
J Math Model Algor
DOI 10.1007/s10852-011-9163-3

Snapshot Centrality Indices in Dynamic FIFO Networks

Tatiana M. Tabirca · Kenneth N. Brown ·
Cormac J. Sreenan

Received: 28 September 2010 / Accepted: 1 September 2011
© Springer Science+Business Media B.V. 2011

Abstract The article introduces the concept of snapshot dynamic indices as centrality
measures to analyse how the importance of nodes changes over time in dynamic net-
works. In particular, the dynamic stress-snapshot and dynamic betweenness snapshot
are investigated. We present theoretical results on dynamic shortest paths in first-
in first-out dynamic networks, and then introduce some algorithms for computing
these indices in the discrete-time case. Finally, we present some experimental results
exploring the algorithms’ efficiency and illustrating the variation of the dynamic
betweenness snapshot index for some sample dynamic networks.

Keywords Dynamic networks · Centrality indices · Network applications

1 Introduction

Centrality indices were first defined over 50 years ago to represent the importance
of a node in a graph, initially based on counting the number of shortest paths that
use the node [21]. The concept has been developed extensively since then, with
new definitions, practical applications, theoretical results and efficient computation

T. M. Tabirca (B) · C. J. Sreenan
Mobile and Internet System Laboratory, Department of Computer Science,
University of College Cork, Cork, Ireland
e-mail: tabirca1@cs.ucc.ie

C. J. Sreenan
e-mail: cjs@cs.ucc.ie

K. N. Brown
Cork Constraint Computation Centre, Department of Computer Science,
University of College Cork, Cork, Ireland
e-mail: k.brown@cs.ucc.ie

J Math Model Algor

algorithms. Betweenness centrality [12] was introduced for the analysis of social
networks, and used a weighting factor based on the number of different shortest
paths between all pairs of nodes. If we assume any communication between two
nodes flows along the shortest path, then betweenness estimates the number of those
communications that visit a particular node, and thus it estimates the importance
of that node to the network. This was naturally extended to the concept of arc-
betweenness centrality and used to generate communities within a network [18].
Brandes developed an efficient algorithm for computing betweenness centrality and
showed this could be extended to other variations of betweenness [5].

All of these centrality indices assumed that the graph is static, and that the shortest
paths do not change. However, many practical problems require dynamic graphs,
in which the node and arc sets or the arc costs vary over time. For example, road
traffic networks can be modeled as a graph in which nodes are intersections and arcs
represent roads. The average time taken to traverse an arc depends on the amount
of traffic on the road, which varies throughout the day. As congestions increase
over time, a superficially longer route may become the shortest path between two
points, and thus the centrality of some nodes can change. Similar patterns appear
in other practical examples, including electricity distribution networks, telecommu-
nications networks, and for navigation networks where the arc costs vary indepen-
dently of traffic, such as evacuation from a fire, or where weather patterns affect
travel time.

In many of these cases, it is important to know how the centrality of a node varies
over time, for example in route planning or for dynamic repair of a communication
networks. The centrality measures should therefore be adapted to include a dynamic
element which represents time. For indices which are based on shortest paths, there
are two main time elements to consider. Firstly, we may wish to know the centrality
of nodes in terms of the shortest paths originating at some time t. More importantly,
for network analysis based on congestion or workload, we may wish to know which
node will be visited at time t by the greatest number of shortest paths, regardless
of when they orginated. This measure can be considered to be a snapshot of the
network, showing importance of a node at a particular time. The research problem
is how to define appropriate snapshot centrality measures, and how to compute them
efficiently.

We introduce two dynamic snapshot centrality indices: stress and betweenness,
which are both based on dynamic shortest paths. Certainly, our approach can be used
to some other types of importance indices e.g. graph [15] or closeness [20]. Firstly,
we present some theoretical results for first-in first-out (FIFO) dynamic networks,
which are used to connect the dynamic snapshot indices with the number of dynamic
shortest paths between nodes. We then provide an original scheme for discretising
a continuous dynamic network problem, followed by an algorithm for computing
the indices for discrete-time problems. The algorithm firstly uses an adapted com-
putation of the dynamic shortest paths, which also generates the number of the
shortest paths for the all-to-all case. Our algorithm is exact for discrete problems,
and approximate for continuous problems. Finally, we present some experimental
evaluations of the algorithm. We show how the algorithms performance varies
with the size of network, and with the granularity of the discretisation. Finally, we
show how the dynamic snapshot betweenness changes over time for three different
network types, including both cyclic traffic and evacuation problems.

J Math Model Algor

2 Literature Review

This section briefly reviews the main research on centrality indices. We assume an
undirected graph G = (V, A) for which there is a cost function c : A → [0,∞). For
any two nodes u, v ∈ V, we define the following elements:

d(u, v) = the cost of the shortest path between u and v. (1)

σ(u, v) = the number of shortest paths between u and v. (2)

σ(u, w; v) = the number of shortest paths between u and w that pass v. (3)

By convention we can consider d(u, u) = 0 and σ(u, u) = 1.

2.1 Static Centrality Indices

Definition 1 The static stress and betweenness centrality indices can be defined for
the graph G = (V, A) as follows:

CS(v) =
∑

u �=v �=w

σ(u, w; v) stress centrality [21] (4)

CB(v) =
∑

u �=v �=w

σ(u, w; v)

σ (u, w)
betweenness centrality [12]. (5)

When the denominator σ(u, w) from Eq. 5 is 0 then σ(u, w; v) is 0 too and by
convention we consider σ(u,w;v)

σ (u,w)
= 0.

The static betweenness centrality has been used mostly in the study of social
networks [12], while the stress centrality has had multiple application to transmission
networks. However, both measures show the degree of connectivity between v and
all the other nodes when shortest paths are used. The stress centrality index counts
the number of shortest paths that go through a node. If we consider for example a
communication network then this index can identify the work or the stress a node has
to take in communication. Finally, for networks where there may be multiple shortest
paths of the same length, the betweenness centrality index computes the percentage
of shortest paths on which the node lies.

The computation of these values is closely related to the computation of shortest
paths in the All-to-All case. Any All-to-All algorithm for shortest paths could be
applied to generate the values d(u, v); however Dijkstra’s algorithm offers the most
efficient solution with the complexity O

(
m · n + n2 · log n

)
[2]. Jacob et al. [16]

reviewed the main methods to calculate the centrality indices and concluded that
the most efficient solution is a generic computation with three steps. The first step
is to calculate all the values d(u, v),∀u, v ∈ V based on the All-to-All Dijkstra’s
algorithm. Then the second step computes the values σ(u, w) and σ(u, w; v) based
on a simple graph traversal computation. For example, for each pair of distinct
nodes u, w ∈ V, we can consider all the neighbours v of u so that (u, v) ∈ A; when
d(u, w) = c(u, v) + d(v,w) we have a shortest path between u and w that goes
through v so that the value σ(u, w) is increased with σ(v,w). This second step has

J Math Model Algor

therefore a complexity of O
(
m · n + n2

)
because of the nature of graph traversal.

The third step is to compute directly the centrality indices from Eqs. 4 and 5 by
iterating through one or two indices which would increase the complexity to O

(
n3

)
.

