
Client-Side Framework for Automated
Evaluation of Mechanisms to Improve HTTP

Performance
Paul Davern, Noor Nashid, Cormac J Sreenan,

Mobile and Internet Systems Laboratory, Department of Computer Science,
University College Cork, Cork, Ireland.

p.davern@cs.ucc.ie
Ahmed Zahran,

Department of Electronics and Electrical Communications,
Cairo University, Cairo, Egypt.

azahran@eecu.cu.edu.eg

Abstract—The proliferation of sophisticated web technolo-
gies requires efficient tools to evaluate the performance
of HTTP traffic under various conditions. In this paper,
we present HTTP-Automated Evaluation (HTTP-AE) as
a multi-user client-side framework for evaluating HTTP
performance. The framework can be used to evaluate
mechanisms, which improve HTTP performance. We present
several case studies in which HTTP-AE is used to evaluate
three HTTP acceleration mechanisms deployed in an em-
ulated satellite system. These case studies show that the
framework can be used to test different design aspects
that may affect HTTP performance. Hence, by using the
proposed framework, one can determine the advantages and
limitations of different network design configurations.

Index Terms—HTTP performance evaluation, HTTP ac-
celeration, Testing Framework, High latency, TCP perfor-
mance, TCP slow start, Satellite systems.

I. INTRODUCTION

The complexity and richness of web content is driv-
ing researchers to develop more and more sophisticated
techniques to optimize HTTP. A browser such as Firefox
uses a diversity of such techniques to deliver web content
more efficiently to the end-user. The development of such
a HTTP optimization technique goes hand in hand with its
evaluation in the real world. In this paper, we propose that
there is a need in the research community for a generic
real-world HTTP evaluation framework. There are many
partial solutions available, but most researchers, spend
much time developing their own HTTP evaluation tools
to suit their own needs.

Web page load time is a primary metric for any such
client-side evaluation of HTTP. However, web page load
time is a metric, which is dependent on many factors e.g.
the complexity of web content. But, given a controlled
testing environment, for example, where the network
conditions are fixed, and where a known web session is
executed then the performance of HTTP will be directly
related to web page load time. In this situation a mech-
anism to improve HTTP performance can be evaluated

with respect to a reference evaluation. For example a
browser with pipelining enabled can be evaluated with
respect to the same browser without pipelining. In our
previous paper [1] we presented HTTP-AE as a frame-
work to automate the evaluation of HTTP performance of
a particular HTTP acceleration technology. In this paper
we present a re-design of HTTP-AE, which makes it more
generic and enables the evaluation of mechanisms, which
improve HTTP performance in a multi-user environment.

The optimization of HTTP is specifically focused
around HTTP issues. For example, HTTP features a
sequential operation that delays the retrieval time of em-
bedded web resources1. When a client on the end-user’s
machine issues a HTTP GET request for a particular web
page, the web server replies with the base HTML page
containing references for other nested resources required
by the client to display the page to the end-user. These
resources are requested through additional HTTP GET
requests over possibly new TCP connections opened by
the client to the web server.

The performance of Internet protocols like HTTP and
TCP are sub-optimal for satellite links where long delay,
high bit error rate (BER) and limited resources are inher-
ent in their nature. Hence, many different mechanisms for
accelerating HTTP/TCP have been developed to improve
end-user web browsing quality of experience for satellite
systems. We present case studies in which HTTP-AE
is used to evaluate HTTP acceleration mechanisms for
satellite systems.

Web browsers normally open multiple TCP connections
to a Web server in order to retrieve content efficiently.
We show in our first case study that this acceleration
technique is inadequate for satellite systems. In our sec-
ond case study, we show the performance benefits for
web browsing when the TCP congestion algorithm is
optimized for satellite systems. In our third case study

1In this context, a web resource refers to for example an icon, an
image, a CSS page, or other similar content.

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1749

© 2012 ACADEMY PUBLISHER
doi:10.4304/jnw.7.11.1749-1759

we show the performance advantage of deploying a HTTP
Performance Enhancing Proxy (PEP) into a satellite sys-
tem. In our fourth case study, we show that in multi-
user scenarios, HTTP acceleration technologies, which
break the end-to-end semantics of HTTP, can distribute
network resources unfairly to the end-users. In the fourth
case study, we also show how HTTP-AE can be used to
evaluate HTTP-based services, which provide user and
service differentiation.

The rest of the paper is organized as follows. Section II
is dedicated to background and related work. In Section
III, we present the HTTP-AE framework and particular
use cases of the framework. In Section IV we present
background to our case studies and the satellite emulation
test bed. In Section V we present the case studies of
using the framework. Finally, conclusions are presented
in Section VI.

II. BACKGROUND AND RELATED WORK

In the literature, the performance of HTTP has been
evaluated using different approaches including analysis,
simulation, emulation, and experimental testbeds. Heide-
mann [2] proposes an analytical model for web transfer
over different protocols like persistent connections, trans-
actional TCP and UDP. Typically, analytical models are
limited to specific scenarios and can not fully accommo-
date all the dynamics of the protocol stack and testing
environments. Simulation-based studies [3] [4] employ
empirical models that are developed using network traffic
to simulate HTTP behaviour. For example, PackMime-
HTTP [4] is a well-known HTTP traffic generator and
is used in several simulation-based studies. However, one
difficultly with such models and tools is that they may not
be able to cope with the speed of evolution of web content
and design. Thus, evaluating web browsing in real-world
environments is expected to provide more accurate results.

