
Towards an Automated Client-Side Framework for
Evaluating HTTP/TCP Performance

Paul Davern, Noor Nashid, Ahmed Zahran, Cormac J Sreenan
Mobile and Internet Systems Laboratory,

Department of Computer Science
University College Cork

Cork, Ireland
p.davern@cs.ucc.ie

Phone: +353 21 420 5383 Fax: +353 21 420 5367

Abstract—Many different existing technologies and techniques
have been developed to accelerate Hyper Text Transfer Protocol
(HTTP) with the aim of improving the end-user’s web browsing
experience. However, there is no standard methodology for
evaluating HTTP performance or for the evaluation of a given
HTTP acceleration technology in a multi-user scenario. In this
paper we present a framework HTTP-AE (HTTP Automated
Evaluation) for measuring the end-user’s web browsing quality of
experience. We describe how HTTP-AE can be used to automate
the evaluation of HTTP performance and for the evaluation of
HTTP acceleration technologies in multi-user environments. We
present three case studies in which we evaluate three different
HTTP acceleration technologies for satellite systems using HTTP-
AE. In our first two case studies we show that typical browser
HTTP acceleration techniques operate sub-optimally on satellite
systems. In our third case study we show that in multi-user
scenarios, HTTP acceleration technologies, which break the end-
to-end semantics of HTTP, can distribute network resources
unfairly to the end-users.

Index Terms—HTTP performance evaluation, HTTP accelera-
tion, Testing Framework, High latency, TCP performance, TCP
slow start, Satellite systems.

I. INTRODUCTION

The performance of HTTP/TCP can be evaluated using
different approaches, including analysis, simulation, emula-
tion, and experimental testbeds. Heidemann [1] proposes an
analytical model for web transfer over different protocols like
persistent connections, transactional TCP and UDP. Typically,
analytical models are limited to specific scenarios and can
not fully accommodate all the dynamics of the protocol stack
and testing environments. Simulation-based studies [2] [3]
employ empirical models that are developed using network
traffic to simulate HTTP behaviour. PackMime-HTTP [3] is
a well-known HTTP traffic generator and is used in several
simulation-based studies. However, such models and tools may
not cope with the speed of evolution of web content and
design. Hence, evaluating web browsing in real environments
is expected to provide a more up-to-date and accurate result.
Real HTTP testing includes both emulated and real environ-

ments. In emulated environments, e.g. [4], [5] specific tools,
such as Dummynet [6] are employed to simulate the behavior
of network elements or an entire network between the HTTP
client and server. This approach enables the testing of complex

scenarios that involve large number of nodes or expensive
devices without the complexity involved in real HTTP testing.
Many studies consider tests for evaluating the performance of
web browsing in real environments. For example, Chakravorty
et al. [7], [8], [9] evaluate web browsing performance in GPRS
using a commercial test bed under different scenarios in the
presence of a network optimization proxy.

In [10] the authors present a common TCP testing frame-
work, which allow researchers to quickly and easily evaluate
their proposed TCP extensions. Similarly a generally accepted
testing framework is necessary for HTTP-related technology.
In this paper, our contribution is HTTP-Automated evaluation
(HTTP-AE) as a framework to automate the evaluation of
HTTP performance over a particular system under test. The
framework does this by calculating the relative web browsing
quality of experience for a set of end-users over the system
under test.

Additionally, we present case studies in which HTTP-AE
is used to evaluate HTTP acceleration techniques for satellite
systems. Web browsers normally open multiple TCP connec-
tions to a Web server in order to retrieve content efficiently.
We show in our first case study that this acceleration technique
is inadequate for satellite systems. In our second case study,
we show the performance benefits for web browsing when the
TCP congestion algorithm is optimized for satellite systems.
In our third case study we show the performance advantage
of deploying a HTTP Performance Enhancing Proxy (PEP)
into a satellite system. In our fourth case study, we show
that in multi-user scenarios, HTTP acceleration technologies,
which break the end-to-end semantics of HTTP, can distribute
network resources unfairly to the end-users. In the fourth
case study, we also show how HTTP-AE can be used to
evaluate HTTP-based services, which provide user and service
differentiation.

