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Abstract.  Simulation of building evacuations can be a powerful tool for predicting evacuation outcomes, but 

for this prediction to be useful it must be produced in a timely manner. The building evacuation outcomes are 

dependent on the movement decisions of the occupants, but simulating all possible combinations of occupant 

decisions is infeasible. Our contribution is a novel technique using building structure knowledge in the form 

of a Network Flow Graph to determine where and when occupants might interact with one another. We 

decompose the problem into non-interacting groups, to be simulated separately, which leads to a significant 

simulation workload reduction. 

 

 Keywords: evacuation monitoring, multi-agent simulation, distributed simulation, network flow graph, 

problem decomposition 

1 Introduction 

Simulation of building evacuation during emergencies is a powerful tool for evaluating building safety and 

prediction of evacuation outcomes[1]. Simulating the movement of evacuating pedestrians can provide useful 

information to building designers and to fire safety officials, including evacuation time estimates and locations at 

risk of traffic congestion or evacuee injury[1-7]. We make use of a 2D vector-space pedestrian simulator to 

simulate the individual movements of pedestrians in the building. This simulator provides a realistic model of 

pedestrian movement but is computationally intensive compared to simpler models such as Cellular Automata 

[2,4,10] or Graph-based simulations [5]. The usefulness of any prediction information is contingent on both the 

timeliness and the accuracy of the simulation that generated it. Since a real evacuation involves autonomous 

human actors and uncertain hazard spread, to ensure that the simulations cover likely scenarios we must run 

many different scenarios. The more we can reduce the simulation time, the more scenarios we can consider, and 

the more useful the results will be. In this paper, we investigate the problem of how to cover a wide range of 

scenarios without an excessive increase in computation time.  

We assume that clusters of individuals in an evacuation will behave as a group, and once they have formed a 

group all members will follow the same route out of the building. We reduce the amount of simulation by 

limiting our attention to the most likely routes for each initial group. However, different groups may meet during 

the evacuation and cause congestion, and may form into larger groups to continue the evacuation. Since 

congestion slows down the evacuation, and puts the participants at risk, we must investigate the interaction of 

the different groups. Even for small numbers of likely routes, this group interaction quickly produces an 

excessively large simulation space. We reduce the complexity of the problem by quickly generating possible 

group interactions using Network-Flow Graph analysis, identifying groups and routes which do not interact, 

distributing the simulation of those local scenarios to different processors, and then combining the results to 

provide global evacuation analyses. For those groups and routes which do interact, we simulate them together in 

a single process. Decomposing the problem in this manner and computing it using parallel computation 

resources allows many more possible futures to be simulated in a time-frame that allows for predictive feedback 

to fire-safety personnel during the emergency. Further, we handle the uncertainty with an agile simulation 

strategy, by responding to new evacuation data and quickly decomposing the problem space to drive a new cycle 

of simulation. 

We implemented this problem decomposition methodology and evaluated its performance in a typical 

building topology, with a mix of population densities and hazard positions. In our experiments our methodology 

identified a manageably small number future states that need be simulated. Using this problem decomposition 

strategy in our experiments we successfully filtered out all but a few dozen future states of the evacuation, 

significantly reducing the scale of the simulation task. 

This work was funded by HEA PRTLI IV as part of the Nembes project. 

 



2 Overview and Assumptions 

Our approach is to perform a series of filtration operations to produce the parameters for a set of several 

simulations. As there are limitations on time and computational resources, we make some simplifying 

assumptions as to occupant behaviour and analyze the building structure to identify where occupants are likely to 

meet each other in the building. While occupants during emergencies are inherently unpredictable, we believe it 

is pragmatic to disregard the possibility of particularly unusual behaviour (such as occupants heading away from 

exits or splitting up groups) until we receive information that this unusual behaviour is actually occuring in the 

building via sensor data or firefighter reports.  

By analyzing the building structure (in the form of a network flow graph), we can determine which occupants 

in the building are orthogonal in time and space before we go to the trouble of simulating them together at once. 