Real HTTP testing includes both emulated and real
environments. In emulated environments, e.g. [5] [6]
specific tools, such as Dummynet [7], IKR Emulation
Library [8] are employed to simulate the behavior of
network elements or an entire network between the HTTP
client and server. This approach enables the testing of
complex scenarios that involve large number of nodes
or expensive devices without the complexity involved
in real HTTP testing. Many studies consider real tests
for evaluating the performance of web browsing in real
environments. For example, Chakravorty et al. [9], [10],
[11] evaluate web browsing performance in GPRS using
a commercial test bed under different scenarios in the
presence of a network optimization proxy.

In [12] the authors present a common TCP testing
framework, which allow researchers to quickly and easily
evaluate their proposed TCP extensions. Similarly, a gen-
erally accepted testing framework is necessary for HTTP-
related technology. This work proposes HTTP-AE as a
framework to automate the evaluation of HTTP perfor-
mance over a particular system under test. The framework
does this by calculating the relative web browsing quality

of experience for a set of end-users over the system under
evaluation.

A. Contribution of HTTP-AE in relation to other tools

Currently, there exist several techniques and tools that
can evaluate the performance of HTTP from the perspec-
tive of end-user quality of experience:

• For example, Firebug [13] gives client-side statistical
information about web page load time. It is basically
a JavaScript debugger for Firefox and other browsers
[14]. It allows users to perform standard debugging
actions. It also provides a mechanism to analyse the
CSS and DOM trees of a particular web site [15].
But there is no built-in way to log this information.
At the same time, it does not provide a method of
modifying the conditions of the test or automating a
series of tests.

• YSlow [16] and Page Speed [17] test web application
performance. By employing good web design tech-
niques the performance of end-users web browsing
can be improved significantly. Tools like YSlow, per-
form comparisons of a particular web page against
a predefined set of such good design rules, and then
suggest different ways to optimize the web page
design.

• Selenium is a test tool that allows a web page tester
to write automated user interface tests for web appli-
cations [18]. It enables the testing of a particular web
application with different browsers. Thus, Selenium
is mainly a functional and acceptance testing tool for
web applications.

• JMeter [19] and httperf [20] were designed to per-
form load testing on a web server. These tools
can simulate the behaviour of multiple users from
a single machine. One supplies these tools with a
set of URLs and HTTP commands (for example a
GET request, or a POST request) to be executed on
these URLs. These tools do not mimic the complete
behaviour of a web browser. These tools were not
designed to evaluate the performance of HTTP/TCP
between the client and server from the perspective
of the end-user’s quality of experience.

• Philipp et al. [21] have presented an automated web
navigation tool for Internet Explorer. This tool takes
a URL list from an input file and automatically
browses through these web pages. This tool does not
provide a method for modifying network conditions
and gathering performance metrics for varying con-
ditions.

• Ramakrishnan et al. [22] have proposed a technique
for assessing the end-user’s web browsing quality
of experience by performing web page instrumen-
tation. This approach leverages scripting and event
notification mechanisms in HTML and uses scripting
languages to measure and collect client-perceived
response times. The code is attached to a web page
which after being downloaded to the web browser,
measures the download time of individual embedded

1750 JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

objects and sends back page load time to the web
server. Cherkasova et al. [23] give details of other
such tools. This browser-instrumentation technique
is attractive in that it accurately measures client-
perceived response time to gather detailed response
times for all objects embedded within a web page.
At the same time, it can log such user interaction.
Unfortunately, this approach needs instrumentation
at both client and server side.

• A completely different approach is undertaken by
[24] [25] [23] and [26] to find the client-perceived
page load time. Jianbin et al. [24] have presented a
tool which can monitor the client-perceived end-to-
end response time for secure web services. This tool
resides near the monitored server and collects traffic
passively in and out of that server. Then it applies
a size-based analysis method on HTTP requests to
infer the client-perceived page-view response time.
Thus, these techniques can be beneficial to measure
end-to-end performance of web services from the
server side.

• Google’s Chromium Benchmarking Extension [27]
was designed to evaluate SPDY. This tool is only ap-
plicable to Google’s Chrome. Further functionality,
such as the ability to archive results, is required to
compare and contrast two different HTTP accelera-
tion technologies with the Chromium Benchmarking
Extension tool.

HTTP-AE is a multi-user client-based framework for
automating the performance evaluation of HTTP/TCP.
During a web browsing session an end-user will interact
with a set of diverse web applications each of which
is addressed by a URL. Thus, a client in HTTP-AE
is defined according to a set of URLs that are to be
requested. HTTP-AE issues a HTTP GET request for a
particular base HTML page of a given URL. The base
page is parsed and any nested resources are subsequently
requested.

The multi-user aspect of the framework, represents a
means for determining, for example, the relative HTTP
performance of each end-user, in combination with other
users and a particular HTTP acceleration technology.
Further, by operating at the client side, HTTP-AE allows
mechanisms which improve HTTP performance to be
evaluated independently and concurrently. For example,
HTTP-AE can evaluate the effect on end-user quality of
experience when a HTTP Performance Enhancing Proxy
(HTTP PEP) alone or this HTTP-PEP in combination with
a TCP-PEP has been deployed into the network [28].

