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Abstract: One key problem with control systems in general, and control systems for buildings in
particular, is that mis-calibration of sensors/actuators is commonplace and causes significant problems,
such as suboptimal performance and diagnostics false alarms. This paper describes a methodology
for calibrating sensors that can reduce these problems. We show how we can take sensor outputs
and continuously calibrate them by applying expectation-maximization (EM) learning and recent
gossip-based algorithms. We apply our approach to the domain of sustainable buildings, in particular
temperature sensors in shared zones in a large commercial building. We empirically show that our
approach can correctly either diagnose faults that render sensors impossible to calibrate, or can perform
appropriate calibration.

1. INTRODUCTION

In many building applications, the building that is constructed
differs from the design models. This discrepancy between the
as-designed and actual performance of buildings (Elkhuizen
et al., 2006; Piette et al., 1994) arises due to a variety of reasons,
such as improper system design and installation, inadequate
commissioning and maintenance practices, and inadequate use
of operational performance data (Piette et al., 2001). A variety
of studies have shown that sub-optimal building performance
occurs widely due to this design/usage disconnect (Piette et al.,
1994). For example, Piette et al. (2001) reports that, in the
process of commissioning new buildings, 81% of the building
owners surveyed encountered problems with new heating and
air conditioning systems; Piette et al. (1994) reports that, in a
survey of 60 buildings, 50% had controls problems, 40% had
HVAC equipment problems, 15% had missing equipment, and
25% had energy management control systems (EMCS), econo-
mizers, and/or variable speed drives that were not functioning
properly.

When a building is first set up, the commissioning process
consists of using BMS test signals to define the operational pa-
rameters of individual components and the system as a whole,
in order to create a well-understood (and hopefully optimal)
operating condition. After the commissioning process, the BMS
uses a monitoring/diagnostics process to identify anomalous
operating conditions, by assessing system control/sensor data
to identify component/system state without altering operating
conditions (House and Kelly, 1999). However, the development
and application of building monitoring/diagnostics has been
slower and lower-tech than that in other industries, e.g., process
control or aerospace, because the industry is cost-sensitive, the
benefits are difficult to quantify, and design has focused on
user comfort (but not human safety). The focus on low-cost
solutions has meant that low-accuracy state estimation and fault
isolation has been adequate to date (Braun, 2007).
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One key issue in the as-designed vs. as-operated discrepancy
is that important building parameters are not precisely known.
This results in false alarms and poor isolation accuracy during
monitoring and diagnostics, since existing BMS rule-based
systems typically use thresholds for determining faults, and
these thresholds are rarely updated after installation.

We assume that we have a system model Φ with parameters
θ. FDI approaches typically assume that θ is known in the
nominal system state. With such an assumption, fault detec-
tion concerns deciding whether the vector θ has changed, and
isolation concerns identifying which components have caused
the observed anomaly in θ. In our case, we assume there is
nontrivial uncertainty in θ; under these assumptions, FDI is not
a straightforward process.

This article describes an approach that can be applied to (1)
learning accurately calibrated “nominal”’ sensor outputs, and to
(2) reducing false alarms from inaccurate monitoring and diag-
nostics isolation. We apply the expectation maximization (EM)
algorithm (Dempster et al., 1977) to learn nominal parameter
values, and we then extend this approach to residual generation
for fault detection and isolation (FDI).

This approach can be used throughout the lifetime of the build-
ing as a means for improving the “continuous commissioning”
process. The practice in the buildings industry of “commission-
ing” a building once is changing, as it is now acknowledged
that “continuous commissioning” is a key ingredient for cost-
effective building operations. A key part of continuous com-
missioning is matching the existing building parameters to the
embedded code that monitors the building. From example, this
includes parameter estimation, in order to continuously tune
system parameters.

In this article, we show how we can continuously calibrate
sensor outputs by applying expectation-maximization (EM)
learning and sensor parameter-sharing, via “gossip-based” al-
gorithms. We apply our approach to temperature sensors in
shared zones, e.g., as in a large commercial building. We em-



pirically show that our approach can correctly either diagnose
faults that render sensors impossible to calibrate, or can perform
appropriate calibration. This approach is general, and can be
applied to any suite of sensors and actuators.