Orthogonal groups of occupants can be simulated in separate simulation instances as their members are not 

likely to interact with each other. For instance, occupants on opposite ends of a building are not likely to meet 

each other when evacuating, and can be safely simulated separately without concern for modeling interactions 

between the groups.  

To determine which occupants interact with each other, we first assume that occupants that begin the 

evacuation near to each other will form a group. We assume this group will stick together and may follow one of 

several routes out of the building. We also assume that when separate groups meet each other during the 

evacuation, they merge together and continue using one of the constituent group’s routes out. By grouping 

occupants in this manner we reduce the problem complexity significantly, as we focus on permutations of group 

decisions rather than of individual occupant decisions. 

2.1 EvacSim Evacuation Simulator 

EvacSim is a Java-based building evacuation simulation tool (Figure 1). This tool models a building in 2.5 

dimensions (2D floors stacked on top of each-other) and algorithmically extracts a topology graph from this 

structure by packing  traversable spaces with rectangles representing rooms and corridors, and then connecting 

adjacent rectangles with graph edges. EvacSim represents building occupants as individual agents with dynamic 

movement behaviour (flocking[16], group formation, obstacle avoidance) and path planning capability. 

Occupant Agents move through in the building according to their plan, can respond to visible signposting or 

hazards and form groups that move and plan travel together. Occupant Agents travel in 2-dimensional space, 

directing their travel through manipulation of a 2D vector which they use to steer towards their goal while 

avoiding obstacles. 

EvacSim also models individual sensor and 

actuation nodes as simulated sensor network 

components. Simulated sensors can determine 

the occupancy of spaces in the building and 

identify the presence of a hazard such as a fire 

or smoke.  

Simulated occupants and sensors provide 

occupancy data as the initial state from which 

future states are predicted. This sensor data also 

provides the evacuation route planner (Section 

2.3) with the occupancy information which 

drives the dynamic occupant routing algorithm. 

Each occupant agent in the simulation needs 

to periodically check for collisions and 

interactions with other agents in the world. As a 

consequence, the complexity of a naive 

simulation is O(n²) as each occupant checks 

each other occupant for collisions. EvacSim 

makes use of a Cell List mechanism [2,21] which limits these collision and interaction checks to locally 

surrounding occupant agents. Using this mechanism, the computational complexity relates to the density of 

occupants (i.e. the number of occupants in each Cell) rather than the overall number of occupant agents in the 

world.  

Figure 1. EvacSim Evacuation Simulator screenshot 



2.2 Network Flow Graph 

Analysis of the building structure produces a building Topology Graph. This graph represents the spaces in the 

building (rooms, corridors etc) as graph nodes and connects nodes together with edges if it is possible to traverse 

between them. Edge weights correspond to the walking distance between nodes. Routes from a group’s starting 

position to an exit are considered as a sequence of nodes to visit on this graph. The sum of edge weights between 

each node gives the traversal time for an unimpeded individual on that route. 

This Topology Graph is extended as a Network Flow Graph[13] by placing a flow capacity constraint on each 

edge. This constraint dictates the number of occupants that can traverse the edge simultaneously, i.e. how many 

people can walk abreast without impeding each other. Network Flow Graphs are often used to model road traffic 

in emergencies[14,15] and as a basis for dynamic evacuation planning[10,11,12]. In this research, we use the 

flow capacity constraint to determine how long it takes for an entire group of occupants to completely traverse 

the edge, analogous to calculating the amount of time it takes to transfer a given amount of data across a network 

link of limited bandwidth 

2.3 Route Allocation 

Occupant groups have a number of options as to how they may proceed out of the building; in fact if we allow 

looping there are an infinite number of routes to exits. To reduce the problem space, we again make some 

assumptions as to likely occupant behaviour. We assume there are a limited number of routes the occupants are 

likely to take; these routes may be observed from day-to-day sensor readings of the building, drawn from k-

shortest paths or based on evacuation guidance present in the building.  

In our experiments we use a hazard-aware safe evacuation planner to produce routes which are communicated 

to the occupants (e.g. via mobile device or dynamic signposts) [8- 10].  This evacuation planner accounts for the 

location of hazards and produces evacuation routes that minimize evacuation time and exposure to the hazard. 