III. USE CASES OF THE HTTP-AE FRAMEWORK

Figure 1, shows the three main classes of mechanisms
for improving HTTP performance, that can be evaluated
with HTTP-AE. That is mechanisms that are positioned at
the client such as browser specific HTTP optimizations;
mechanisms that are positioned in the intermediaries
of the network for example caching mechanisms that

Fig. 1. mechanisms for improving HTTP performance

HTTP-AE
Controller

HTTP
Traffic

Firefox with
new pipelining
Algorithm

User Agent 1
Controls System
Under Test

Web Server

HTTP
Traffic

Client 1

Firefox with
new pipelining
Algorithm

User Agent N
Controls System
Under Test

Client N

HTTP-AE
Evaluation
Comparison

Fig. 2. Browser with new pipelining algorthm

improve HTTP performance over network access tech-
nologies such as satellite systems; and mechanisms that
are positioned at the server such as load balancers.

A. Using the HTTP-AE Framework

Let us suppose that a researcher wishes to evaluate
a new pipelining algorithm for Firefox with HTTP-AE.
In this case, the evaluation with HTTP-AE works by
comparing/contrasting the new pipelining algorithm with
respect to a reference evaluation. For example, the evalu-
ator may evaluate the performance of a known session of
web browsing when the pipelining algorithm is in place
with respect to the corresponding browsing session when
the algorithm is not in place. Figure 2, gives a logical
view of the evaluation of the new pipelining algorithm
for Firefox. In this case, the evaluator configures a set
of Clients on the network, where each Client consists of
the User Agent HTTP-AE component and Firefox. Each
of these Clients will simulate the browsing action of a
real end-user on the network. To achieve this the User
Agent requests a set of URLs in sequence using Firefox’s
XPCOM [29], a cross platform component object model
which can be controlled using JavaScript.

Since a Client is a logical entity, the evaluator should
provide the user’s physical machine, associated interface,
and login credentials on this machine using the HTTP-AE
front end. The HTTP-AE Controller communicates with
each of the User Agents in the system to collect statistics
such as the page load time. In this case, the page load
time is also measured using XPCOM. Note, that if more
than one Client is to share the same interface on the same
machine, source network address translation (NAT) can be
used to distinguish the traffic associated with each Client.

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1751

© 2012 ACADEMY PUBLISHER

HTTP-AE
Controller

HTTP
Traffic

Firefox
Unmodified

User Agent 1
Controls System
Under Test

Web Server

HTTP
Traffic

Client 1

Firefox
Unmodified

User Agent N
Controls System
Under Test

Client N

HTTP-AE
Evaluation
Comparison

Fig. 3. Browser without new pipelining algorithm

Fig. 4. Configure an Evaluation Object

This is attained by using an iptables [30] rule, to associate
each simulated end user’s traffic, identified by its user ID,
and destined to port 80 to a separate IP using the SNAT
target option. This iptables rule can be used where a set
of users share the same machine but are associated with
different interfaces.

Figure 3, gives a logical view of the evaluation of
the browser alone i.e. without the new pipelining algo-
rithm. The results from this reference evaluation can be
contrasted, using Evaluation Comparison component of
HTTP-AE, with the corresponding results collected when
the pipelining algorithm is in place.

B. Defining an Evaluation in HTTP-AE

Figure 4, shows a HTTP-AE front end view of an
Evaluation object namely Evaluation of a HTTP PEP,
which was created using the HTTP-AE front end. An
Evaluation object contains a set of configuration parame-
ters, a set of user agents and a set of scenarios. We used
this Evaluation object in sections V-C and V-D to evaluate
a HTTP PEP.

The HTTP-AE user interface has three main options,
which are associated with the Evaluation object: Config-
ure, Run, and Reporting. In this section, we describe how
an Evaluation object is defined and in section III-C we
describe the main performance metrics.

System
Under

Evaluation

Traces and logs

User Agent 1

HTTP
Traffic

Archive

HTTP-AE
 Controller

User Agent 2

User Agent 5

Stand alone
 client

User ID: Bronze User-1

User ID: Gold User-1

Stand alone
client

Configuration
and Control

HTTP
PEP

Fig. 5. HTTP PEP scenario logical view

To perform an evaluation of a particular mechanism
which improves HTTP performance the evaluator initially
creates an Evaluation object using the HTTP-AE front
end GUI. The evaluator can configure various Evaluation
object attributes e.g. clear the browser cache between
runs. An Evaluation has a set of Scenarios and a set of
User Agents associated with it.

The evaluator creates a set of Scenario objects, which
are associated with the Evaluation object. These Scenario
objects control the conditions of a particular evaluation.
For example, a Linux script can be associated with the
Scenario object, which distinguishes the user traffic based
on port number. Figure 4 shows three Scenarios namely
Firefox alone, HTTP PEP and HTTP PEP with user
differentiation. In our example in section III-A Firefox
With Pipelining could be one scenario, while Firefox
Alone could be another scenario.

The User Agent archives performance metrics such
as page load latency for each of the URLs in this set
with the HTTP-AE Controller. These metrics can be
compared and contrasted using HTTP-AE’s Evaluation
Comparison component. This component is selectable
under the reporting section of the user interface. The
evaluator can configure various attributes for each User
Agent for example the number of times a particular URL
should be visited.

The page load time for a particular URL is dependent
on many factors which may be outside the control or
interest of the evaluator, for example the page load is
dependent on web server load and on network usage.
Therefore, HTTP-AE allows the evaluator to access a
particular URL a number of times to reach defined targets
in terms of the confidence interval of the results.