Our contributions are as follows:

• We apply EM and a recent gossip-based (Ramakrishnan
et al., 2011) algorithm to continuously calibrate sensors;
• We describe a model-driven method for gossip-based cal-

ibration to improve the computational efficiency of the
approach;
• We apply our approach to the domain of sustainable

buildings, in particular addressing temperature monitoring
(via multiple sensors) in a large commercial building;
• We empirically show how our approach can improve

overall FDI accuracy, given that the system parameters
θ are continuously updated and inoperable sensors are
accurately diagnosed.

2. APPLICATION DOMAIN

For our application domain, we focus on the task of temperature
monitoring in an indoor environment, such as a multi-user open
space office. We model a room in which a suite of sensors
are placed at random (but unique) positions. We assume that
the underlying base temperature of the environment is affected
by some regularly varying heat source (for example, solar
radiation), while several stationary hotspots (which might be
computers) are distributed throughout the zone.

We assume that sensors are not initially calibrated, i.e., that
each sensor is subject to a certain level of calibration offset
error. These calibration offsets are randomly generated from
a uniform distribution over [−5.625, 5.625]. We consider these
minor offsets to be qualitatively different from calibration offset
faults, since they are effectively mitigated during the contin-
uous calibration process. Further, we allow sensor calibration
and fault status to dynamically change over time; the algorithm
we will present will mitigate the effects of these dynamics.

We aim to track changes in temperature over a 24-hour period
in an office-like environment: the baseline temperature varies
sinusoidally between 20◦C and 25◦C, while we model hotspots
using 20 2-dimensional Gaussians whose means are drawn
uniformly from µ ∈ [20, 50] and standard deviations drawn
uniformly from σ ∈ [4, 16]. Because our simulated nodes
measure their environment once every 30 seconds, we divide
the total simulation time into 2880 discrete epochs (2880 =
24× 60× 2).

We assume that the sensor nodes can be in a nominal state,
or one of two fault states. A “stuck-at” fault causes a node to
return a constant value of either ±40◦ (chosen randomly). A
“calibration offset fault” causes a node to track the underlying
phenomenon at an offset of ±40◦ (chosen randomly).

Our application has several novel aspects. One novelty is the
tracking of temperatures that vary throughout the zone; in
contrast, most other papers, e.g., Ramakrishnan et al. (2011),
assume a fixed temperature across the zone. Second, we will
diagnose fault states as well as calibrate those sensors with
calibration offset faults.

Our fault-injection methodology is as follows. We generate a
set of 100 fault events. Of these, 50 are ‘stuck-at’ faults, and the
remaining half are ‘calibration offset faults’. Every 28 epochs

(28 ≈ 2880/100) we take one fault event from the set and apply
it to a currently fault-free node. We assume that faults are static
and uncorrected; in other words, after a sensor begins to exhibit
faulty behaviour, it continues to exhibit that behaviour until the
end of the simulation.

3. NOTATION

This section describes our notation. We assume that we have
a non-linear system that has a nonlinear state-space model
structure given by:

xt+1 = ft(xt,ut,θ) + εt, (1)

yt = gt(xt,ut,ηt,θ) + δt, (2)

ut = ht(xt,yt,θ) + ζt. (3)

Here, x ∈ <nx denotes the state variable, with y ∈ <ny and
u ∈ <nu denoting (respectively) observed output and input
responses. ηt denotes a discrete-valued fault variable denoting
the fault status of a sensor generating the output. Furthermore,
θ is a vector of (unknown) parameters that specifies the map-
pings ft(·), gt(·) and ht(·), which may be nonlinear and time-
varying. Finally, εt, δt and zt represent mutually independent
vector i.i.d. processes described by probability density func-
tions (pdfs) Prε(·), P rδ(·) and Prz(·), respectively. These are
assumed to be of known form (Gaussian) but parameterized
(e.g., mean and variance) by values that can be absorbed into
θ for estimation if they are unknown.

Throughout this paper, lower-case bold variables represent vec-
tors, uppercase bold variables represent matrices, and non-bold
lower-case variables are scalars.