Alternative route generation schemes could be used, such as dynamic flow-based planners [10-12] or exploiting 

day-to-day sensor data to discover common exit routes. 

2.4 Complexity and orthogonality 

The number of potential futures simulated is contingent on the number of possible routes the occupant groups 

could take, and the amount of interaction between groups. As we assume groups that meet in the building could 

proceed according to either constituent group's route, there is the potential for a great deal of branching future 

states. In this research we perform initial analysis of the Network Flow Graph and Routes in order to filter out 

combinations which are unlikely to occur, and only simulate the remaining combinations. By exploiting the 

network flow graph to determine the times at which crowds arrive at nodes, as well as the duration they spend at 

the node, we can identify when and where crowds might meet each other. Crowds which don’t meet at any time 

in the graph are considered orthogonal to each other and do not need to be simulated together (Figure 2). This 

characteristic is crucial to reducing the problem space, as we do not need to simulate the product of the 

permutations of multiple orthogonal crowds. 

 

 

 

 

 

 

 

 

 

 

 

In the case that two groups meet each other in the building, we need to account for the branching possibilities 

that proceed from the interaction. Where two crowds meet, they interact, share route information and lead to 

greater queues and delays on the two groups. In our approach we merge the groups together and investigate the 

branching futures where they proceed along any one of the original groups’ routes. For instance 3 groups of 10 

meeting leads to investigation of 1 group of 30, and the 3 possible routes it could take (as drawn from the 

original 3 groups).  

Figure 2. Two crowds occupying the same space but at different times are orthogonal to one another 

Time = 1 Time = 2 Time = 3 



3 Simulation Framework 

3.1 Network Flow Graph 

Building structure analysis produces a Network Flow Graph which represents the traversal characteristics of the 

building. In this graph, Nodes represent spaces such as rooms or corridors, and Edges represent the adjacency of 

those spaces. A key feature of Network Flow graphs is that edges feature not only a weight representing 

distance, but also have a capacity value which represents how many occupants can traverse the edge in a given 

time period. Intuitively, the capacity value represents the bandwidth of the edge and the distance represents the 

traversal time. 

Capacity and Distance values can be set based on simple formulae (e.g. straight line distance for the Distance 

value, and a Capacity estimate based on the size of the area the edge passes through), but in this work we 

determine these values by simulation of crowds passing over the edge similar to the macro-micro coupling work 

of Kneidl et al[3].  

3.2 Evacuation Route Generation 

EvacPlan is a dynamic crowd evacuation planner[11] which takes as input a network flow graph with set initial 

occupancy, and location of hazards and exits. EvacPlan computes an optimum assignment of evacuation routes 

to individual occupants, minimizing total evacuation time and individual exposure to the hazard. EvacPlan 

produces a route in the form of a sequence of Nodes in the Network Flow graph, occupants are communicated 

these routes and follow them to escape the building. 

In this research we assume that it is not possible to provide individualized routes to each occupant separately; 

instead we communicate the full set of applicable routes to all the occupants at a node and assume that the group 

will stick together and follow just one of these routes. 

4 Discovering Orthogonal Future States 

4.1 Crowd-Route generation 

Each Node in the Network Flow Graph has an initial occupancy value, reflecting the presence of occupants as 

reported by the sensor network. This occupancy information initializes a "Crowd" object for each occupied Node 

in the network. EvacPlan provides sets of likely routes which could be followed by occupants at nodes, each 

combination of a route with a crowd generates a CrowdRoute object. For example, 12 occupants at Node A have 

3 routes assigned to their members. As we assume that the Crowd doesn't split up, this results in the generation 

of 3 CrowdRoute objects of size 12, accounting for the 3 routes that the Crowd may take in exiting the building. 

4.2 Time expansion of Network Flow Graph (TimeGraph) 

In this scheme, we filter  out impossible future states of the evacuation within a given time period. To achieve 

this we divide the time period into individual timepoints (e.g. at 1-second intervals) and each Node has an array 

of occupancy records, which will be used to represent occupancy of the Node at each timepoint. This allows us 

to recognise that two groups passing through the same node at different times are orthogonal in time and hence 

don't collide. From now on, we refer to this time-expanded network flow graph as a "TimeGraph". 