Figure 5, depicts a logical view of the evaluation of
a HTTP PEP, which is the subject of the case study
in Section IV of the paper. This is the second scenario
depicted in figure 4 i.e. the HTTP PEP scenario. When
this scenario is executed, each associated User Agent
accesses a set of URLs in sequence.

Each User Agent generates a set of results including
TCP level traces which are archived in association with
the User Agent. HTTP-AE has a reporting facility which
can be used to compare and contrast the results between
scenarios. For example, the HTTP PEP scenario in figure
4, refers to a network with a deployed HTTP PEP and
the Firefox alone scenario refers to the same system

1752 JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

without the HTTP PEP, while the HTTP PEP with user
differentiation scenario refers to the same system with the
HTTP PEP and Linux based user differentiation in place.

There are two types of User Agent: the stand alone
client and the browser extension. The stand alone client
is a fully functional HTTP client, which does not render
the web content to the end user. This client can be
deployed to any Java based system. The browser extension
is designed to enable the evaluation of a browser or
browser technologies. For example, the Firefox browser
extension has XPCOM hooks into Firefox to control it.
In each case the User Agent executes a browsing session
for a set of URLs in sequence. The User Agent archives
performance metrics such as page load latency for each
of the URLs in this set. These metrics can be compared
and contrasted using HTTP-AE’s reporting facility. The
evaluator can configure various attributes for each User
Agent for example the number of times a particular URL
should be visited.

C. HTTP-AE Metrics

Generally, the web browsing Quality of Experience
(QoE) is application dependent. Additionally, it depends
on the system under evaluation. However, there exist
typical objective metrics that would enable any evaluator
to evaluate and compare the performance of different sys-
tem designs. In HTTP-AE, we consider different latency
components including

• Base page latency, which corresponds to the delay
between issuing the first HTTP GET request to
the time at which the HTTP response is received.
Typically, the user starts to see textual content at
this moment and the client starts parsing the page
for fetching embedded resources to complete the
page download. These delay components represent
a good indicator for different network functionality.
For example, it gives an indication to the efficiency
of reactive routing protocols in AdHoc networks. In
satellite systems, many PEPs introduce optimization
techniques to reduce the delay resulting from the
sequential operation of TCP and HTTP. Hence, base
page latency can differentiate between different sys-
tem designs.

• View-port loading delay, which refers the time to
load all the objects in the user’s current viewport.
Typically, prioritizing the content of the user view
port would improve the user QoE. One way to
prioritize the viewport is to embed a java-script in
the page to determine the objects within the user
viewport on the client side. Note that such script
may not only be embedded by the server but also by
agents or proxies in the system.

• Total page load latency, which corresponds to the
total time required to download the base page and
all of its embedded objects starting from issuing the
request in the browser.

These metrics can be affected by any change in the dif-
ferent system components including the configuration and

design of web client, web server, and intermediate net-
work. In addition to different latency metrics, HTTP-AE
automatically monitors the network interfaces associated
with each user and logs different traces using tcpdump.
These traces are analyzed using capinfos, a terminal-
based tool that is part of Wireshark [31]. Capinfos enable
the obtaining of different statistics from the collected
traces including the user bandwidth, the traffic volume
crossing the interface, the data sent and received (bytes
and packets).

HTTP-AE considers the user bandwidth share as an
important metric that identifies the system capability for
differentiating different user classes and services. For
example, end-users with different subscription plans on a
mobile network could be allocated with different levels of
QoS including differentiation of bandwidth. This metric
can be used to evaluate the effect of service and user
differentiation on the end-users. Similarly, the user band-
width share can be used to determine the fair distribution
of resources among peer users.

To this end, it is worth noting that the proposed frame-
work is applicable not only to end-user clients machines
but also can be used in the middle of the network to
evaluate the performance of intermediate nodes such as
PEPs. In the latter case, other relevant network perfor-
mance metrics such as signaling load can be obtained by
filtering the collected traces. In the following section, we
present several case studies in which we employ HTTP-
AE to evaluate web browsing performance in satellite
based networks.

IV. CASE STUDY BACKGROUND AND TESTBED

Broadband satellite is becoming more and more per-
vasive to deliver Internet services to remote communities
[32]. However, issues with HTTP/TCP on wired networks
are greatly accentuated when it comes to high-latency
links such as broadband satellite systems. Hence, many
different technologies for accelerating HTTP/TCP have
been developed to improve end-user web browsing quality
of experience over satellite systems. Figure 6 indicates
where some of technologies are deployed into the net-
work.

Technologies/techniques such as cache proxies [33],
pre-fetching of HTTP content, and persistent TCP connec-
tions are used to improve the end-user’s web browsing ex-
perience over satellite. An HTTP Performance Enhancing
Proxy (PEP) [34] can employ all three of these techniques.
An HTTP PEP can be deployed as shown in Figure 6 in a
high latency segment of a network between the end-users
and the web server. TCP PEPs [28] can also be similarly
deployed in a high latency link to locally acknowledge
a TCP sender and thus cause the congestion window to
grow artificially.

A. Evaluation testbed

Figure 7 shows our emulated satellite testbed used in
our evaluation. The testbed consists of two PCs with Intel
Core 2 Duo CPU E4700 2.60 GHz, running Fedora 10.