Therefore, this generic computation in three steps generates the centrality indices
from Eqs. 4 and 5 in a total complexity of O

(
n3

)
.

However, Brandes [5] provided an efficient way to compute the betweenness
based on the notion of pair dependency δ(s, t; v) = σ(s,t;v)

σ (s,t) . Brandes proved that
δ(s; v) = ∑

s�=v �=t δ(s, t; v), the sum of all pair dependencies from the source s, satisfies

δ(s; v) =
∑

w: v∈Ps(w)

σ (s, v)

σ (s, w)
· (1 + δ(s;w)) , (6)

where Ps(w) = {v : (v,w) ∈ A, d(s, w) = d(s, v) + c(v,w)}. Based on Eq. 6, Brandes
developed an efficient computation in O

(
m · n + n2 · log n

)
to generate the between-

ness centrality index [5]. Moreover, Brandes extended this approach to various
other types of betweenness centrality to include situations like arc betweenness,
group betweenness, proxy betweenness [6]. Unfortunately, the Brandes approach
cannot be applied to some other types of centrality indices as it only deals with
the betweenness centrality.

2.2 Dynamic Shortest Paths and Dynamic Indices

All these above indices are defined for static graphs. However, concrete practical
problems are modeled with complex networks, which are in many cases dynamic.
Therefore, the concept of dynamic centrality indices is needed to investigate these
problems. Usually, a dynamic graph or network is given by a sequence of graphs
over time

Gt = (Vt, At), t = 0, 1, ..., T

or by one graph G = (V, A) for which the costs of the arcs A

c(t) : A → [0, ∞), t = 0, 1, ..., T

are variable in time. Similarly to the static case, the problem of dynamic centrality
indices is based on dynamic shortest paths. This dynamic shortest paths problem is a
classical topic in combinatorial optimisation investigated since late 60’s e.g Cooke
et al. [9]. Dynamic shortest paths more recently became very popular with the
emergence of Intelligent or Dynamic Transportation Systems e.g. Chabini [7, 8],
Ahuja [3] or Demetrescu [11]. There are two well established approaches to this
problem, which are quite different in essence. The first approach considers some
dynamic equations for the numbers d(t)(u, v), the cost of the path from u to v starting
at time t, to reflect the evolution in time of the shortest paths costs. These equations
are then processed using dynamic programming techniques mainly in a retrospective
way e.g. the values d(t)(u, v), d(t+1)(u, v), ... are used to generate the value d(t−1)(u, v)

[7]. This approach is useful when we want to consider all the cost changes that take
place at time t. In this way we keep the time variable t in a central place in the
computation. This method is very effective when the time interval to investigate

J Math Model Algor

the dynamic network is relatively small compared to the network size. The second
approach is to preserve the shortest paths when changes take place in the graphs e.g.
removing a node or an arc or changing an arc’s cost. This approach was introduced
by Ramalingam et al. [19] and then refined successively by various contributors;
see [11] for a complete review. The emphasis of this approach is to update efficiently
the shortest path spanning tree when a change takes place. This method does not
consider the time variable t in the dynamicity of the changes and it is very effective
when the number of changes is small.

There is little published research on dynamic centrality indices despite the large
body of work on the dynamic shortest path problem. However, some work has been
done on the applications of these indices to various types of concrete problems.
Gross et al. [13] presented a good review of practical problems from engineering and
transportation networks to social networks. A more specialised study is presented
by Abraham et al. [1] to cover a variety of topics associated with dynamic social
networks. A commonality of these works is that they investigate these problems
rather statically where some static centrality measures are applied to study the
network at a moment in time. This means that the centrality measure does not
consider any information coming from past states of the network. This approach is
perhaps generated by the lack of results, including computational tools to calculate
the dynamic centrality indices.

Habiba et al. [14] extended the concept of betweenness centrality to dynamic
networks. They consider a dynamic network as a series of graphs Gt = (Vt, At), t =
0, 1, ..., T that change nodes and arcs over time. In this dynamic network the arc
costs are all 1. A temporal path in this dynamic network is a sequence of nodes
P = (

u0, u1, ..., up
)

so that each arc (ui−1, ui) is available in the network before the arc
(ui, ui+1). This definition allows the situation when delays are possible in nodes e.g. in
the node ui we can wait for the arc (ui, ui+1) to be available. Based on this definition
the authors derived some equations for the dynamic betweenness centrality which
are similar to Eq. 6. However, the article does not present a clearly-stated algorithm
or scheme to compute the dynamic equations. Secondly, the authors transform the
dynamic graph into a time-expanded static graph with n′ = T · n nodes and m′ = 2 ·
T · m + T · n arcs. This static graph is then traversed for each node v to generate the
set of nodes used in the dynamic equation (Eq. 6). This traversal however introduced
a complexity of O

(
n′2 + n′ · m′) = O

(
T2 · n2 + T2 · n · m

)
, which is quadratic in T.

Thirdly and perhaps most importantly, this dynamic betweenness does not reflect
how a node is used in the shortest paths at the current time t but how the node will
be used in the future on shortest paths starting at t. Furthermore, the authors did not
offer any evaluation of the complexity nor about the execution times obtained in the
examples they presented. Finally, the work covers only the situation when the arcs
have the cost 1, and therefore it is difficult to apply this approach to other types of
dynamic networks whose costs vary over time.

A different approach to centrality betweenness was introduced by Lerman et al.
[17] on dynamic networks. The authors associated probabilities to some types of
events that can occur in dynamic networks e.g. the probability that one node
initiates a message or the probability that one node forwards a received message
to its neighbors at a given time or probability that one node stores a message
for a given time. They then introduced two new types of centrality indices called
cumulative dynamic centrality and retained cumulative dynamic centrality to reflect

J Math Model Algor

the probability that a message sent by a node in a network reaches another after
some period of time. Algorithms were also introduced to generate these indices
over a sequence of time, and the authors then illustrated how these two dynamic
indices work on a citation network. This approach is not centered on shortest path
connections but rather on probabilistic connections, and so the time the messages
travel between nodes is not encapsulated in the computation.

3 Dynamic Shortest Path Computation

The idea of dynamic centrality indices depends on dynamic shortest paths in dynamic
networks, and practical computation of the indices will require efficient algorithms
for finding dynamic shortest paths. Therefore we now consider some theoretical as-
pects of dynamic shortest paths, and concentrate on the FIFO case. We consider the
issues of continuous-time problems versus discrete-time problems, and we propose a
scheme for approximating a continuous-time problem by a discrete-time one. Finally,
we then present our algorithms for computing the dynamic shortest paths.

We represent a dynamic network as G(t) = (
G = (V, A), c(t)

)
, where G = (V, A)

is the underlying static graph and c(t) : A → [0,∞) ∪ {∞} is a dynamic cost function.
The dynamic network is investigated over the continuous time t ∈ [0,∞). The value
c(t)(u, v) represents the cost of the arc (u, v) at the time t, which can be interpreted
as the time taken to traverse the arc at the time t. We use c(t)(u, v) = ∞ when the arc
(u, v) is no longer available in the dynamic network.