4.3 First- and Last-Arrival calculation 

We determine that two CrowdRoutes interact if they ever occupy the same space at the same time. To 

determine if this is the case, we work the CrowdRoute through its route on the graph, determining the earliest 

and latest arrival time at each node during its journey and noting the presence of the CrowdRoute at each Node 

for any timepoints between these two values. The earliest arrival of a member of the group at each node is given 

by the traversal time over the connecting edge. The latest arrival time is dictated by the size of the Crowd and 

the bandwidth of the edge, computed as (EarliestArrivalTime + size/capacity). As such, a narrow corridor may 

take longer for a large crowd to traverse than a wide open space, due to queuing. This queuing leads to members 

of the CrowdRoute arriving at the next node over the course of an extended period and they are more likely to 



collide with other CrowdRoutes as a result. Note that this computation is carried out on the TimeGraph before 

we execute any expensive multi-agent simulation. 

 

 

First and Last Arrival calculation 
T = 0; TimeGraph TG; maxdur = 30; 

 

for each CrowdRoute CR { 

 

//starting from the CR's current position at the start of route 

 Node currNode = CR.Route.get(0);  

 

//Work CR through the graph, marking presence at each Node 

 for each other Node N in CR.Route { 

  Edge E = TG.GetEdge(currNode,N); 

 

//Calculate the first and last arrival times for the next Node 

  firstArrival += E.traversalTime; 

  throughput = CR.size/E.capacity; 

  lastArrival = firstArrival + throughput; 

 

 

  for (int i = time, i < throughput; i++) { 

//Mark CR as present on current node until all occupants departed 

   currNode.addAtTime(i,CR); 

   if (i+firstArrival < maxdur) 

//Mark CR as present on N from first to last arrival, up to maxdur 

    N.addAtTime(firstArrival+i,CR); 

  } 

//Move the clock ahead to the time of arrival at next node 

  T = T+traversal; 

  currNode = N;  

 } 

} 

 

4.4 CrowdRoute collision discovery and merging 

Having worked each CrowdRoute through the graph, we can then examine each time-point on each Node to 

determine if and where CrowdRoutes simultaneously occupy a node. In cases where CrowdRoutes interact, we 

merge the CrowdRoutes together, and repeat the calculations in 4.2 (unless the CrowdRoutes involved contain 

the same Crowds as each other, as a Crowd cannot collide with itself). 

In the case of a merge, all the colliding CrowdRoute Crowds are combined together into a combined Crowd 

object. This Crowd has a size equal to the sum of the constituent crowd objects. Each original CrowdRoute's 

Route is used in the creation of a new set of CrowdRoute objects which are inserted into the TimeGraph nodes at 

the timepoint of the earliest first-arrival among the colliding CrowdRoutes at that node. The merged 

CrowdRoute contains a record of the constituent Crowd objects and the routes they were following before the 

merge occured. 

 

Example: 

CrowdRoute A-a, B-b and C-c collide at Node N. 

This produces 3 new CrowdRoute objects (one for each route they proceed on): 

CrowdRouteA-a,B-b,C-c(a) 

CrowdRouteA-a,B-b,C-c(b) 

CrowdRouteA-a,B-b,C-c(c) 

 

The new CrowdRoutes are inserted into the graph on Node N, at the earliest timepoint any of the constituent 

CrowdRoutes was present at that node and the first-last arrival operations are performed for this new merged 

CrowdRoutes. This may in turn lead to the discovery of more collisions and generate further merged groups; this 

continues until no new collisions are discovered (the maxduration value provides a natural termination point for 

this cycle, indicating how far into the future we intend to simulate). 