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1753

© 2012 ACADEMY PUBLISHER

Fig. 6. HTTP Acceleration Techniques

The two PCs, one emulating the remote node and the other
emulating the ground node, are connected using a direct
1Gb/s Ethernet connection over which a Satellite link
behavior is emulated using traffic control (tc) commands
in Linux. That is, the data rate is limited to 64Kb/s,
128Kb/s, 256Kb/s, 512Kb/s, and 1 Mb/s. and a 300ms
one way delay is introduced in each direction. A client
PC was connected to the remote node running HTTP-AE.

For the shown results, the URLs point to a set of
pages containing the same text and a variable number of
embedded images from Caltech 101 image data-set [35].
The number of images in the set of pages varies from 1
to 30 per page. The images are all JPEGs and have an
average size of 15K. These pages are served from a web-
server co-located in the ground node. In the results, each
point corresponds to the average of 10 runs; i.e., each
page is browsed ten times and the performance metrics is
the average of these ten experiments to reduce the impact
of random timing behavior of network and server access.

Figure 7 also shows the experimental configuration for
user differentiation. Each User Agent is associated with
a Linux user. Each emulated user’s traffic was source
NATed so that the traffic for a given user was assigned to
a separate IP address. User differentiation at the ground
node was achieved using the commands (for the silver
user) as detailed in the figure. Gold users are assigned
50% of the bandwidth, silver 30% and bronze 20%.

V. CASE STUDIES

In these case studies, we use HTTP-AE to evaluate
several HTTP acceleration techniques in a high-latency
network such as a satellite system. Each of the case stud-
ies is independent. The rest of this Section is organized as
follows. In Section V-A, we evaluate the effectiveness of
using multiple connections to retrieve HTTP content over
satellite. In Section V-B, we study the effect of using

Web Server

tc qdisc add dev eth1 handle 1: root htb default 12
tc class add dev eth1 parent 1: classid 1:1 htb rate 256kbit ceil 256kbit
tc class add dev eth1 parent 1:1 classid 1:11 htb rate 77kbit ceil 256kbit
tc qdisc add dev eth1 parent 1:11 netem delay 300ms
tc filter add dev eth1 protocol ip parent 1:0 prio 1 u32 match ip sport 9003 0xffff flowid 1:11

Split HTTP PEP Under Test

User Agent 1
User ID: Bronze

Firefox

Traffic SNAT

User Agent 2
User ID: Silver

Firefox

Traffic SNAT

Remote node Ground node

Fig. 7. Testbed

different TCP slow-start congestion control algorithms
on HTTP performance. In Section V-C, we present an
evaluation of our HTTP PEP [36]. In Section V-D, we
present a modification to our HTTP PEP to support
user differentiation and we evaluate its performance with
multiple web browsing users.

A. Multiple TCP connections

During TCP slow-start, the amount of unacknowledged
data is limited by the sender’s congestion window. Thus,
the bandwidth is under-utilized while the sender is waiting
for acknowledgments. To overcome this limitation, web-
browsers typically open up multiple connections to a web-
server.

There are quality of service issues associated with
opening simultaneous connections for HTTP acceleration
in satellite systems:

• A Web browser that opens multiple TCP connec-
tions, requires more processing resources on the
ground and remote gateway nodes than the same
browser that opens say one connection. This problem
becomes more exacerbated when several users are
browsing at the same time.

• Each connection that a browser opens requires 7
additional packets to establish the session and to
tear it down. Thus, there is a non negligible data
transmission overhead, associated with connection
setup and tear down, for several users each opening
multiple connections. Also TCP will combine data
more readily into less packets, when an application
uses say one connection as against several.

• There are less packets transmitted, if the browser
were to pipeline its requests, as against the case
where it uses multiple connections to achieve the
same result. For example, if the browser were to open
3 TCP connections to retrieve 3 Web resources then,
3 packets are required to issue the GET requests.
If these 3 GET requests were to be pipelined then
they could be combined into 1 packet. Also, the
3 responses arrive in one continuous stream, thus
TCP is able to combine packets at the sender more
readily. Hence, the transmission of small segments,
i.e. tinygrams [37], is reduced.

1754 JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

• The delay in opening a TCP connection is 1.5 Round
Trip Times (RTT) - here we assume that there is
no data in the ACKs. The browser opens its first
connection to the Web server to retrieve the base
HTML. If the base page has a small number of
nested resources, then, it may be more efficient for
the browser, to use the connection it has already
opened to retrieve those resources, rather than open-
ing more connections to achieve the same result.
If the browser were to pipeline all the requests,
for the nested resources over the first connection
then, more efficiency could be achieved. However,
Firefox does not pipeline the initial GET requests for
nested resources and only pipelines its requests grad-
ually. This may be Firefox’s mechanism to determine
whether or not the web server supports pipelining
[5].

Now we shall examine the use of multiple connections
in a modern web browser and its performance impact
while operating in a resource-limited environment. For
this study, we have chosen to evaluate Firefox’s use of
multiple connections from the perspective of end-user
QoS and data transmission overhead for an emulated
satellite system. In the following experiments, Firefox
has been studied for pipelined connections for varied
bandwidth.

Figure 8-12 plots the page load delay as seen by the
client versus the number of embedded resources per page
for different number of connections and for different link
capacities varying from 64kbps to 1Mbps. The figures
also show one connection results in a significant increase
in page load delay when compared with three and more
connections. Note that Firefox does not pipeline the first
request for embedded objects and so there is a significant
delay before it requests the second and subsequent ob-
jects. Figure 8 and 10 show that there is little difference
between page load time for three to eight TCP persistent
connections for low bandwidth links.