Based on the dynamic network G(t) = (
G = (V, A), c(t)

)
, we can consider the

dynamic shortest paths between two nodes. The cost of the path P = (
u0, u1, ..., up

)

starting from u0 at time t to up is

Cost(t)(P) = c(t)(u0, u1) + c(t1)(u1, u2) + ... + c(tp−1)(up−1, up), (7)

where the times satisfy

t1 = t + c(t)(u0, u1), ..., tp−1 = tp−2 + c(tp−2)(up−2, up−1). (8)

Equation 7 illustrates that if a path or transmission leaves u0 at time t to reach u1

at time t1 = t + c(t)(u0, u1) then it can leave u1 at the time t1 for u2 and so on. We
can simplify this equation if we consider the arrival time function fa : [0,∞) →
[0,∞), fa(t) = t + c(t)(a) for each arc a. If a = (u, v) is an arc between u, v then
the value fa(t) represents the arrival time in v if we depart u at the time t. If
we consider that the path P as a sequence of arcs P = (

a0, a1, ..., ap−1
)

then the
cost of P can be re-written as a composition of arrival time functions as follows
Cost(t)(P) = (

fap−1 ◦ ... ◦ fa0

)
(t) − t [10].

The dynamic shortest path between u0 and up at time t is the path P that minimizes
the cost Cost(t)(P) of Eq. 7, hence we can speak about the dynamic shortest path cost
given by

d(t)(u0, up) = min
{
Cost(t)(P) : P = (u0, ..., up) path between u0 and up

}
(9)

We can also define σ (t)(u0, up) as the number of shortest paths between u0 and up,
that leave u0 at the time t. Similarly, σ (t)(u0, up; v) is the number of shortest paths

J Math Model Algor

that between u0 and up departing u0 at the time t that go through the node v. One
can see that these shortest paths leave u0 at the time t and they will reach the node
v in the future. However, many practical applications need to know how the node v

is used in shortest paths now at the current time t and not in the future. For that we
introduce σ (t′)(u0, up; v) ↓ t as notation for the number of shortest paths between u0

and up that leave u0 at time t′ to go to up and pass through v at the time t.

3.1 Dynamic Shortest Paths in the FIFO Case

We now consider the particular case when the dynamic costs c(t)(u, v) satisfy the
FIFO rule

t < t′ ⇒ t + c(t)(u, v) < t′ + c(t′)(u, v), ∀(u, v) ∈ A. (10)

This is also called the non-overtaking rule and it ensures that commodities travel
along the arc (u, v) in a First-In First-Out manner. The FIFO rule applies to
many dynamic networks that we encounter in real life problems e.g. transportation
networks, information transmission networks etc. Note that the arrival time functions
fa are increasing when the FIFO rule holds. In the following results, we consider the
continuous case where the time t ∈ [0,∞) is real.

Lemma 1 In the FIFO case, if P = (
u0, ..., uk, ..., up

)
is a shortest path between u0 to

up starting from u0 at the time t0 then

1. P1 = (u0, ..., uk) is a shortest path starting from u0 at the time t0
2. P2 = (

uk, ..., up
)

is a shortest path too starting from uk at the time t0 + d(t0)(u0, uk),
respectively.

Proof Suppose that P1 = (u0, u1, ..., uk) is not optimal so that there is another
path P′

1 = (
u0 = u′

0, u′
1, ..., u′

k = uk
)

so that Cost(t0)(P′
1) < Cost(t0)(P1). If the path P1

leaves u0 at the time t0 then uk is reached at the time tk = t0 + Cost(t0)(P1). Similarly,
uk is reached at the time t′k = t0 + Cost(t0)(P′

1) if the path P′
1 is used. Since t′k < tk we

can iteratively apply the FIFO rule as follows:

t′k < tk ⇒ t′k+1 = t′k + c(t′k)(uk, uk+1) < tk+1 = tk + c(tk)(uk, uk+1)

t′k+1 < tk+1 ⇒ t′k+2 = t′k+1 + c(t′k+1)(uk+1, uk+2) < tk+2 = tk+1 + c(tk+1)(uk+1, uk+2)

...

t′p−1 < tp−1 ⇒ t′p = t′p−1 + c(t′p−1)(up−1, up) < tp = tp−1 + c(tp−1)(up−1, up).

If we add up all these equations, we find that

t′k + Cost(t
′
k)(P2) < tk + Cost(tk)(P2) ⇒

t0 + Cost(t0)(P′
1) + Cost(t

′
k)(P2) < t0 + Cost(t0)(P1) + Cost(tk)(P2) ⇒

t0 + Cost(t0)(P′
1, P2) < t0 + Cost(t0)(P1, P2),

therefore the cost of the path (P′
1, P2) is less than the cost of the optimal path.

J Math Model Algor

The second part of the proof is straightforward based on the fact the path P1 is
optimal and it reaches the node uk at the time tk = t0 + d(t0)(u0, uk). Suppose that P2

is not optimal so that there is a dynamic path P′
2 so that Cost(tk)(P′

2) < Cost(tk)(P2).
In this case the path P′ = (P1, P′

2) satisfies

t0 + Cost(t0)(P1) + Cost(tk)(P′
2) < t0 + Cost(t0)(P1) + Cost(tk)(P2),

which means that it is shorter than the optimal path (P1, P2). �

Lemma 2 If the values σ (t)(u, v) are known then σ (t)(u, w; v) satisf ies

σ (t)(u, w; v) = ε(t)(u, w; v) · σ (t)(u, v) · σ (t+dt(u,v))(v, w), (11)

where ε(t)(u, w; v) =
{

1 if d(t)(u, w) = d(t)(u, v) + d(t+d(t)(u,v))(v, w)

0 othewise
.

Proof Note that all the dynamic shortest paths leave u at the time t and they all arrive
to v at the time t′ = t + d(t)(u, v). Two situations are considered in the following. The
first case is when the node v does not belong to any dynamic shortest path between u
and w, which happens when d(t)(u, w) �= d(t)(u, v) + d(t′)(v, w). In this case, we have
ε(t)(u, w; v) = 0 and σ (t)(u, w; v) = 0 so the Eq. 11 holds.

The second case reflects the situation when the node v satisfies d(t)(u, w) =
d(t)(u, v) + d(t′)(v, w) e.g. it belongs to some dynamic shortest paths between u and w.
Consider a dynamic shortest path P = (u, a, ..., v, b , .., w) from the node u to the
node w at the time t that passes through v. According to Lemma 1, this path P
generates a dynamic shortest path P1 = (u, a, ..., v) between u and v at the time t and
also a dynamic shortest path P2 = (v, b , .., w) between v and w at the time t′. Similar
arguments can be made to show that from a shortest path P1 between u and v and
a shortest path P2 between v and w we can construct a shortest path P = (P1, P2)

between u and w that passes the node v. If we count all such shortest paths we find
that σ (t)(u, w; v) = σ (t)(u, v) · σ (t′)(v, w), therefore Eq. 11 holds. �

Lemma 3 In the FIFO case, the function t �→ t + d(t)(u, v) is increasing for any arc
(u, v) ∈ A.