The rest of the paper is organized as follows. Section II
is dedicated to background and related work on both HTTP
Evaluation and acceleration. In Section III, we present the
HTTP-AE framework followed by our case studies in Section
IV. Finally, conclusions and future work are presented in
Section V.

SPECTS 2011 205

II. BACKGROUND AND RELATED WORK

The purpose of this section is to provide background for
the specific scenarios, which can be evaluated by our pro-
posed tool. Figure 1 indicates that a diversity of HTTP/TCP
acceleration techniques can be applied at the client, at the
server or at intermediaries in the network itself. In section
II-A we introduce such HTTP acceleration techniques. In
section II-B we outline such TCP acceleration techniques,
which improve the performance of HTTP. In section II-C we
outline such HTTP/TCP acceleration techniques specific to
satellite systems, which is the scenario associated with our
case studies. In section II-D we outline the contribution of
our proposed tool in relation to other such tools.

A. HTTP acceleration techniques

HTTP is a request/response protocol in which web clients
send a GET request for a particular web page and web servers
send back this page in hyper-text markup language (HTML)
format. Nowadays, web-pages are very complex and usually
contain many references for other nested content required
to display the page to the end-user. This complexity was
never envisaged when HTTP was designed and sometimes
it deteriorates the end-user’s browsing experience due to the
sequential request-response operation of the protocol.
Several optimizations are proposed in the literature to

accommodate the complexity of web-pages and improve the
sequential operation of HTTP. Examples include:
1) Simultaneous download of multiple objects over mul-

tiple TCP connections and pipelining multiple GET
requests are currently employed by many browsers.

2) HTTP-MPLEX [11] has been proposed, which com-
bines a request compression and response multiplexing
scheme to HTTP.

3) SPDY [12] allows multiple HTTP requests to be
streamed over one TCP connection, it provides a mech-
anism for a server to push resources to the client, and it
automatically compresses HTTP headers.

B. TCP acceleration techniques

In the transport layer, Transmission Control Protocol (TCP)
also introduces several performance issues, which given the
nature of HTTP, magnify the web page load latency. For
example, each TCP connection requires a three-way handshake
(SYN-SYN.ACK-ACK) for session establishment before send-
ing any data over this connection. This behavior not only
delays the data transmission but also introduces a data trans-
mission overhead when opening multiple TCP connections.
Additionally, TCP depends on a preventive congestion control
mechanism by which a sender should conservatively increase
its transmission window during the slow start phase. In many
scenarios, this behavior leads to slowing down the TCP session
and under-utilization of network resources. Numerous algo-
rithms have been designed to maximize the data throughput
while avoiding congestion during the TCP slow start phase.
For example, TCP Hybla [13] was specifically designed for
high latency links, where standard TCP confuses the delay for
congestion and backs off transmission unnecessarily.

Figure 1. HTTP acceleration techniques

C. HTTP/TCP acceleration over satellite

The aforementioned issues with HTTP/TCP are greatly
accentuated when it comes to high latency links such as
broadband satellite systems. Broadband satellite is becoming
more and more pervasive to deliver an Internet access facility
to remote communities [14]. However, the performance of
Internet protocols like HTTP and TCP are sub-optimal for
satellite links where long delay, high bit error rate (BER)
and limited resources are inherent in their nature. Hence,
many different technologies for accelerating HTTP/TCP have
been developed to improve end-user web browsing quality of
experience.
Technologies/techniques such as cache proxies [15], pre-

fetching of HTTP content, and persistent TCP connections are
used to improve the end-user’s web browsing experience over
satellite. An HTTP Performance Enhancing Proxy (PEP) [16],
can employ all three of these techniques. An HTTP PEP can
be deployed as shown in Figure 1 in a high latency segment
of a network between the end-users and the web server. TCP
PEPs [17] can also be similarly deployed in a high latency
link to locally acknowledge a TCP sender and thus cause the
congestion window to grow artificially.