 

 

 

 



Collision Detection and Merge Operation 
 

for each Node N { 

    for each timepoint T in N { 

//if there are multiple crowdroutes present 

      if (N.T.contents.size > 1) 

//and if we haven’t merged on a previous iteration 

        if (!exists(CrowdRoute(t.contents))) { 

//find the earliest arrival of any colliding crowd 

            int arrival = earliestArrival(N,t.contents) 

//get the set of all member routes 

            Set Routes = getAllRoutes(t.contents) 

//remove any duplicate routes 

            Routes.enforceUnique() 

//remove any nodes in the routes before the current node 

            Routes.startFrom(N) 

            for each route R in Routes { 

//make a merged CrowdRoute for each possible route 

                CrowdRoute merged = new CrowdRoute(t.contents); 

                merged.setRoute(); 

//insert the merged route into the graph 

                N.addAtTime(arrival,merged); 

            }   

        } 

    } 

} 

4.5   EvacSim instance generation 

The Collection of all CrowdRoute objects generated during the collision detection and merging phases 

represents the possible ways occupants in the building could meet and proceed together. Each compound 

CrowdRoute generated features the constituent Crowds and the routes that they took  in order to produce the 

compound CrowdRoute. CrowdRoutes generated from the merging of other compound CrowdRoutes also hold 

the information describing which route they followed after each previous merge. For each CrowdRoute, we can 

create a seperate EvacSim instance. Each instance contains occupant agents representing the members of the 

Crowd objects present in the CrowdRoute. Each occupant agent is given a sequence of routes to follow; initially 

following their original route (e.g. occupants from CrowdB follow route b) until they meet occupants from other 

Crowds in the world. When they meet, they proceed according to the record in the compound CrowdRoute 

object. 

For example. following the collision and merge operations, we may be left with 7 CrowdRoutes: 

 

CrowdRouteA-a   CrowdRouteB-b   CrowdRouteC-c  The original CrowdRoutes 

CrowdRouteA-a  B-b(a)   CrowdRouteA-a,B-b(b)  A meets B 

CrowdRoute[A-a,B-b(b)],C-c(b)    A+B on B's route meets C, uses b 

CrowdRoute[A-a,B-b(b)],C-c(c)    A+B on B's route meets C , uses c 

 

This leads to the generation of 7 seperate EvacSim instances, one for each original CrowdRoute object and 

one for each merge operation that occurs. This accounts for groups merging, and allows for the possibility that 

two groups might fail to meet eachother. 

5 Experiments 

We evaluate our problem decomposition method by executing it on realistic evacuation scenarios. We used a 

realistic building model and occupant population, varying the position of the emergency hazard (fire) to provide 

a number of different evacuation scenarios within this building model. 

5.1 Experiment Description 

These experiments were performed using a model based on the 3
rd

 floor of the Kane Science Building at 

University College Cork with initial populations of 85 and 340 occupants , spread among various office and 

lecture spaces, constituting 19 initial occupant groups. This population features a mix of large and small groups, 

and the floor layout produces a variety of routes to exits and varying flow capacities due to the variety of 

corridor widths and room sizes (Fig 3 (i)). This floor features 6 exits and in this experiment we produce 



orthogonal simulation sets based on a 40-second prediction period. We repeated this experiments adjusting the 

population density and varying the location of the hazard to produce a variety of different initial states and 

outcomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial fire was placed in one of 12 starting spots drawn from a 4x3 grid (Fig 3 (ii)). In each case, we noted 

the running time for our parallelization scheme, the number of orthogonal simulation instances produced, and the 

largest and average size of each simulation instance in terms of constituent groups. These experiments were 

repeated for an 80-second look-ahead period, to determine what impact increasing the duration of time 

investigated had on the number of simulation sets and on runtime of the problem decomposition routines. 

We also timed individual EvacSim instances using a variety of crowd densities, to determine how the number 

of occupants in a simulation set impacts the running time of the simulation instance. This experiment timed the 

amount of computation time it took to calculate 40 or 80 seconds worth of evacuation time through a range of 

population densities. Experiments (decomposition task, and EvacSim runtime test) were performed on a single 

core of a Intel Core 2 Duo 3.0Ghz processor using 1Gb of RAM. 

5.2 Results 

For a population of 85, with both look-ahead durations, we found that EvacSim simulated the entire population 

in a fraction of "real" time, 1.5 seconds for a 40-second simulation look-ahead period and less than 3 seconds for 

an 80-second period. Similarly we found that EvacSim was capable of producing simulation results at a fast rate 

for the population of 350, with runtimes of 7 seconds for simulating 40 seconds of evacuation, and 13 seconds 

for an 80-second simulation period. 