Proof Consider a path P = (a0, a1, ..., ap−1) as a sequence of arcs, whose cost
satisfies t + Cost(t)(P) = (

fap−1 ◦ ... ◦ fa0

)
(t). Since the arrival time functions are all

increasing in the FIFO case, we can find that t < t′ ⇒ t + Cost(t)(P) < t′ + Cost(t
′)(P).

If P is a dynamic shortest path between u and v at the time t′ we have

t + Cost(t)(P) < t′ + Cost(t
′)(P) = t′ + d(t′)(u, v) ⇒

t + d(t)(u, v) ≤ t + Cost(t)(P) < t′ + d(t′)(u, v) ⇒
t + d(t)(u, v) < t′ + d(t′)(u, v),

which means that the function t �→ t + d(t)(u, v) is increasing. �

J Math Model Algor

Denote with T(t)(u, v) = {t′ : t = t′ + d(t′)(u, v)} the set of times from the past from
which we can reach v at the time t coming from u. Then Lemma 3 establishes that
the set T(t)(u, v) is either empty or has only one element. The combination between
Lemmas 2 and 3 also provides that

σ (t′)(u, w; v) ↓ t =
{

σ (t′)(u, v) · σ (t)(v, w) if t′ ∈ T(t)(u, v),

0 if t′ /∈ T(t)(u, v),
. (12)

Theorem 1 Chabini [7] In the FIFO case, the values d(t)(u, v) satisfy the equation

d(t)(u, v) =
{

min{c(t)(u, w) + d(t+c(t)(u,w))(w, v) : (u, w) ∈ A} if u �= v

0 if u = v
(13)

The results presented above only hold in the FIFO case. For non-FIFO costs, it
can be possible that a sub-path of a dynamic shortest path is not optimal. This means
that Eq. 11 cannot hold true for non-FIFO costs so that we do not have a simple way
to calculate the dynamic values d(t)(u, v), σ (t)(u, v), σ (t)(u, w; v) and σ (t′)(u, w; v) ↓ t.
More importantly, Dean [10] showed that the computation of the d(t)(u, v) values in
the non-FIFO case is NP-hard as it can be reduced to some variations of the knapsack
problem. However, if we relax Eq. 8 to allow delays in nodes then we can compute
these values in polynomial time [7].

3.2 Discrete-time Computation

The process of making the continuous time interval discrete is important for having
efficient algorithms. Previous work on dynamic shortest paths depended on continu-
ous cost functions, and on the time interval being [0, ∞) generating algorithms that
are not efficient. In that research, the dynamic costs are considered as integers in
order to have the continuous case equations with t ∈ [0, ∞) translated into similar
equations in the discrete case with the time t ∈ {0, 1, 2, ...} [8, 10]. In this section we
introduce an accurate method to transform the equations in the continuous space into
equations in the discrete space. In particular, for computing the snapshot indices, it is
important to identify exactly when a path arrives at an intermediate node. Therefore,
we present method for discretizing a continuous time problem, which will allow us to
define efficient algorithms for computing the dynamic shortest paths and indices.

The main input for our investigation is given by a dynamic network G(t) =(
G = (V, A), c(t)

)
with the dynamic costs c(t), t ∈ [0, tmax], which are under the FIFO

rule. The costs c(t) are considered static for all the times t ≥ tmax and they are given
by c(t) = c(tmax), t ≥ tmax. Sometimes, the dynamic network can be investigated in
its evolution over the interval [0, tmax]. However, most of the time this approach
is not possible especially in practical applications where the dynamic network is
analysed during the times t ∈ {0, 1, ..., tmax}, for which the dynamic costs c(t)(a), t ∈
{0, 1, ..., tmax} are given by some observations, or by some readings, or even by
some simulations. In this case the input is given by the dynamic network G(t) =(
G = (V, A), c(t)

)
with the dynamic costs c(t), t ∈ {0, 1, ..., tmax}, which satisfy the

FIFO rule. The plan is to extend the discrete FIFO costs c(t) to the cost function
C(t), t ≥ 0 which is FIFO too and satisfies C(t)(a) = c(t)(a), t ∈ {0, 1, ..., tmax}. This
extension can be done in various ways but, for simplicity, we consider C(t)(a) as a

J Math Model Algor

sequence of line segments between two consecutive points of the set {(t, c(t)(a)
)

t ∈
{0, 1, ..., tmax}}. This means that the cost function C(t)(a) is defined by the equation

C(t)(a) = (
c(k+1)(a) − c(k)(a)

) · (t − k) + c(k)(a), if t ∈ [k, k + 1], (14)

when k ∈ {0, 1, ..., tmax − 1} and a ∈ A. It is clear that the function C(t)(a) satisfies
C(t)(a) = c(t)(a), t ∈ {0, 1, ..., tmax}.

Theorem 2 The function C(t)(a) def ined by Eq. 14 satisf ies the FIFO rule.

Proof We consider two cases in order to prove that this function is still FIFO. Firstly,
when k ≤ t < t′ ≤ k + 1, we have the following equivalences

t + C(t)(a) < t′ + C(t′)(a) ⇐⇒
t + (

c(k+1)(a) − c(k)(a)
) · (t − k) + c(k)(a)

< t′ + (
c(k+1)(a) − c(k)(a)

) · (t′ − k) + c(k)(a) ⇐⇒
t′ − t + (

c(k+1)(a) − c(k)(a)
) · (t′ − t) > 0 ⇐⇒

(
c(k+1)(a) − c(k)(a) + 1

) · (t′ − t) > 0,

which is true because c(k+1)(a) − c(k)(a) + 1 > 0 from the FIFO rule. Secondly,
k1, k2 ∈ {0, 1, ..., tmax}, are two indices so that k1 = �t� and k2 = �t′�, which gives that
t ≤ k1 ≤ k2 ≤ t′. Note that at least one inequality must be strict. In this case we can
apply the first case as follows

t ≤ k1 ⇒ t + C(t)(a) ≤ k1 + C(k1)(a)

k2 ≤ t′ ⇒ k2 + C(k2)(a) ≤ t′ + C(t′)(a)

and the FIFO rule for the discrete costs

k1 ≤ k2 ⇒ k1 + C(k1)(a) = k1 + c(k1)(a) ≤ k2 + c(k2)(a) = k2 + C(k2)(a),

which produces t + C(t)(a) ≤ k1 + C(k1)(a) ≤ k2 + C(k2)(a) ≤ t′ + C(t′)(a). Note that at
least one inequality is strict so that the function C(t)(a) satisfies the FIFO rule for this
second case. Therefore, the cost function C(t)(a) is under the FIFO rule so that we
can apply Eq. 13 to generate the function d(t)(a). �

Hence, we can assume that the input for our problem is given by a dynamic
network in which the dynamic costs are under the FIFO rule over the continuous time
interval t ≥ 0. In the following we will use C(t)(a) as notation for the dynamic costs.