D. Contribution of HTTP-AE in relation to other tools

Currently, there exist few tools that evaluate the perfor-
mance of HTTP from the perspective of end-user quality
of experience. For example, Firebug [18] gives client side
statistical information about web page load time. But Firebug
does not provide a method of modifying the conditions of the
test or automating a series of tests. YSlow [19] and Page Speed
[20] test web application performance while JMeter [21] and
httperf [22] were designed to test the performance of a web

SPECTS 2011 206

Figure 2. Configure an Evaluation Object

application under traffic load. One supplies these tools with
a set of URLs and HTTP commands (for example a GET
request, or a POST request) to be executed on these URLs.
These tools were not designed to evaluate the performance of
HTTP/TCP between the client and server from the perspective
of the end-user’s quality of experience. Google’s Chromium
Benchmarking Extension [23] was designed to evaluate SPDY.
Further functionality is required to compare and contrast two
different HTTP acceleration technologies with the Chromium
Benchmarking Extension tool. More importantly, all these
tools only consider obtaining performance metrics for a single
user.
In the following section, we present HTTP-AE as a multi-

user web browsing client-based framework for automating the
performance evaluation of HTTP/TCP. The multi-user aspect
of the framework, represents a means for determining, for
example, the relative HTTP performance for each end-user, in
combination with other users and a particular HTTP accelera-
tion technology. Further, by operating at the client side, HTTP-
AE allows HTTP acceleration technologies to be evaluated
independently and concurrently. For example, HTTP-AE can
evaluate the effect on end-user quality of experience when a
SPDY proxy alone or the proxy in combination with a TCP
PEP has been deployed into the network [24]. Thus, HTTP-AE
can be used in a generic manner to evaluate the performance
of any type of system that supports HTTP or optimizes HTTP.

III. HTTP-AE FRAMEWORK

HTTP-AE is a multi-user web browsing client-based
framework for automating the performance evaluation of
HTTP/TCP. Figure 2 shows a view of an Evaluation object
namely Evaluation of a HTTP PEP, which was created using
the HTTP-AE front end. An Evaluation object contains a
set of configuration parameters, a set of user agents and a
set of scenarios. We used this Evaluation object in sections
IV-D and IV-E to evaluate a HTTP PEP. The HTTP-AE user

Figure 3. HTTP PEP scenario logical view

interface has three main options, which are associated with the
Evaluation object: Configure, Run, and Reporting. In section
III-A, we describe how an Evaluation object is defined and in
section III-B we describe the main performance metrics.

A. Defining an Evaluation in HTTP-AE

To perform an evaluation of a particular HTTP acceleration
technology the evaluator initially creates an Evaluation object
using the HTTP-AE front end GUI. The evaluator can config-
ure various Evaluation object attributes e.g. clear the browser
cache between runs. A number of User Agent objects are
then created, which are associated with the Evaluation object.
Each User Agent controls a browser to request a set of URLs
in sequence. The User Agent archives performance metrics
such as page load latency for each of the URLs in this set.
These metrics can be compared and contrasted using HTTP-
AE’s reporting facility. The evaluator can configure various
attributes for each User Agent for example the number of times
a particular URL should be visited. The page load time for a
particular URL is typically dependent on many factors which
may be outside the control or interest of the evaluator, for
example the page load is dependent on web server load and
on network usage. Therefore, HTTP-AE allows the evaluator
to access a particular URL a number of times to reach defined
targets in terms of the confidence interval of the results. Since
a User Agent is a logical entity, the evaluator should provide
the user’s physical machine, associated interface, and login
credentials on this machine. Note, that if more than one user
is sharing the same interface on the same machine, source
network address translation (NAT) can be used to distinguish
the traffic associated with each user. This is attained by using
an iptables [25] rule, to associate each user’s traffic, identified
by its user ID, and destined to port 80 to a separate IP using
the SNAT target option. This iptables rule can be used where
a set of users share the same machine but are associated with
different interfaces.
The evaluator creates a set of Scenario objects, which are