Due to the random components εt and δt, the model (equa-
tion 1) can also be represented via the stochastic description

xt+1 ∼ Prθ(xt+1|xt), (4)

yt ∼ Prθ(yt|xt,ut,ηt), (5)

where Prθ(xt+1|xt) is the pdf describing the dynamics for
given values of xt and θ, and Prθ(yt|xt) is the pdf describing
the measurements.

Given the system, we aim to measure the value of xt over time
using a sensor network with n nodes. Our objective is to use
the sensor network to minimize the objective function (derived
from (Feng et al., 2003))

J =
∑n
i=1 |ỹi,t − xi,t|∑n
i=1 |yi,t − xi,t|

(6)

subject to the system model, where ỹi,t is the calibrated mea-
surement of the ith sensor at time t and yi,t is the uncalibrated
measurement (where u is null). Note that our model allows the
system state xt to evolve without being controlled; what we are
controlling is the sensor measurement process.

We will use the following notation for temporal histories: Y t:N

denotes the history [yt, ...,yN ]. However, for brevity we may
also denote Y 1:N simply as Y N , where we implicitly assume
that the index starts at 1. We will call a windowW the temporal
history for a sensor that can be stored locally at the sensor node.



4. PARAMETER ESTIMATION

This section describes our method for continuous updating of
system parameters. Having sensor values that reflect current
building (temperature) conditions, rather than the as-designed
conditions, is a key part of continuous commissioning. To
achieve this, we update the “nominal” value of key system
parameters with each subsequent measurement of that value.

We now show how we can compute an estimate θ̂ of the param-
eter vector θ based on N measurements UN = [u1, ..., uN ],
Y N = [y1, ...,yN ] of observed system input/output responses.

4.1 Estimation Using EM

The expectation-maximization (EM) algorithm Dempster et al.
(1977) is an iterative method for maximum likelihood parame-
ter estimation. The EM algorithm alternates between two steps:
(1) the expectation (E) step computes the expectation of the
log-likelihood, using the current estimate for the parameters;
and (2) the maximization (M) step computes the parameters
that maximize the expected log-likelihood found on the E step.
These parameter-estimates are then used to determine the dis-
tribution of the latent variables in the next E step.

The key idea in EM is to define the joint likelihood function
Lθ(XN ,Y N ) = logPrθ(XN ,Y N ), with respect to both
the observations Y N and the unknown state variables XN .
Underlying this strategy is an assumption that maximizing the
“complete” log-likelihood Lθ(XN ,Y N ) is easier than max-
imising the incomplete one Lθ(Y N ). The EM algorithm then
copes withXN being unavailable by forming an approximation
Q(θ, θk) of Lθ(XN ,Y N ). The approximation used is the min-
imum variance estimate of Lθ(XN ,Y N ) given the observed
available data Y N , and an assumption θk of the true parameter
value. This minimum variance estimate is given by the condi-
tional mean:

Q(θ,θk) ≡ Eθk
Lθ(XN ,Y N )|Y N ). (7)

Choosing θ so that Q(θ,θk) > Q(θk,θk) implies that the
log-likelihood is also increased in that Lθ(Y N ) > Lθk

(Y N ).
The EM algorithm exploits this to deliver a sequence of val-
ues designed to be increasingly good approximations of the
maximum-likelihood estimate (equation 7), also called the
Most Probable Explanation (MPE), using the following algo-
rithm.

Algorithm 1 EM algorithm
1: procedure EM(Y N ,θ) . The MPE of θ
2: k ← 0
3: initialise θk such that Lθ(Y N ) is finite
4: while not converged do
5: Expectation (E) step: Calculate Q(θ,θk)
6: (Maximisation (M) step: Compute

θ(t+1) =
argmax

θ Pr(θ|θ(t))
7: k ← k + 1
8: end while
9: return θ̂ . The MPE of θ

10: end procedure

The termination decision for convergence of the equation
shown in line 6 of Algorithm 1 is performed using a standard
criterion such as the relative increase of Lθ(Y N ) or the relative
increase of Q(θk,θk) falling below a pre-defined threshold.