A simple way to discretize the time t ≥ 0 is to work with the discrete interval
t ∈ {0, 1, ..., tmax}. This approach is feasible when the dynamic costs C(t)(a) are all
integers so that the upper index t + C(t)(a) from Eq. 13 is an integer too. However,
the discrete interval t ∈ {0, 1, ..., tmax} does not suffice when some of the costs C(t)(a)

are real numbers and a finer process of discretization is needed to generate a discrete
set of times T so that t + C(t)(a) ∈ T when t ∈ T. For that we assume that the values
of the function t �→ C(t)(a) are approximated with a given error ε so that 1

ε
∈ N. In

this case the costs C(t)(a) are all rational numbers so that C(t)(a) · 1
ε

∈ N.

J Math Model Algor

The discrete time interval to model the continuous time is now provided by T =
{0, ε, 2 · ε, ..., ε · l = tmax}, where l = tmax · 1

ε
. We can now re-write Eq. 13 using only

times from T to get

d(k·ε)(u, v) = min{C((k·ε)(u, w) + d(k·ε+C(k·ε)(u,w))(w, v) : (u, w) ∈ A}, (15)

when u �= v. Moreover, if we denote dk(u, v) = d(k·ε)(u, v) then Eq. 15 can generate
the following equation over the discrete time interval T

dk(u, v) = min{C(t·ε)(u, w) + dk+ C(k·ε)(u,w)

ε (w, v) : (u, w) ∈ A} if u �= v, (16)

and dk(u, u) = 0 with k = 0, 1, ..., tmax · 1
ε
. Note that the upper index k + C(k·ε)(u, w) ·

1
ε

is always an integer so it falls under the discrete range of {0, 1, 2, ...}. Equation 16
provides a retrospective way to generate dk, k = 0, 1, ..., tmax

1
ε
. Since the costs

C(t)(u, v) = C(tmax)(u, v), t ≥ tmax are static with no change for times above tmax we
find that the shortest path matrices d(t)(u, v), t ≥ tmax are also static. Therefore, we
can compute dtmax· 1

ε (u, v) = d(tmax)(u, v) by using a static computation for the All-
to-All shortest paths for the static costs c(tmax)(u, v). Starting from the matrices
dk = dtmax· 1

ε , k > tmax · 1
ε

we can apply retroactively Eq. 16 to generate the matrices
dtmax· 1

ε
−1, dtmax· 1

ε
−2, ..., d1, d0. We also denote σ k(u, v) = σ (k·ε)(u, v), k = 0, 1, ..., tmax ·

1
ε
, the discrete series of matrices for the number of shortest paths.

In the following we describe a method to generate both matrices dk(u, v), σ k(u, v)

for the values k = tmax · 1
ε
, tmax · 1

ε
− 1, ..., 1, 0. Suppose that we have an algorithm

that can generate the static matrices dtmax· 1
ε (u, v), σ tmax· 1

ε (u, v) from the static costs
c(tmax)(u, v). Equation 16 gives a direct way to calculate the values dk(u, v), k <

tmax · 1
ε
. On the other hand, the computation of the values σ k(u, v), k < tmax · 1

ε

is more difficult and it is based on the following remarks. Firstly, when we
have that dk(u, v) > C(k·ε)(u, w) + dk+C(k·ε)(u,w)· 1

ε (w, v) occurs for some arc (u, w) ∈
A then the dynamic shortest path should be updated to dk(u, v) = C(k·ε)(u, w) +
dk+C(k·ε)(u,w)· 1

ε (w, v). It means that the new dynamic shortest path leaves u at the
time t = k · ε and then w at the time t′ = k · ε + C(k·ε)(u, w) using a dynamic shortest
path between w and v. Therefore, the number of shortest paths between u and v

at the time k · ε is in fact the number of shortest paths from w to v at the time
t′ which gives that σ k(u, v) = σ k+C(k·ε)(u,w)· 1

ε (w, v). Secondly, we consider the case
when dt(u, v) = C(t·ε)(u, w) + dk+C(k·ε)(u,w)· 1

ε (w, v). This means that we have some new
shortest paths from u to v that go through w so that the value σ k(u, v)) should be
increased with σ k+C(k·ε)(u,w)· 1

ε (w, v). Note that the index k + C(k·ε)(u, w) · 1
ε

is capped
to tmax · 1

ε
. The computation of the dynamic values dk(u, v), σ k(u, v) is illustrated in

Algorithm 1.

3.3 Adapted Computation for the Static Values d(u, v) and σ(u, v)

We now need to detail the function StaticShortestPaths which is to compute both
d(u, v) and σ(u, v) for a static graph G = ((V, A), c). We present an approach
that can be applied to any All-to-All shortest path algorithm to generate both
these elements. We chose to illustrate how the All-to-All Dijkstra algorithm can
be adapted, however any All-to-All shortest path algorithm can be modified to
achieve this.

J Math Model Algor

Algorithm 1 DynamicShortestPaths(ε, tmax, n, c, d, σ)
Require: ε, tmax, n, c
Ensure: d, σ

// the initialisation step
for t = 0 to tmax · 1

ε
do

for each u, v ∈ V do
dt(u, v) ← (u == v)?0 : c�t·ε�(u, v)

σ t(u, v) ← 1
end for

end for
// find the shortest path at time tmax using a static solution
call StaticShortestPaths(n, c(tmax), dtmax· 1

ε , σ tmax· 1
ε)

// iterate backwards
for k = tmax · 1

ε
− 1 downto 0 do

for each u, v ∈ V do
for each w ∈ V : (u, w) ∈ A do

if
(

k + C(k·ε)(u,w)

ε
> tmax · 1

ε

)
then

k′ ← tmax · 1
ε

else
k′ ← k + C(k·ε)(u,w)

ε

end if
if

(
dk(u, v) > C(k·ε)(u, w) + dk′

(w, v)
)

then
dk(u, v) ← C(k·ε)(u, w) + dk′

(w, v) and σ k(u, v) ← σ k′
(w, v)

else
if

(
dk(u, v) == C(k·ε)(u, w) + dk′

(w, v)
)

then
σ k(u, v) ← σ k(u, v) + σ k′

(w, v)

end if
end if

end for
end for

end for

The algorithm StaticShortestPaths is based on the All-to-All Dijkstra algorithm
with few modifications to achieve the values σ(u, v). Firstly, the values σ(u, v) are
all initialised with 1 to express that between a node s and any node v there is
always a shortest path. Then the algorithm uses the Dijkstra computation based on
a data structure Q from which we can extract the node u with the smallest value for
d(s, u). The relaxation process for the node u is then modified to accommodate the
relaxation for the values σ(u, v). Firstly, when d(s, u) + c(u, v) < d(s, v) then d(s, v)

is no longer the shortest path between s and v. Hence, the value d(s, v) changes
to d(s, u) + c(u, v) and the value σ(s, v) to σ(s, u). This is because a shortest path
between s and v is given by a shortest path between s and u plus the arc (u, v).
Secondly, when d(s, u) + c(u, v) = d(s, v) occurs then we find that some new shortest
paths can be found through the node u so that the value σ(s, v) must increase with
σ(s, u) (see Algorithm 2 for more details).