associated with the Evaluation object. These Scenario objects
control the conditions of a particular evaluation. For example,
a Linux script can be associated with the Scenario object,
which distinguishes the user traffic based on port number.
Figure 3 depicts a logical view of one of these scenarios
namely the HTTP PEP scenario. In this case, the system under
evaluation is a HTTP PEP. When this scenario is executed,
each associated User Agent generates a set of results including

SPECTS 2011 207

TCP level traces which are archived in association with the
User Agent. HTTP-AE has a reporting facility which can be
used to compare and contrast the results between scenarios.
For example, the HTTP PEP Scenario in figure 2, refers to
a network with a deployed HTTP PEP and the Firefox alone
Scenario refers to the same system without the HTTP PEP.

B. HTTP-AE Metrics

Generally, the web browsing Quality of Experience (QoE) is
application dependent. Additionally, it depends on the system
under evaluation. However, there exist typical objective met-
rics that would enable any evaluator to evaluate and compare
the performance of different system designs. In HTTP-AE, we
consider different latency components including

• Base page latency, which corresponds to the delay be-
tween issuing the first HTTP GET request to the time
at which the HTTP response is received. Typically, the
user starts to see textual content at this moment and
the client starts parsing the page for fetching embedded
resources to complete the page download. These delay
components represent a good indicator for different net-
work functionality. For example, it gives an indication
to the efficiency of reactive routing protocols in AdHoc
networks. In satellite systems, many PEPs introduce op-
timization techniques to reduce the delay resulting from
the sequential operation of TCP and HTTP. Hence, base
page latency can differentiate between different system
designs.

• View-port loading delay, which refers the time to load
all the objects in the user’s current viewport. Typically,
prioritizing the content of the user view port would
improve the user QoE. One way to prioritize the viewport
is to embed a java-script in the page to determine the
objects within the user viewport on the client side. Note
that such script may not only be embedded by the server
but also by agents or proxies in the system.

• Total page load latency, which corresponds to the total
time required to download the base page and all of its
embedded objects starting from issuing the request in the
browser.

These delay components are logged based on the interaction
between the browser and the user agent. For example, we
control Firefox using Mozrepl [26] and employ the latter to
obtain and log different latency-based metrics. Clearly, these
metrics can be affected by any change in the different system
components including the configuration and design of web
client, web server, and intermediate network. In addition to
different latency metrics, HTTP-AE automatically monitors
the network interfaces associated with each user and logs
different traces using tcpdump. These traces are analyzed
using capinfos, a terminal-based tool that is part of Wireshark
[27]. Capinfos enable the obtaining of different statistics from
the collected traces including the user bandwidth, the traffic
volume crossing the interface, the data sent and received (bytes
and packets).
HTTP-AE considers the user bandwidth share as an impor-

tant metric that identifies the system capability for differentiat-
ing different user classes and services. For example, end-users

with different subscription plans on a mobile network could be
allocated with different levels of QoS including differentiation
of bandwidth. This metric can be used to evaluate the effect
of service and user differentiation on the end-users. Similarly,
the user bandwidth share can be used to determine the fair
distribution of resources among peer users.
To this end, it is worth noting that the proposed framework

is applicable not only to end-user clients machines but also
can be used in the middle of the network to evaluate the
performance of intermediate nodes such as PEPs. In the
latter case, other relevant network performance metrics such
as signaling load can be obtained by filtering the collected
traces. In the following section, we present several case studies
in which we employ HTTP-AE to evaluate web browsing
performance in satellite based networks.