Generally when more TCP connections are opened,
during the slow-start phase, the aggregated initial Con-
gestion Window (cwnd) of multiple connections outper-
form fewer TCP connections, but for resource-constrained
pipes very few packets can be transmitted. For example,
a 128 kb/s link with 600 ms RTT cannot transmit more
than 10 X 1500 byte packets per second. A single TCP
sender’s initial cwnd allows it to transmit three maximum
segment size (MSS) bytes of data. As a result, opening
more connections do not make much difference for low-
bandwidth links. Figures 11, 12 2 show that as the
bandwidth increases, the browser’s use of multiple con-
nections improves in terms of the page load performance.
The improvement becomes less noticeable as the number
of objects on the page increases. However, using more
than three connections, the data transmission overhead
becomes significant as shown in Figure 13. This overhead
is due to the small TCP segments and extra signaling load.

2Note the altered Y-axis range across Figures 8, 9, 10, 11, and 12 in
order to increase visibility of delay differences

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 8. Performance of Firefox using 1 to 8 pipelined connections in
 64 Kb/s and 600ms RTT link

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 9. Performance of Firefox using 1 to 8 pipelined connections in
 128 Kb/s and 600ms RTT link

TCP offers a single sequential, in-order bytestream
data delivery scheme which results in head-of-line (HOL)
blocking and worsens web response time. TCP also suf-
fers from slow-start problems. Modern browsers use mul-
tiple TCP connections to overcome these scenarios. Al-
though it is expected that multiple TCP connections may
improve HTTP throughput, experimental results show that
multiple TCP senders can degrade HTTP performance
for resource-constrained links. These experimental results
motivate the use of fewer connections for current web
browsers while working over high-latency links with low
bandwidth.

B. TCP variants

Congestion management is the focus of this subsection.
One server side optimization for HTTP is to increase the
initial TCP congestion window. This increase allows the
server to push more content initially during TCP slow-

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1755

© 2012 ACADEMY PUBLISHER

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 10. Performance of Firefox using 1 to 8 pipelined connections in
 256 Kb/s and 600ms RTT link

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 11. Performance of Firefox using 1 to 8 pipelined connections in
 512 Kb/s and 600ms RTT link

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 12. Performance of Firefox using 1 to 8 pipelined connections in
 1 Mb/s and 600ms RTT link

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30

N
um

be
r

of
 P

ac
ke

ts

Number of Embedded Objects

 Browser-1
 Browser-3
 Browser-6
 Browser-8

Fig. 13. Packet overhead of using 1/3/6/8 pipelined connections in 256
 Kb/s and 600ms RTT link

start. However it is difficult to determine an appropriate
value for the initial congestion window independent of the
congestion algorithm utilized. Many TCP variants have
been developed to address TCP slow start issues. The
use of such standards at the server gives a more generic
solution than manipulating the initial congestion window
directly.

In this study, the web browsing performance is eval-
uated using different TCP variants Hybla, BIC, Vegas
and Westwood at the Ground node [38]. Each of the
variants adopts a different congestion control algorithm
during slow start. Figures 14-18 show that Hybla, which is
designed for high latency links, has the best performance
while Vegas results in the worst performance of the four
evaluated TCP variants. TCP Vegas is greatly impeded by
the long RTT [39]. The number of nested resources does
not appear to suit one congestion algorithm over another.
These results with regard to TCP variants confirm the
work done by other researchers [39]. We conclude from
these results that using a TCP Hybla connection at the
ground node will give slightly better performance in terms
of web page load time for the end-users.

C. HTTP PEP

In our previous paper [36], we presented a HTTP
PEP (HTTPEP), which improves the user’s web brows-
ing experience over a high-latency link. HTTPEP has a
HTTP split proxy architecture between the ground and
the remote sites. HTTPEP transforms a GET request for
a base web page from the end-user so that the nested web
resources in that base page are streamed to the remote site.
The resources are streamed into multiple TCP persistent
connections from the ground to the remote sides. A
scheduler on the ground side chooses a particular TCP
connection in a round-robin fashion. Thus the resources
will be transmitted to the remote site concurrently.

In this Section, we evaluate the HTTP Performance
Enhancing Proxy (HTTPEP). Experimental results are

1756 JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

 10000

 20000

 30000

 40000

 50000

 60000

 70000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Fig. 14. Performance of TCP variants in 64 kb/s and 600ms RTT link

 5000

 10000

 15000

 20000

 25000

 30000

 35000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Fig. 15. Performance of TCP variants in 128 kb/s and 600ms RTT
 link

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Fig. 16. Performance of TCP variants in 256 kb/s and 600ms RTT
 link

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Fig. 17. Performance of TCP variants in 512 kb/s and 600ms RTT
 link

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Fig. 18. Performance of TCP variants in 1 Mb/s and 600ms RTT link

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(s

ec
)

Number of Embedded Objects

 Normal
 HTTPEPC

 RabbIT
 HTTPEP

Fig. 19. Average page load delay for 256 Kb/s and 600ms RTT link

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1757

© 2012 ACADEMY PUBLISHER

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 P
ag

e
L

oa
d

T
im

e
(m

s)

Link Bandwidth(Mbit/sec)

 Normal
 HTTPEP

 Fig. 20. Effect of varying the satellite link capacity with 600ms RTT

compared with the standard HTTP and a open-source
transcoding proxy, RabbIT [40]. RabbIT is an application
layer performance enhancing proxy that speeds up web
browsing over slow links. It can employ different tech-
niques like text and image compression, caching, removal
of background images. With the default configuration
RabbIT uses an aggressive compression ratio. For the
following set of experiments RabbIT was configured to
use the same compression factor as the HTTPEP for a
fair comparison.