4.2 Joint Estimation and Calibration

We consider the case where we want to simultaneously calibrate
a set S of sensors and estimate the signal s. For computational
efficiency, we assume a linear model relating output values y
and true signal s. We further assume a Gaussian distribution
for Pr(y;θtrue), where θtrue is the true parameter vector.

The EM algorithm has been extended (Kowalczyk and Vlassis,
2005) to incorporate a gossip-based protocol, i.e., a protocol in
which sensors/actuators can communicate their values in order
to achieve a joint MPE, rather than just a set of independent
MPE values. We extend a recent gossip-based EM (Ramakr-
ishnan et al., 2011) that enables us to simultaneously estimate
sensor correction parameters for a collection S of sensors, as
well as a hidden signal jointly estimated by S.

Model Formulation We assume we have a set S of sensors
that measure a signal, where we assume each sensor may
have an individual offset, and hence will require individual
calibration factors. We model this as follows:

y =


y1
y2
...
yN

 = A(σ,η)s+ δ =


A1(σ1, η1)
A2(σ2, η2)

...
AN (σN , ηN )

 s+


δ1

δ2

...
δN


(8)

where s ∈ <D is the signal to be estimated, and η denotes
the diagnosis state. The vector yn ∈ <M represents the noisy
observation vector at node n, where δn ∈ <M is additive
Gaussian noise with zero mean and covariance σ2I .

The matrix forAn corresponds to the measurement matrix

An(σn,ηn) =

 a
n
11 · · · an1D
...

. . .
...

anM1 · · · anMD

 (9)

An is parameterized by a calibration parameter vector αn and
ηn. The signature s, the diagnosis state η, and the calibration
vectors {αn}Nn=1 are the unknown parameters to be estimated.

Joint Maximum Likelihood Estimation This section describes
a method for solving the joint maximum-likelihood estimation
problem of simultaneously calibrating a set of sensors, estimat-
ing the signal and computing the diagnosis state. We use an
extension of the EM algorithm to solve this joint estimation
problem (Ramakrishnan et al., 2011). We alternate E and M
steps, but adopt a gossip-based distributed method for the M
step. The pseudocode for this is shown as Algorithm 2.

We extend an alternating optimization-based approach (Ra-
makrishnan et al., 2011). In the equivalent of the E step, this
approach chooses a subset of the parameter space to minimize
while keeping the other parameters fixed. Here, the parame-
ter vector is θ = [θ1,θ2], where θ1 = {α1, · · · ,αn} and
θ2 = s,η. We assume that the observation random vector Y
has a Gaussian probability density Pr(y;θtrue).

Given an observation Y = y, the log-likelihood estimate θ̂ of

θtrue is defined by θ̂ =
argmax

θ ∈ θ log g(y;θ)

Since the above joint maximum-likelihood optimization is non-
convex, we use a distributed alternating optimization approach.



At the ith iteration when we update θ1, we first maximize the
log-likelihood by fixing θt2. For each of the sensor nodes, given
ŝt, the maximization over the corresponding αn decouples and
hence can be solved locally.

αt+1
n =

argmin
αn {(An(αn)st+1)T (An(αn)st+1)

− 2(An(αn)st+1)Tyn} (10)

Computing equation 10 can be done locally for each sensor,
without communicating with its neighboring sensors. In the
generalization of the M step, we employ alternating optimiza-
tion,in which θ2 = s needs to be updated for fixed θt1 =
{α̂tn}Nn=1, i.e.,

st+1 =
argmax

l ≤ θ ≤ u
{
sTAT (α̂t)A(α̂t)s− 2sTAT (α̂t)y

}
5. SENSOR CALIBRATION/DIAGNOSIS

This section describes our calibration approach under param-
eter uncertainty. In the following, we assume that the health
status of all sensors/actuators are independent. Assume that we
obtain a sequence of τ sensor readingsY τ = {y1, ...,yτ} from
times 1 to τ , from which we want to compute a model that
denotes the “nominal” sensor values.