J Math Model Algor

Algorithm 2 StaticShortestPaths(n, c, d, σ)
Require: n, c
Ensure: d, σ

for each node s ∈ V do
for each node v ∈ V do

if (s == v) then
d(s, v) ← 0 and σ(s, v) ← 0

else
d(s, v) ← ∞ and σ(s, v) ← 1

end if
end for
Q ← V
while Q is not empty do

u ← pop(Q) - extract from Q the node with the smallest d(s, u)

if (d(s, u) == ∞) then
break

end if
for each node v ∈ V : (u, v) ∈ A do

alt ← d(s, u) + c(u, v)

if (alt < d(s, v)) then
d(s, v) ← alt and σ(s, v) ← σ(s, u)

else
if (alt == d(s, v)) then

σ(s, v) ← σ(s, v) + σ(s, u)

end if
end if

end for
end while

end for

4 Dynamic Snapshot Centrality Indices

With the dynamic elements represented by d(t)(u, v), σ (t)(u, v), σ (t)(u, w; v) and
σ (t′)(u, w; v) ↓ t we can now present the new dynamic centrality indices. The aim is
to define quantitative measures that reflect the importance or workload of nodes at
a given snapshot in time.

Definition 2 The dynamic snapshot centrality indices are defined for the dynamic
network G(t) = (

G = (V, A), c(t)
)

CS(v) ↓ t =
∑

u �=v �=w

∑

t′∈Tt(u,v)

σ (t′)(u, w; v) ↓ t - stress-snapshot (17)

CB(v) ↓ t =
∑

u �=v �=w

∑

t′∈Tt(u,v)

σ (t′)(u, w; v) ↓ t
σ (t′)(u, w)

- betweenness-snapshot (18)

J Math Model Algor

We can observe that if a shortest path starts from u at the time t′ ∈ Tt(u, v) in
the past then it reaches the node v at the current time t. Therefore, these dynamic
centrality indices give a snapshot of the importance of nodes based on the amount of
traffic or information converging on the node at a specific time t.

Using the results of the previous sections we can compute the dynamic snapshot
centrality values in the FIFO case. For example, Eq. 12 provides a way to calculate
the values (Eqs. 17 and 18) by using the following equations:

CS(v) ↓ t =
∑

u �=v �=w

∑

t′∈Tt(u,v)

σ (t′)(u, v) · σ (t)(v, w) (19)

CB(v) ↓ t =
∑

u �=v �=w

∑

t′∈Tt(u,v)

σ (t′)(u, v) · σ (t)(v, w)

σ (t′)(u, w)
(20)

We will construct the indices for each node by stepping forward in time from the
earliest time point. We start by initialising all indices C∗(v) ↓ t to 0. The core step of
the algorithm is to note that for a given node pair u and w, if the shortest path from u
to w starting at time t′ visits v at time t, we update C∗(v) ↓ t. Based on these remarks
Eqs. 19 and 20 can generate the following lines of computation

CS(v) ↓ t′ ← CS(v) ↓ t′ +
∑

v �=w

σ (t)(u, v) · σ (t+d(t)(u,v))(v, w),∀u ∈ V (21)

CB(v) ↓ t′ ← CB(v) ↓ t′ +
∑

v �=w

σ (t)(u, v) · σ (t+d(t)(u,v))(v, w)

σ (t)(u, w)
, ∀u ∈ V (22)

which express the fact that the indices CS(v) ↓ t′ and CS(v)) ↓ t′ are being up-

dated with
∑

v �=w σ (t)(u, v) · σ (t+d(t)(u,v))(v, w) and
∑

v �=w
σ(t)(u,v)·σ (t+d(t)(u,v))(v,w)

σ (t)(u,w)
respec-

tively. However, these computation lines still reflect the continuous case as t ∈ [0, ∞)

so we need to translate them to the discrete case. For that we denote Ck∗(v) = C∗(v) ↓
(k · ε) and use the series of matrices represented by dk and σ k to obtain the following
lines, which are used for the dynamic snapshot centrality indices in the discrete case:

C
k+dk(u,v)· 1

ε

S (v) ← C
k+dk(u,v)· 1

ε

S (v) +
∑

v �=w

σ k(u, v) · σ k+dk(u,v)· 1
ε (v, w)

C
k+dk(u,v)· 1

ε

B (v) ← C
k+dk(u,v)· 1

ε

B (v) +
∑

v �=w

σ k(u, v) · σ k+dk(u,v)· 1
ε (v, w)

σ k(u, w)
,

for any node u ∈ V and for any discrete index k = 0, 1, ..., tmax · 1
ε
. Therefore, the

computation of the snapshot dynamic indices firstly finds the values dk(u, v) and
σ k(u, v), and then it calculates the snapshot indices directly with the update process
described above. In this process the index k + dk(u, v) · 1

ε
is capped to tmax · 1

ε
when

k + dk(u, v) · 1
ε

> tmax · 1
ε
. Algorithm 3 presents the details of the computation for the

snapshot dynamic indices.

J Math Model Algor

Algorithm 3 SnapshotDynamicIndex(ε, tmax, n, c, CB, CS)
Require: ε, tmax, n, c
Ensure: CC, CG, CB, CS

// apply DynamicShortestPaths to calculate d, σ

call DynamicShortestPaths(ε, tmax, n, c, d, σ)
// Initialise the values C(v)
for each node v ∈ V do

for k = 0 to tmax · 1
ε

do
Ck

B(v) ← Ck
S(v) ← 0

end for
end for
// Calculate the values C[v]
for each node v ∈ V do

for k = 0 to tmax · 1
ε

do
for each node u ∈ V : u �= v do

if
(
k + dk(u, v) · 1

ε
> tmax · 1

ε

)
then

k′ ← tmax · 1
ε

else
k′ ← k + dk(u, v) · 1

ε

end if
for each node w ∈ V : w �= v do

if
(
dk(u, v) + dk′

(v,w) == dk(u, w)
)

then

Ck′
B ← Ck′

B + σ k(u,v)·σ k′
(v,w)

σ k(u,w)
and Ck′

S ← Ck′
S + σ k(u, v) · σ k′

(v,w)

end if
end for

end for
end for

end for

4.1 The Complexity of the Snapshot Dynamic Indices Computation

This section presents the complexity for the snapshot dynamic indices scheme,
which is illustrated in Algorithm 3. Firstly, the complexity of the function Sta-
ticShortestPaths is identical to the complexity of the Dijkstra algorithm which
is O

(
m · n + n2 · log n

)
when Q is a Fibonacci heap. Secondly, DynamicShortest-

Paths calls the function StaticShortestPaths and iterates retrospectively the com-
putation of dk(u, v), σ k(u, v) for k = tmax · 1

ε
− 1, tmax · 1

ε
− 2, ..., 0. Algorithm 1

shows that each retrospective step k requires O
(
m · n + n2

)
operations for the

graph traversal, therefore the complexity of the DynamicShortestPaths function is
O

(
m · n + n2 · log n + tmax · 1

ε
· (

m · n + n2
))

. Finally, the complexity of SnapshotDy-
namicIndex requires O

(
tmax · 1

ε
· n3

)
to calculate all the dynamic centrality values

on top of the DynamicShortestPaths complexity. Therefore, we can conclude that
the overall complexity of the SnapshotDynamicIndex function is O

(
m · n + n2·

log n + tmax · 1
ε

· (
m · n + n2 + n3

))
which can be reduced to O

(
tmax · 1

ε
· n3

)
.