IV. CASE STUDIES

In the case studies we present here we use HTTP-AE
to evaluate several HTTP acceleration techniques in a high
latency network such as a Satellite system. Each of the case
studies is independent. The rest of this section is organized as
follows. Section IV-A describes the emulated satellite test bed
we used for the case studies. In section IV-B, we evaluate
the effectiveness of using multiple connections to retrieve
HTTP content over satellite. In section IV-C, we study the
effect of using different TCP slow start congestion control
algorithms on HTTP performance. In section IV-D, we present
an evaluation of our HTTP PEP. In section IV-E, we present a
modification to our HTTP PEP to support user differentiation
and we evaluate its performance with multiple web browsing
users.

A. Evaluation Test Bed

Figure 4 shows the emulated satellite test bed we used
for the case studies. The test bed consists of two PCs with
Intel Core 2 Duo CPU E4700 2.60 GHz, running Fedora 10.
The two PCs, one emulating the remote node and the other
emulating the ground node, are connected using a direct 1Gbps
Ethernet connection over which a Satellite link behavior is
emulated using tc commands in Linux. That is, the data rate
is limited to 64Kbps, 128Kbps and 256Kbps and a 300ms
one way delay is introduced in each direction. A client PC
was connected to the remote node running HTTP-AE.
For the results that are shown, the URLs point to a set of

pages that contain the same text and a number of embedded
images from Caltech 101 image dataset [28]. The number of
images in the set of pages varies from 1 to 30. The images are
all JPEGs and have an average size of 10K. These pages are
served from a web-server co-located in the ground node. In the
results, each point corresponds to the average of 10 runs; i.e.,
each page is browsed ten times and the performance metrics
is the average of these ten experiments to reduce the impact
of random timing behaviour of network and server access. All
results were determined to fall within a confidence interval of
95%.
Figure 4 also shows the experimental configuration for user

differentiation. Each User Agent is associated with a Linux

SPECTS 2011 208

Figure 4. Test bed

user. Each emulated user’s traffic was source NATed so that the
traffic for a given user was assigned to a separate IP address.
User differentiation at the ground node was achieved using
the commands (for the silver user) as detailed in the figure.
Gold users are assigned 50% of the bandwidth, silver 30%
and bronze 20%.

B. Multiple TCP connections

During TCP slow start the amount of unacknowledged
data is limited by the sender’s congestion window. Thus, the
bandwidth is not being utilized for data transmission while the
sender is waiting for acknowledgments. To overcome this lim-
itation Web browsers typically open up multiple connections
to a Web server.
There are quality of service issues associated with this

HTTP acceleration technique when it comes to satellite sys-
tems:

• A Web browser that opens multiple TCP connections,
requires more processing resources on the ground and
remote gateway nodes than the same browser that opens
say one connection. This problem becomes more exacer-
bated when several users are browsing at the same time.

• Each connection that a browser opens requires 7 addi-
tional packets to establish the session and to tear it down.
Thus, there is a non negligible data transmission over-
head, associated with connection setup and tear down,
for several users each opening multiple connections. Also
TCP will combine data more readily into less packets,
when an application uses say one connection as against
several.

• There are less packets transmitted, if the browser were
to pipeline its requests, as against the case where it
uses multiple connections to achieve the same result. For
example, if the browser were to open 3 TCP connections
to retrieve 3 Web resources then, 3 packets are required to
issue the GET requests. If these 3 GET requests were to
be pipelined then they could be combined into 1 packet.
Also, the 3 responses arrive in one continuous stream,
thus TCP is able to combine packets at the sender more
readily.

• The delay in opening a TCP connection is 1.5 Round
Trip Times (RTT) - here we assume that there is no data
in the ACKs. The browser opens its first connection to

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Browser-3
 Browser-6
 Browser-8

Figure 5. Firefox using 3 to 8 TCP connections for 256Kbit link

the Web server to retrieve the base HTML. If the base
page has a small number of nested resources, then, it may
be more efficient for the browser, to use the connection
it has already opened to retrieve those resources, rather
than opening more connections to achieve the same result.
If the browser were to pipeline all the requests, for the
nested resources over the first connection then, more
efficiency could be achieved. However, Firefox does not
pipeline the initial GET requests for nested resources
and only pipelines its requests gradually. This may be
Firefox’s mechanism to determine whether or not the web
server supports pipelining [4].