The key idea behind this alternative approach is to use corre-
lations among observations to cross-calibrate the sensors. In
other words, given a set of sensors {S1, ..., Sm} generating an
observation vector yt = {y1

t , ..., y
m
t }, where sensor Si gener-

ates yit, if all observations in yt confirm a nominal hypothesis,
this hypothesis is more likely; however, if only ykt of these
multiple observations is abnormal, it is most likely that Sk is
faulty and the other sensors are nominal. The challenge is to
identify subsets of correlated observations, and to compute the
joint estimates. In the following we assume spatial correlation
of sensors, as described below. 1

This section describes how we control the process of sensors
performing fault-isolation and calibration. Our control algo-
rithm (Algorithm 2) takes the following parameters:

• τ , a distance threshold that defines the greatest distance
between two geo-spatially correlated sensors;
• c and d, threshold factors controlling the sensitivity of the

diagnosis of stuck-at and calibration faults, respectively;
• W , a maximum window size;
• λ, the number of epochs between each invocation of

distributed calibration; and
• ρ, the number of iterations of gossip during each calibra-

tion.

Once every epoch t, each node i adds its most recent measure-
ment yi,t to its window (removing the oldest measurement if
the window is full). After filling its window for the first time
(at epoch W ) each node estimates the distribution of noise
affecting its readings as the standard deviation of its window,
denoted by δi. Algorithm 2 shows the pseudo-code for the
control algorithm, with inputs d ∈ R>0 and ρ ∈ N1.

After epoch W , each node compares the current standard de-
viation of its window, σ[wi], with its stored estimate of fault-
1 Note that one can use a data-driven approach to compute the correlations
present in the data using clustering techniques. We leave this approach for
future work.

Algorithm 2 Fault detection control algorithm
1: procedure DIAGNOSE/CALIBRATE(τ, c, d;W,λ, ρ)
2: Φ← {i→ 0: i ∈ S} . Calibration factors
3: δ ← {i→ ∅ : i ∈ S} . Noise-distribution estimates
4: η ← {i→ ∅ : i ∈ S} . Diagnosed fault states
5: for t = 1 dok
6: wi ← yi,t
7: . Estimate noise
8: if t = W then
9: for i ∈ S do

10: δi ← σ[wi]
11: end for
12: end if
13: . Detect stuck-at faults
14: if t > W then
15: for i ∈ S do
16: if σ[wi] < δi

c then
17: Fi ← stuckAt
18: end if
19: end for
20: end if
21: . Perform distributed calibration
22: if t ≡ 0 (mod λ) then
23: Y ← {i→ wi + Φi : i ∈ S}
24: for p ∈ S do
25: S′ ← {j ∈ S : distance(p, j) ≤ τ}
26: if S′ 6= ∅ then
27: for u = 1 doρ
28: q ← randomly-chosen member of

S′

29: Yp ← Yq ← Yp+Yq

2
30: end for
31: end if
32: Φi ← Yi − wi
33: if Φi > δid then
34: ηi ← calibrationFault
35: end if
36: end for
37: Φ← {Yi − wi : i ∈ S}
38: end if
39: for i ∈ S do
40: ỹi,t ← yi,t + Φi,t
41: end for
42: end for
43: end procedure

free behaviour. We interpret an excessively small value of σ[wi]
(relative to δi) as indicating that i is in an anomalous state.

Once every λ epochs, the system performs distributed calibra-
tion. Each node first calculates the mean of its window Yi, then
repeatedly (over ρ iterations) updates this value by exchanging
data with one randomly-chosen nearby node and updating Yi to
compute an aggregate mean of its neighbourhood of nodes. We
take the difference between the aggregate mean and a node’s
local mean as the calibration factor for that node, and infer
from a sufficiently large calibration factor (again relative to δi)
that i is faulty.

6. EXPERIMENTAL ANALYSIS

Our experiments measure the capacity of the system first to
distinguish a faulty sensor from a fault-free sensor, and second
to distinguish calibration faults (where the reported data may



be recoverable if the calibration offset can be identified) and
stuck-at faults from stuck-at faults (where the reported data are
of no use).