J Math Model Algor

Table 1 Running times for snapshot dynamic indices with tmax = 50, 100 and 200

n 25 36 49 64 81 100 121 144
m 60 84 112 144 180 220 264 312
tmax = 50 0.1 0.5 0.9 1.9 3.6 6.3 11.6 18.2
tmax = 100 0.2 0.7 1.3 3.1 6.3 11.4 19.9 34.4
tmax = 200 0.3 1.2 3.3 6.2 14.1 21.9 41.7 69.4

5 Evaluation

This section describes the experiments that were conducted to test the performance
of the algorithm to compute the dynamic snapshot indices. The experiments consider
a grid network of size nr with n = nr2 nodes and m = 2 · nr · (nr − 1) arcs in which
each node is connected to its left, right, top and bottom neighbours. The experiments
were carried out on a Pentium D CPU 2 × 2.80 GHz, with 1 GB of RAM. Each
experiment was run three times and the average of the execution times in seconds is
reported.

5.1 Experiment 1: Running Times for Dynamic Indices

Our first experiment investigates how the algorithm performs as we vary the problem
size, the time window, and the granularity of the discretization, for FIFO costs. The
dynamic network is based on the grid structure described above. For each arc (u, v) in
the grid, a static integer value r(u, v) was randomly generated as the base to calculate
the dynamic costs. We then generate the dynamic costs for each arc (u, v) using
c(t+1)(u, v) = c(t)(u, v) · (1 + δ), c(0)(u, v) = r(u, v), with δ ∈ (0, 1] a random number.
The nature of this definition gives dynamic costs ct(u, v) that are increasing over time
so that the FIFO rule is satisfied. Moreover, since δ is real, the dynamic costs are also
real with fractional parts.

Case 1 Fixed value for ε. We set ε = 1 so that all the costs are integer, and we vary
the grid size nr and tmax. nr takes values from 5, 6, . . . , 12 so that the number of nodes
is n = 25, 36, . . . 144. tmax takes values 50, 100, 200. The execution times are presented
in Table 1.

Case 2 Fixed value for tmax. We now fix tmax = 100 and vary the graph size and ε.
The grid size varies as in case 1. ε takes values 1, 0.1, 0.01, which means that the costs
are first integer and then real with one or two decimal digits. The execution times are
presented in Table 2.

Table 2 Running times for snapshot dynamic indices with ε = 1, 0.1, 0.01

n 25 36 49 64 81 100 121 144
m 60 84 112 144 180 220 264 312
ε = 1 0.2 0.8 1.6 3.6 7.2 13.2 22.4 38.6
ε = 0.1 4.1 11.8 30.4 66.8 118.5 235.9 399.7 727.6
ε = 0.01 41.3 121.9 317.2 697.1 1254.3 2391.4 4199.5 7871.1

J Math Model Algor

Fig. 1 Running times for
snapshot dynamic indices with
tmax = 50, 100 and 200

The execution times for these two cases are visualised in Figs. 1 and 2. First, we
see a linear increase of execution times when the value of tmax increases. Secondly,
we can see a sharp increase in the execution times when the value of 1

ε
increases from

1 to 10 and then to 100. The execution times for 1
ε

= 10 are all between 18 to 22 times
bigger than the times for 1

ε
= 1. If we increase the granularity 1

ε
of the discrete time

interval then the execution times can become very large. For example, the execution
time exceeds one hour for 1

ε
= 100 and nr > 11.

5.2 Experiment 2: Variation of Dynamic Indices

We now consider how the dynamic snapshot betweenness index varies over time
in some illustrative problems. The time interval is t = 0, 1, . . . , 288. The dynamic
network is based on a grid of size nr = 11 in which we consider three different
types of dynamic costs c(t)(u, v). The dynamic costs are generated as in the previous
experiments from static costs by applying some transformation over time. For this
type of grid topology, the closer a node is to the centre of network, the bigger the
betweenness value is. Therefore, we expect that the nodes with the biggest static
betweenness to be always located amongst the central nodes.

Fig. 2 Running times for snapshot dynamic indices with ε = 1, 0.1, 0.01

J Math Model Algor

Case 1 Wave Variation. Firstly, we consider the dynamic costs given by a wave
function c(t)(u, v) = r(u, v) + r(u,v)

2 · sin
(

π ·t
12

)
. We generate these values for over a

period of 24 hours with 12 readings per hour which gives tmax = 288. These costs
satisfy the FIFO rule when c(t)(u, v) < c(t+1)(u, v) + 1, which is equivalent to r(u, v) <

1
2·sin(π ·t

12 + π
24)·sin(π

24)
≤ 1

2·sin(π
24)

� 3.8306. Therefore, the static costs are initially ran-

domly generated to double values less than 3.8 to make sure that the FIFO rule is
satisfied. For these costs we consider only one decimal so that we work with ε = 0.1.
The dynamic snapshot betweenness was computed for the central node (5, 5) over
the discrete interval with 2,880 times. We can observe from Fig. 3 that the variation
of this node’s dynamic snapshot betweenness inherits the wave behavior from the
costs. Moreover, the peaks of the variation are similar with the exception of the first
and last ones. We can also see that the node snapshot dynamic betweenness is 0 or
close to 0 for the first time intervals, which reflects the fact that no or few shortest
paths go through this node at that time. Note that all the snapshot values are 0 for
the initial moments.

Case 2 Traffic Function Variation. Secondly, we consider the grid to be a trans-
portation network in which the central nodes are congested during the morning and
the afternoon traffic hours. This means that the arcs closer to the centre change
dynamically their costs based a traffic distribution with two peaks. This traffic dis-
tribution generates the dynamic costs c(t)(u, v) as follows. Firstly, the values c(t)(u, v)

are constant equal to the static cost r(u, v) when the time t is outside of two peak time
intervals. When t is inside of a time peak interval then the cost c(t)(u, v) increases to
a maximum value and then decreases back to r(u, v). We considered the first time
peak interval between 8 and 10 am which corresponds to t = 96, 97, . . . , 120 and the
second time peak interval between 4 and 8 pm which is for t = 192, 193, . . . , 240.
These traffic costs must follow the FIFO rule as overtaking is not permitted in traffic
congestion. We restricted the costs to be rational numbers with one decimal place
so that ε = 0.1. The dynamic snapshot betweenness is shown in Fig. 4 for the nodes
(5,5) and (9,4). Note that the node (5,5) is central to the grid therefore it is being used
by shortest paths for most of the times outside the peak time intervals. However,
during the two peak time intervals, many shortest paths avoid the central nodes so

Fig. 3 Variation of the node (5,5)s snapshot dynamic betweenness for wave costs

J Math Model Algor

Fig. 4 Variation of the snapshot dynamic betweenness for traffic costs

that (5,5) is visited less often. Hence, we can see the variation of dynamic snapshot
betweenness is constant for most times except the two peak intervals. During these
two peak intervals, node (5,5) had a sharp decrease in the snapshot betweenness.
This loss of snapshot betweenness is however distributed amongst the other nodes
of the network as these are now part of more shortest paths. We can observe this
behavior on node (9,4), whose snapshot betweenness values increase over the peak
time intervals. We can also notice that the node (9,4) becomes more important for
traffic than the node (5,5) during the two interval.