These runtimes (Figure 4) indicate that the upper bound on the run time of a single simulation instance for 

these population sizes is quick enough for predictive purposes. We also found that for small occupant numbers, 

EvacSim simulates the look-ahead period much more quickly, suggesting that a large number of low-density 

simulation instances can be completed in a short period of time. 

Additionally, we found that increasing the population (and thereby, occupant density) the simulation running 

times quickly become too high to provide 

predictions within the time-frame. This 

suggests that it is much preferable to produce 

a large number of low-population simulation 

instances rather than a small number of high-

population/high density simulations each of 

which would take a significantly longer time 

to complete.  

We recorded the decomposition running 

time and the number of simulation instances 

suggested in each case (Table 1). We also 

noted the number of occupant agents that 

would be present in each of these simulation 

instances, to gauge the running times of the 

simulation instances based on the running 

time results shown in Figure 4 

 

(i) (ii) 

Figure 3. Experiment building with graph (i), building with occupants (small circles) and hazard start locations 

(large, outlined circles) (ii) 
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Figure 4. EvacSim running times for a range of occupant populations, 

simulating 40 and 80 seconds of evacuation time 



 

 

 AVERAGE 

DECOMPOSITION 

RUNTIME(SECONDS) 

AVG. NUMBER OF 

SIMULATION INSTANCES 

AVG. OCCUPANTS PER SIMULATION 

INSTANCE 

85 occupants,  

40 second look-

ahead 

Average: 0.1420 

Standard Deviation : 0.0984 

Average: 25.8 

Standard Deviation: 1.5 

Average: 5.7 

Standard Deviation : 0.4 

85 occupants,  

80 second look-

ahead 

Average: 0.1724 

Standard Deviation: 0.117 

Average: 29.8 

Standard Deviation: 7.2 

Average: 6.8 

Standard Deviation: 2.3 

350 occupants,  

40 second look-

ahead 

Average: 0.3531 

Standard Deviation: 0.1875 

Average: 40.2 

Standard Deviation: 2.3 

Average: 32.4 

Standard Deviation: 1.5 

350 occupants,  

80 second look-

ahead 

Average: 0.9741 

Standard Deviation: 1.0832 

Average:64.9 

Standard Deviation: 8.2 

Average: 51.2 

Standard Deviation: 8.3 

 

 

 

We found that the decomposition method suggests average simulation instance counts well below 100, and for 

the lower crowd density and lookahead period the number of instances was very low. For the most part these 

simulation instances feature a population count which is a fraction of the total building occupancy, suggesting 

running times between 0.4 and 1 seconds. For a small 20-core computer, the worst case total set of simulation 

instances would be computable in less than 10 seconds, and with 0.2-3 second decomposition computation times, 

this should provide evacuation outcome predictions well within the time-frames we are simulating for.  

For long look-ahead periods, the tendency is for crowds to merge together more often as queues begin to form 

at exits. We found that for an 80-second look-ahead period, the average number of simulation instances is higher 

relative to 40-seconds, reflecting the tendency for large merged groups to form as CrowdRoutes converge on 

exits. As a consequence, this produces a relatively high number of Simulation Instances due to the greater degree 

of route sharing that could occur between the interacting groups.  

For some hazard positions, only a limited subset of the building exits appear in evacuation routes as the 

hazard blocks some escape routes. In these cases, there is a tendency to produce a large merged group as the 

majority of occupants head towards just two or three remaining exits. In these cases, there is a greater runtime 

for the problem decomposition software relative to other hazard positions (3 seconds vs 0.2-0.4) as there is a 

greater amount of crowd merging operations to compute. A hazard spawning in the leftmost position in the 

second row cuts off a number of exits. In the experiment using 80-second look-ahead and 350 occupants, this led 

to 80 EvacSim instances and with an average of 62 occupants in each one. This result suggests that a balanced 

decomposition of the problem might not always possible using this technique alone, as in some scenarios (e.g. 

limited exits or highly restricted flow) there is a low degree of orthogonality.  