In this study we evaluate the Firefox’s use of multiple
connections from the perspective of end-user QoS and data
transmission overhead for the emulated satellite system.

Figure 5 shows that there is little difference between page
load time for 3 to 8 TCP connections for a 256Kbit link, while
the data transmission overhead is significant - see figure 6. This
data transmission overhead is due to the extra signaling load
and increased packet fragmentation. Figure 7 shows that there
is no advantage in opening more pipelined connections in a
narrow link. Firefox with one connection shows a significant
increase in page load delay when compared with 3-8 con-
nections. However, Firefox does not pipeline the first request
for an embedded object and so there is a significant delay
before it requests the second and subsequent objects. Figure
7 shows that for up to 10 images there is no difference in
terms of page load delay when the browser opens up multiple
connections over a 256Kbit link. In fact, for small number of
images, it is more efficient in terms of page load delay to open
only one connection. Figures 8,9 show that as the bandwidth
increases, the browser’s use of multiple connections gives an
improvement in the page load performance. The improvement
becomes less noticeable as the number of objects on the page
increases.

Figure 10 shows, that as expected there is little difference in
the bandwidth share given to a number of users all browsing
with Firefox.

SPECTS 2011 209

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 5 10 15 20 25 30

N
um

be
r

of
 P

ac
ke

ts

Number of Embedded Objects

 Browser-3
 Browser-8

Figure 6. Packet overhead 3 versus 8 connections

Figure 7. Pipelining 1 to 8 connections 256Kbit

Figure 8. Pipelining 1 to 8 connections 512Kbit

Figure 9. Pipelining 1 to 8 connections 1Mbit

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Bronze User-1
 Bronze User-2
 Bronze User-3
 Bronze User-4
 Bronze User-5

Figure 10. Multi-user default Firefox configuration

C. TCP variants

One server side optimization for HTTP, is to increase the
initial TCP congestion window, which allows the server to
push more content initially during TCP slow start. However
it is difficult to determine an appropriate value for the initial
congestion window independent of the congestion algorithm
utilized. Various TCP variants have been developed to address
TCP slow start issues. The use of such standards at the server,
gives a more generic solution than manipulating the initial
congestion window directly.

In this study, the web browsing performance is evaluated
when different TCP variants Hypla, BIC, Vegas and Westwood
are used at the Ground node. Each of the variants uses a
different congestion control algorithm during slow start. Figure
11 shows that Hypla gives the best performance for low
bandwidth links while Vegas gives the worst performance
of the four TCP variants that we evaluated. TCP Vegas is
greatly impeded by the long RTT - see [29] for more details.
The number of nested resources does not appear to suit one
congestion algorithm over another.

SPECTS 2011 210

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 hybla
 cubic

 westwood
 vegas

Figure 11. Performance of TCP variants

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

P
ag

e
L

oa
d

T
im

e
(s

ec
)

Number of Embedded Objects

 Normal
 HTTPEPC

 HTTPEP

Figure 12. Average page load delay

D. HTTP PEP

In our previous paper [30], we presented an HTTP PEP
(HTTPEP), which improves the user’s web browsing expe-
rience over a high-latency link. HTTPEP has a HTTP split
proxy architecture between the ground and the remote sites.
HTTPEP transforms a GET request for a base web page

from the end-user so that the nested web resources in that
base page are streamed to the remote site. The resources
are streamed into multiple TCP persistent connections from
the ground to the remote sides. A scheduler on the ground
side chooses a particular TCP connection in a round-robin
fashion. Thus the resources will be transmitted to the remote
site concurrently.
Figure 12 shows an average page load delay reduction

of 27% using compression (HTTPEPC) in comparison to an
average saving of 10% without compression over the normal
operation (i.e. a direct connection between the browser and
the web-server without an intermediate proxy).
Figure 13 plots the page load time for HTTPEP and

normal operation versus the satellite link capacity. When the
bandwidth is constrained to 256Kbps the average improvement
of HTTPEP over the browser alone is 10%, as the bandwidth
increases so does the average improvement, which levels at

