can be compared on any node (and figures 
shown for two hardware platforms: the MICA2 and 
DSystem25 nodes). 
 
The novel methodology described here allows the calculation 
of an absolute energy utilization reference point against which 
real protocols can be measured. This provides an absolute 
measure, or benchmark, as a goal for energy reduction. It is 
likely that no real node can meet the ideal minimum energy 
consumption derived by the model, but it provides a target 
against which node hardware and software can be designed and 
evaluated. It also provides an objective target against which 
real implementations can be compared. 
 
The methodology presented in the work is also applicable in 
developing minimum-energy benchmarks for other tasks that 
run on a wireless sensor network. For example, a calculation of 
the minimum energy required to distribute connectivity 
information would provide the basis for a minim-energy 
benchmark for connectivity-based routing schemes. 
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