Case 3 Variation of Dynamic Indices for Hazard Costs. This experiment considers
that the grid network is under some fire hazard. We assume that we know the static
navigation costs as estimated times that an able-bodied person could walk the arcs.
We assume that the hazard starts at some nodes and then spreads along the arcs
through the network with some speed. When a node is caught by the hazard we
assume that the adjacent arcs are still usable for a few moments of time then they
all become unusable. In this way the navigation costs of the arcs should increase
for a few seconds to reflect the hazard and then they become infinity. This model
is introduced by Barnes et al. [4] and then generalised by Tabirca et al. [22]. Since

Fig. 5 Variation of snapshot dynamic betweenness for hazard costs

J Math Model Algor

these costs are increasing, they follow the FIFO rule. During the hazard some nodes
are caught in the fire, they are unusable for shortest paths and hence their dynamic
snapshot betweenness index becomes 0. Because of that the snapshot betweenness
values will change over time to reach eventually the value of 0. As before we use
the grid network of size 11, with random navigation costs and random speeds for the
hazard spread. The fire is then assumed to start at two random locations. Figure 5
shows the variation of the dynamic snapshot betweenness for nodes (8,6) and (8,7).
Node (8,6) has the largest snapshot betweenness values for most of the time and then
decreases sharply to 0. On the other hand node (8,7) had smaller values initially, but
then increases to a constant value over time (because the fire does not spread to this
area of the network within the time window).

6 Final Conclusions

The centrality of a node in a graph is a measure of how connected the node is
to other nodes, how central it is to a network, or how much information flows
through that node as traffic is sent between pairs of nodes. In particular, stress and
betweenness centrality indices assume that traffic is sent along shortest paths, and
measures the number of shortest paths that visit individual nodes. However, many
practical applications should be modelled by dynamic graphs, in which the structure
or the arc traversal times vary over time, and thus the shortest path between any
two nodes may change. In such networks, the centrality of a node will change. We
therefore considered the idea of dynamic centrality for dynamic graphs. In particular,
we developed the concept of snapshot centrality, which represents the amount of
work, or the communication load, being carried out by a node at a single time instant.
This allows us to measure the relative importance of a node, or congestion at a node,
and how it changes over time.

As is common for dynamic networks, we restricted out attention to first-in, first-
out (FIFO) networks, which assume traffic cannot overtake earlier traffic on an
arc. Stress and betweenness centrality indices rely on computing shortest paths, and
efficient algorithms for this computation require discrete time intervals, but this is
restrictive in modelling, where in many cases it is natural to represent changing
travel times as continuous functions. We developed a procedure for transforming a
continuous valued problem into a discrete valued problem with a variable granularity
parameter. We then presented an algorithm for calculating the dynamic indices based
on an adapted computation for dynamic shortest paths, which is cubic in the size of
the graph, and linear in the granularity of the discretization and in the size of the time
window. We demonstrated empirically how this algorithm scales as we varied the
granularity, time window and graph size. We then illustrated the dynamic centrality
by running experiments on three different cost functions, representing cyclic arc
costs, a traffic network with rush hours, and an evacuation problem, where arcs
becomes successively harder to traverse as a hazard spreads.

The concept of snapshot centrality arose from application problems in dynamic
networks. In future work, we will continue developing the concept for other appli-
cations, and we will begin to use the snapshot centrality measures for the underlying
design of traffic networks, for improving network reliability, and for the active
guidance of transmissions through a network.

J Math Model Algor

References

1. Abraham, A., Hassanien, A.E., Snasel, V.: Computational Social Network Analysis. Springer
(2010)

2. Ahuja, R.K., Magnanti, L.T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications.
Prentice Hall (1993)

3. Ahuja, R.K., Orlin, J., Pallottino, S., Scutella, M.G.: Dynamic Shortest Paths Minimizing Travel
Times and Costs. MIT Sloan Working Paper No. 4390-02 (2002)

4. Barnes, M., Leather, H., Arvind, D.K.: Emergency evacuation using wireless sensor networks. In:
Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN 2007), pp. 851–
857 (2007)

5. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)
6. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation.

Soc. Netw. 30(2), 136–145 (2008)
7. Chabini, I.: A new shortest path algorithm for discrete dynamic networks. In: Proceedings of the

8th IFAC Symposium on Transport Systems, pp. 551–556. Chania, Greece, 16–17 June 1997
8. Chabini, I.: Discrete dynamic shortest path problems in transportation applications: complexity

and algorithms with optimal run time. Transp. Res. Rec. 1645, 170–175 (1998)
9. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent internodal

transit times. J. Math. Anal. Appl. 14, 493–498 (1966)
10. Dean, B.C.: Shortest Paths in FIFO Time-dependent Networks: Theory and Algorithms. Tech-

nical Report, MIT Department of Computer Science (2004)
11. Demetrescu, C., Italiano, G.F.: Fully dynamic all pairs shortest paths with real edge weights. J.

Comput. Syst. Sci. 72(5), 813–837 (2006)
12. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41

(1977)
13. Gross, T., Sayama, H.: Adaptive Networks: Theory, Models and Applications. Springer (2009)
14. Habiba, Tantipathananandh, C., Berger-Wolf, T.Y.: Betweenness Centrality Measure in Dy-

namic Networks. DIMACS Technical Report 2007-19 (2007)
15. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)
16. Jacob, R., Koschtzki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for

centrality indices. In: Network Analysis, Methodological Foundations, LNCS 3418/2005, pp. 62–
82 (2005)

17. Lerman, K., Ghosh, R., Kang, J.H.: Centrality metric for dynamic networks. In: Proceedings of
the 8th Workshop on Mining and Learning with Graphs (2010)

18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys.
Rev. E 69, 026113 (2004)

19. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the shortest-path
problem. J. Algorithms 21(2), 267–305 (1996)

20. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)
21. Shimbel, A.: Structural parameters of communication networks. Bull. Math. Biophys. 15, 501

(1953)
22. Tabirca, T., Brown,K.N., Sreenan, C.J.: A dynamic model for fire emergency evacuation based

on wireless sensor networks. In: Proceedings of the 2009 ISPDC Conference, pp. 29–36 (2009)

	Snapshot Centrality Indices in Dynamic FIFO Networks
	Abstract
	Introduction
	Literature Review
	Static Centrality Indices
	Dynamic Shortest Paths and Dynamic Indices

	Dynamic Shortest Path Computation
	Dynamic Shortest Paths in the FIFO Case
	Discrete-time Computation
	Adapted Computation for the Static Values d(u,v) and (u,v)

	Dynamic Snapshot Centrality Indices
	The Complexity of the Snapshot Dynamic Indices Computation

	Evaluation
	Experiment 1: Running Times for Dynamic Indices
	Experiment 2: Variation of Dynamic Indices

	Final Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