Figure 19 shows an average page load delay reduction
of 27% using compression (HTTPEPC) in comparison
to an average saving of 10% without compression over
the normal operation (i.e. a direct connection between
the browser and the web-server without an intermediate
proxy). The 10% average saving in page load time is due
to our HTTP and TCP protocol optimisations.

Figure 20 plots the page load time for HTTPEP and
normal operation versus the satellite link capacity. When
the bandwidth is constrained to 256Kbps the average
improvement of HTTPEP over the browser alone is 10%,
as the bandwidth increases so does the average improve-
ment, which levels at 32% when the link capacity reaches
2Mbps.

D. User differentiation

Figure 21 shows the page load time for a number of
users with no user differentiation using HTTPEP with
eight TCP connections maintained between the remote
and ground nodes. The figure clearly shows that the
first user on the system is getting better service than
subsequent users. To solve this issue, we need to re-design
the algorithm that HTTPEP uses to service incoming
requests.

We modified HTTPEP’s scheduler so that traffic des-
tined for a particular user class is scheduled to an ap-
propriate TCP connection. In this experiment, we have
3 permanent TCP connections between the ground and

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Bronze User-1
 Bronze User-2
 Bronze User-3

 Gold User-1
 Silver User-1

Fig. 21. Multi-user over HTTPEP with no user differentiation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Bronze User-1
 Bronze User-2
 Bronze User-3

 Gold User-1
 Silver User-1

Fig. 22. Multi-user over HTTPEP with user differentiation

remote sides and 50% of the bandwidth allocated to
the first connection, 30% to the second connection, and
20% to the third connection. Figure 22 shows the page
load time experienced by the different classes of users
(gold, silver, bronze) in the new system. The figure shows
that the gold and silver users are getting the appropriate
service differentiation while the first bronze user on the
system is still getting better service than the other bronze
users. Since users belonging to the same class should
enjoy same quality of service, these results indicate the
need for a fair scheduling technique.

VI. CONCLUSION

In this paper, we present HTTP-AE as a multi-user
client-side framework for the automated evaluation of
mechanisms to improve HTTP performance. Addition-
ally, we present several case studies in which HTTP-
AE is used to evaluate three different HTTP acceleration
technologies deployed in an emulated satellite system.

1758 JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

These case studies show that the framework can be used
to test different design aspects of HTTP acceleration
mechanisms. The case studies also show that by using the
proposed framework, one can pinpoint the limitations of
a given HTTP acceleration mechanism. We used HTTP-
AE to uncover a resource allocation issue with our HTTP
acceleration proxy. The proxy was not sharing resources
fairly over the active users on the system. This knowledge
lead to an improved design of our HTTP acceleration
proxy.

Acknowledgments: This work is supported by Enter-
prise Ireland Grant Number IP/2009/0026 and by Alto-
bridge.

REFERENCES

[1] P. Davern, N. Nashid, A. Zahran, and C. J. Sreenan, “Towards
an Automated Client-Side Framework for Evaluating HTTP/TCP
Performance,” Proc. of International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems
(SPECTS), June 2011.

[2] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the per-
formance of HTTP over several transport protocols,” IEEE/ACM
Trans. Netw., vol. 5, pp. 616–630, October 1997.

[3] B. A. Mah, “An Empirical Model of HTTP Network Traffic,”
IEEE Computer and Communications Societies, Annual Joint
Conference of the, vol. 0, p. 592, 1997.

[4] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and M. Weigle,
“Stochastic models for generating synthetic HTTP source traffic,”
in INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, vol. 3, 2004, pp.
1546 –1557.

[5] P. Natarajan, P. D. Amer, and R. Stewart, “Multistreamed web
transport for developing regions,” NSDR ’08: Proceedings of the
second ACM SIGCOMM workshop on Networked systems for
developing regions, pp. 43–48, 2008.

[6] M. C. Necker, M. Scharf, and A. Weber, “Performance of TCP
and HTTP Proxies in UMTS Networks,” European Wireless 2005
- 11th European Wireless Conference 2005 - Next Generation
wireless and Mobile Communications and Services, 2005.

[7] “Dummynet,” Retrieved March, 2012, from,
www.iet.unipi.it/ luigi/dummynet/.

[8] M. C. Necker, M. Scharf, and A. Weber, “Performance of dif-
ferent proxy concepts in umts networks,” in Wireless Systems
and Mobility in Next Generation Internet, ser. Lecture Notes in
Computer Science, G. Kotsis and O. Spaniol, Eds. Springer Berlin
/ Heidelberg, 2005, vol. 3427, pp. 36–51.

[9] R. Chakravorty, A. Clark, and I. Pratt, “Optimizing Web delivery
over wireless links: design, implementation, and experiences,”
Selected Areas in Communications, IEEE Journal on, vol. 23,
no. 2, pp. 402 – 416, 2005.

[10] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and
I. Pratt, “Performance optimizations for wireless wide-area net-
works: comparative study and experimental evaluation,” Proceed-
ings of the 10th annual international conference on Mobile com-
puting and networking, pp. 159–173, 2004.