Figure 1 shows the sensitivity and specificity of our algorithm
when distinguishing faulty sensors from fault-free sensors. Our
algorithm exhibits both extremely high sensitivity (sensitivity
≥ 0.959) and high specificity (specificity ≥ 0.99).
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Fig. 1. Sensitivity and specificity of Algorithm 2

Figure 2 shows the accuracy with which our algorithm classifies
those sensors which it has correctly identified as faulty. Again,
the results are impressive (accuracy ≥ 0.8).
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Fig. 2. Accuracy of classification of correctly-diagnosed faulty
sensors

6.1 Parameter sensitivity

Figures 3–5 demonstrate the effect of varying parameters on the
algorithm’s performance: specifically, window size, threshold
factors, and the number of epochs between invocations of
calibration, respectively.

Specificity is uniformly high, uncorrelated with variations in
any parameters. Accuracy of classification is correlated with
window size (with a Pearson’s coefficient of 0.77) but is oth-
erwise uniformly high.

Sensitivity and window size are closely correlated (with a
Pearson’s coefficient of 0.85), as are sensitivity and threshold
multiplier (with a Pearson’s coefficient of 0.93). The situation
with respect to varying values of λ is less clear (sensitivity and
λ are correlated with a Pearson’s coefficient of 0.18).

7. RELATED WORK

Calibration of sensors has received little attention in either
the sustainable energy or sensor-network communities. Self-
tuning systems have been examined in (Nassif et al., 2008), who
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Fig. 3. Algorithm performance with respect to W
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Fig. 4. Algorithm performance with respect to c, d, where c = d
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Fig. 5. Algorithm performance with respect to λ

use genetic algorithms to tune energy models, but only under
ideal and nominal conditions. Ma and Wang (2011) use genetic
algorithms for an adaptive optimal control strategy for central
chiller plants. Simplified models generate ideal performance
predictors, against which model parameters are continuously
updated using RLS estimation with exponential forgetting. This
approach assumes a centralized supervisory control model with
no faults. In contrast, our work focuses on distributed methods
that can handle both nominal and faulty system models.

This work is also related to calibration of sensor networks.
We provide a means for automated calibration, circumventing
manual calibration of large-scale sensor networks, which is
impractical for large networks (Whitehouse and Culler, 2002).
Automatic calibration has been studied in a number of contexts,
including localization (Whitehouse and Culler, 2002), time syn-
chronization (Elson and Estrin, 2001), and motion estimation
(Welch and Bishop, 1997). The exploitation of the dense de-



ployment of sensor nodes to perform calibration is investigated
in (Bychkovskiy et al., 2003). Methods for automatic calibra-
tion which exploit conditions where the mean value of the
phenomenon is constant or known are described in (Balzano
and Nowak, 2007; Ramakrishnan et al., 2011).

We base our sensor fault models on the frameworks presented in
(Ramanathan et al., 2006; Sharma et al., 2010; Ni et al., 2009).
(Ramanathan et al., 2006) devised a rule-based system for
classifying sensor faults while analysing data from a network
deployed to measure the level of arsenic in groundwater. This
classification formed the basis for the fault-detection survey in
(Sharma et al., 2010), which estimates the prevalence of faults
in several real-world data sets.

We extend prior work on gossip protocols for model calibration.
A good introduction to the general topic of gossip and epidemic
models in distributed systems is given in (Eugster et al., 2004).
The use of gossip-based communication to compute aggregate
information from values shared among a large network is
described in (Jelasity et al., 2005).

8. CONCLUSIONS

We have described a method for calibrating sensors to reduce
false alarms and automatically different conditions on system
operational status. We used the expectation maximization (EM)
algorithm (Dempster et al., 1977), in which the nominal value
of a room’s state (e.g., temperature) can be estimated using a
maximum likelihood estimate (MLE). We extended EM with a
gossip-based approach to enable distributed calibration through
sharing of sensor data. This capability is very important for
a range of applications, including smart buildings, in which
sensors are often poorly calibrated and lead to diagnostics
false alarms. We have shown empirically that the dependent
estimation/calibration produced by the gossip-based method
can generate accurate corrective actions, either to indicate
stuck-at faults, or to enable sensor calibration. However, the
gossip-based method is computationally complex, and requires
a method to identify the correlated sensors. We have employed
a simple distance-based approach for identifying the correlated
sensors/actuators. In future work we plan to examine learning-
based approaches for this task, and use models for virtual sen-
sors.
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