Hazard position has a significant impact on the balance of the simulation sets; a single high-population 

simulation instance is more computationally expensive to compute than a small set, and may constitute a 

simulation bottleneck as we wait for the large set to finish simulating before we can make use of its prediction 

results.  

6 Related Work 

Efficient distributed evacuation simulation requires a balanced division of work. Examples of domain 

decomposition techniques in this field generally divide the simulation space based on spatial proximity of 

occupant agents. Mohedeen [6] investigates spatial decomposition approaches based on balancing the number of 

occupants simulated at each processor; achieved via space partitioning and exit-count balancing. This thesis 

briefly suggests the possibility of an initial simulation to predict evacuation trends (which could be used to 

partition the simulation domain), but discounts this as too time-intensive during an emergency scenario. 

Wagoum et. al present a force-based distributed evacuation simulator [2]. This simulator makes use of a 2D 

vector-force based simulation model similar to the EvacSim simulator used in our work and parallelizes the 

simulation task via spatial decomposition of the building based on exit placements. This simulator modeled a 

population of 22,500 occupants evacuating a sports arena, and demonstrated the ability to simulate events at up 

Table 1: Problem decomposition experiment results 



to 2.5x faster than real-time when using a large number (160) of parallel cluster nodes; demonstrating the 

feasibility of distributed simulation as a predictive tool. 

Our work differs from these methodologies as it is based on spatial and temporal proximity, and this approach 

allows us to accommodate a significant amount of occupant decision branching. To our knowledge, network-

flow graph analysis as a parallelization technique is a novel approach. 

A variety of multi-agent evacuation simulators have been developed to model building evacuations. Sharma 

[4] described modeling of occupant personality as an agent behaviour strategy, featuring panic states. 

Filippoupolitis et al's [5] distributed simulator incorporated a simulated sensor network in a graph-model based 

simulation. Korhonen et al's [7] work combined a fluid-dynamics-based fire simulation with a field-based 

pedestrian model. Zia[20] investigated agent cognitive models when interacting with technological assistance in 

the form of a guidance belt [17] during emergency evacuation. These agents model emotional states and 

exchange of route information and leader-following.  

Kooa et. al. [19] developed a framework for rapidly simulating fire spread in a reduced-fidelity simulator, and 

respond to updated information from building sensors. This updated information adjusts their fire simulator 

model during the emergency to match the fire observations from the sensor network.  This cyclical "simulate-

and-adjust" approach share similarities with our work as it acknowledges that some emergency features cannot 

be simulated to a high degree of fidelity within the short time frames involved.  

7 Conclusions and Future Work 

We developed a novel methodology of filtering future states of an emergency evacuation based on assumptions 

about occupant behaviour, and analysis of the building structure in the form of a Network Flow Graph. In this 

work, we demonstrated that this approach can filter out a vast number of future states which are not likely to 

happen in the evacuation, based on spatial and temporal proximity of occupants evacuating. In our experiments 

we found that this problem decomposition approach produces a manageable set of future states to simulate, for a 

typical building and population size. Our network flow graph-based problem decomposition computes quickly 

and produces sub-problems for simulation that can individually simulate fewer occupants than the overall 

evacuation scenario. 

For future work, we intend to investigate a greater variety of building topologies and emergency scenarios at, 

such as large scale evacuation of stadia or cities. Our experiments showed that our decomposition technique 

works well for a 350-occupant evacuation scenario, on larger scales there may be many thousands of agents and 

greater computational resources.  

Our experimental results show that in cases of dense populations, there is a tendency to produce a number of 

large population simulation instances due to large combined groups forming. In the case that a large group like 

this forms, the likelihood is that the individuals involved will move slowly, and this may be a fruitful area for 

exploiting spatial-locality domain subdivision methods such as those suggested in [2,6].  

In this work, we developed and implemented a methodology that produces numbers of evacuation simulation 

instances to compute. In future, we intend to integrate this with a distributed computation platform to determine 

how appropriate this methodology is when dealing with the constraints and features of distributed computers.  
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