[11] R. Chakravorty, J. Chesterfield, P. Rodriguez, and S. Banerjee,
“Measurement Approaches to Evaluate Performance Optimizations
for Wide-Area Wireless Networks,” Passive and Active Network
Measurement, pp. 257–266, 2004.

[12] L. L. H. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier,
W. Gang, L. Eggert, S. Ha, and I. Rhee, “Towards a common tcp
evaluation suite,” 2008.

[13] “Firebug,” Retrieved March, 2012, from, http://getfirebug.com/.
[14] R. Lerner, “At the forge: Firebug,” Linux J., vol. 2007, pp. 8–,

May 2007.
[15] C. Luthra and D. Mittal, Firebug 1.5: Editing, Debugging, and

Monitoring Web Pages, 1st ed. Packt Publishing, 2010.
[16] “Yslow,” Retrieved March, 2012, from,

http://developer.yahoo.com/yslow/.
[17] “Page speed,” Retrieved March, 2012, from,

http://code.google.com/speed/page-speed/.

[18] A. Sirotkin, “Web application testing with selenium,” Linux J., vol.
2010, April 2010.

[19] “Jmeter,” Retrieved March, 2012, from,
http://jakarta.apache.org/jmeter/.

[20] “httperf,” Retrieved March, 2012, from,
http://www.hpl.hp.com/research/linux/httperf/.

[21] P. Svoboda, F. Ricciato, W. Keim, and M. Rupp, “Measured web
performance in gprs, edge, umts and hsdpa with and without
caching,” in World of Wireless, Mobile and Multimedia Networks,
2007. WoWMoM 2007. IEEE International Symposium on a, june
2007, pp. 1 –6.

[22] R. Rajamony and M. Elnozahy, “Measuring client-perceived re-
sponse times on the WWW,” in Proceedings of the 3rd conference
on USENIX Symposium on Internet Technologies and Systems
- Volume 3, ser. USITS’01. Berkeley, CA, USA: USENIX
Association, 2001, pp. 16–16.

[23] L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat, “Measuring and
characterizing end-to-end Internet service performance,” ACM
Trans. Internet Technol., vol. 3, pp. 347–391, November 2003.
[Online]. Available: http://doi.acm.org/10.1145/945846.945849

[24] J. Wei and C.-Z. Xu, “sMonitor: a non-intrusive client-perceived
end-to-end performance monitor of secured internet services,” in
Proceedings of the annual conference on USENIX ’06 Annual
Technical Conference. Berkeley, CA, USA: USENIX Association,
2006, pp. 21–21.

[25] D. Olshefski and J. Nieh, “Understanding the management of
client perceived response time,” SIGMETRICS Perform. Eval. Rev.,
vol. 34, pp. 240–251, June 2006.

[26] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-
M. Wang, “WebProphet: automating performance prediction for
web services,” in Proceedings of the 7th USENIX conference
on Networked systems design and implementation, ser. NSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 10–10.

[27] “Chromium benchmarking extension,” Retrieved March, 2012,
from, https://sites.google.com/a/chromium.org/dev/chrome-
benchmarking-extension.

[28] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: A Performance
Enhancing Proxy for TCP Satellite Connections ,” Aerospace and
Electronic Systems Magazine, IEEE, vol. 22, no. 8, pp. B–9 –B–16,
2007.

[29] “Xpcom,” Retrieved March, 2012, from,
https://developer.mozilla.org/en/XPCOM.

[30] “iptables,” Retrieved March, 2012, from,
http://www.frozentux.net/documents/iptables-tutorial/.

[31] C. Schroder, Linux Networking Cookbook. O’Reilly Media, Inc.,
2007.

[32] Altobridge, Retrieved March, 2012, from,
http://www.altobridge.com/.

[33] Squid, Retrieved March, 2012, from, http://www.squid-cache.org.
[34] “Mguard,” Retrieved March, 2012, from, http://www.broadband-

internet-access.com/.
[35] C. C. V. Group, “Images,” Retrieved March, 2012, from,

http://www.vision.caltech.edu/html-files/archive.html.
[36] P. Davern, N. Nashid, A. Zahran, and C. J. Sreenan, “HTTP Accel-

eration over High Latency Links,” in New Technologies, Mobility
and Security (NTMS), 2011 4th IFIP International Conference on,
2011, pp. 1 –5.

[37] G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese, “Application
performance pitfalls and TCP’s Nagle algorithm,” SIGMETRICS
Perform. Eval. Rev., vol. 27, pp. 36–44, March 2000.

[38] G. Fairhurst, A. Sathiaseelan, H. Cruickshank, and C. Baudoin,
“Transport challenges facing a next-generation hybrid satellite
Internet,” International Journal of Satellite Communications and
Networking, vol. 29, no. 3, pp. 249–268, 2011.

[39] C. Caini, R. Firrincieli, D. Lacamera, T. de Cola, M. Marchese,
C. Marcondes, M. Y. Sanadidi, and M. Gerla, “Analysis of TCP
live experiments on a real GEO satellite testbed,” Perform. Eval.,
vol. 66, pp. 287–300, June 2009.

[40] “RabbIT ,” Retrieved March, 2012, from, http://rabbit-
proxy.sourceforge.net/.

JOURNAL OF NETWORKS, VOL. 7, NO. 11, NOVEMBER 2012 1759

© 2012 ACADEMY PUBLISHER