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ag

e
L

oa
d

T
im

e
(m

s)

Link Bandwidth(Mbit/sec)

 Normal
 HTTPEP

Figure 13. Effect of varying the satellite link capacity

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Bronze User-1
 Bronze User-2
 Bronze User-3
 Bronze User-4
 Bronze User-5

Figure 14. Multi-user over HTTPEP with no user differentiation

32% when the link capacity reaches 2Mbps.

E. User differentiation

Figure 14 shows the page load time for a number of users
with no user differentiation using HTTPEP. In this case there
are eight TCP connections maintained between the remote
and ground nodes. The figure clearly shows that the first user
on the system is getting better service than subsequent users.
To provide a solution to this issue, we need to re-design the
algorithm that HTTPEP uses to service incoming requests, so
that network resources are evenly distributed to the associated
response handling. As the number of images increases so the
effect becomes more pronounced.
We modified HTTPEP’s scheduler so that traffic destined

for a particular user class was scheduled to an appropriate
TCP connection. In this case, we have 3 permanent TCP
connections between the ground and remote sides and 50% of
the bandwidth allocated to connection 1, 30% to connection
2, and 20% to connection 3. Figure 15 shows the page load
time experienced by the different classes of users (gold, silver,
bronze) on the system. The figure shows that the first bronze
user on the system is getting better service than the other
bronze users, while the gold and silver users are getting the

SPECTS 2011 211

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

5 8 10 20 30

P
ag

e
L

oa
d

T
im

e
(m

il
li

-s
ec

)

Number of Embedded Objects

 Bronze User-1
 Bronze User-2
 Bronze User-3

 Gold User-1
 Silver User-1

Figure 15. Multi-user over HTTPEP with user differentiation

appropriate service differentiation. However, all the bronze
users should be getting an equal service. Thus, the future
work in re-designing HTTPEP will have to take this issue
into account.

V. CONCLUSION

A framework (HTTP-AE) for the evaluation of HTTP
performance is introduced in this paper. We explain how
HTTP-AE can be used to evaluate the performance of HTTP
and HTTP acceleration technologies in multi-user systems.
We present case studies in which HTTP-AE is used to
evaluate three HTTP acceleration technologies deployed in a
emulated satellite system. We show that the performance of
typical web browsers can be further enhanced to adapt to the
network conditions of satellite systems. We also show that
HTTP acceleration technologies, which break the end to end
dynamics of HTTP can provision network resources to some
users to the detriment of others. The evaluation of our HTTP
PEP showed that future work is required, to spread network
resources evenly over the servicing of HTTP GET requests.

Acknowledgments: This work is supported by Enterprise
Ireland Grant Number IP/2009/0026 and by Altobridge. The
authors thank the anonymous reviewers for their comments
and suggested changes that helped to improve the paper.

REFERENCES

[1] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the performance
of HTTP over several transport protocols,” IEEE/ACM Trans. Netw.,
vol. 5, pp. 616–630, October 1997.

[2] B. A. Mah, “An Empirical Model of HTTP Network Traffic,” IEEE
Computer and Communications Societies, Annual Joint Conference of
the, vol. 0, p. 592, 1997.

[3] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and M. Weigle,
“Stochastic models for generating synthetic HTTP source traffic,” in
INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 3, 2004, pp. 1546 –1557.

[4] P. Natarajan, P. D. Amer, and R. Stewart, “Multistreamed web transport
for developing regions,” NSDR ’08: Proceedings of the second ACM
SIGCOMM workshop on Networked systems for developing regions, pp.
43–48, 2008.

[5] M. C. Necker, M. Scharf, and A. Weber, “Performance of Different
Proxy Concepts in UMTS Networks,” vol. 3427, pp. 36–51, 2005.

[6] “Dummynet,” www.iet.unipi.it/ luigi/dummynet/.

[7] R. Chakravorty, A. Clark, and I. Pratt, “Optimizing Web delivery over
wireless links: design, implementation, and experiences,” Selected Areas
in Communications, IEEE Journal on, vol. 23, no. 2, pp. 402 – 416,
2005.

[8] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Pratt,
“Performance optimizations for wireless wide-area networks: compara-
tive study and experimental evaluation,” Proceedings of the 10th annual
international conference on Mobile computing and networking, pp. 159–
173, 2004.

[9] R. Chakravorty, J. Chesterfield, P. Rodriguez, and S. Banerjee, “Mea-
surement Approaches to Evaluate Performance Optimizations for Wide-
Area Wireless Networks,” Passive and Active Network Measurement, pp.
257–266, 2004.

[10] L. L. H. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang,
L. Eggert, S. Ha, and I. Rhee, “Towards a common TCP evaluation
suite,” 2008. [Online]. Available: http://hdl.handle.net/1959.3/44431

[11] “HTTP-MPLEX: An enhanced hypertext transfer protocol and its per-
formance evaluation,” Journal of Network and Computer Applications,
vol. 32, no. 4, pp. 925 – 939, 2009.

[12] “Spdy,” 2010, https://sites.google.com/a/chromium.org/dev/spdy.
[13] Carlo and R. Firrincieli, “TCP Hybla: a TCP enhancement for hetero-

geneous networks,” International Journal of Satellite Communications
and Networking, vol. 22, 2004.

[14] Altobridge, http://www.altobridge.com/.
[15] Squid, http://www.squid-cache.org.
[16] “Mguard,” http://www.broadband-internet-access.com/.
[17] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: A Performance

Enhancing Proxy for TCP Satellite Connections ,” Aerospace and
Electronic Systems Magazine, IEEE, vol. 22, no. 8, pp. B–9 –B–16,
2007.

[18] “Firebug,” http://getfirebug.com/.
[19] Yahoo, “Yslow,” http://developer.yahoo.com/yslow/.
[20] “Page speed,” 2010, http://code.google.com/speed/page-speed/.
[21] Apache, “Jmeter,” http://jakarta.apache.org/jmeter/.
[22] HP, “httperf,” http://www.hpl.hp.com/research/linux/httperf/.
[23] “Chromium benchmarking extension,” https://sites.google.com/a/

chromium.org/dev/chrome-benchmarking-extension.
[24] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,

A. Jain, and N. Sutin, “An argument for increasing TCP’s initial
congestion window,” SIGCOMM Comput. Commun. Rev., vol. 40, pp.
26–33, June 2010.

[25] “iptables,” http://www.frozentux.net/documents/iptables-tutorial/.
[26] “mozrepl,” https://github.com/bard/mozrepl/wiki.
[27] C. Schroder, Linux Networking Cookbook. O’Reilly Media, Inc., 2007.
[28] C. C. V. Group, “Images,” 2010, http://www.vision.caltech.edu/html-

files/archive.html.
[29] C. Caini, R. Firrincieli, D. Lacamera, T. de Cola, M. Marchese,

C. Marcondes, M. Y. Sanadidi, and M. Gerla, “Analysis of TCP live
experiments on a real GEO satellite testbed,” Perform. Eval., vol. 66,
pp. 287–300, June 2009.

[30] P. Davern, N. Nashid, A. Zahran, and C. J. Sreenan, “HTTP Acceleration
over High Latency Links,” in New Technologies, Mobility and Security
(NTMS), 2011 4th IFIP International Conference on, 2011, pp. 1 –5.

SPECTS 2011 212

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

