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Wireless sensor nodes employ a duty cycle to conserve energy. To implement a duty cycle,
a sensor node constantly switches the communication transceiver between listen and sleep
states. If a listen/sleep cycle of the receiver is known, a sender can transmit a trail of iden-
tical packets, called framelets, of which the receiver is guaranteed to receive one. Such
framelet-based communication mechanisms are currently used in sensor networks. How-
ever, the framelet communication mechanisms that are currently used are static and
unable to adapt to changing traffic requirements or traffic bursts. In this paper, we present
three new framelet communication enhancements that can be used to overcome this lim-
itation and allow us to construct a self-adaptive framelet-based communication protocol.
Our framelet mechanisms are evaluated using testbed and simulation experiments. The
results show that our self-adaptive communication protocol is able to accommodate vary-
ing traffic patterns with low energy cost.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A sensor node spends most of its scarce battery power on
operating the transceiver (radio) chip. The employed radios
generally have the following four modes of operation: listen,
receive, transmit, and sleep. Energy efficiency is maximised
by spending as much time as possible in sleep mode, only
drawing current on the order of lA, as opposed to mA in
the other modes. However, since communication between
two nodes cannot occur if the radio of either node is in sleep
mode, a mechanism is required to ensure the transmit oper-
ation of the sender and listen operation of the receiver coin-
cide. This coordination of send and listen activities is known
as transmitter–receiver rendezvous. Different strategies can
be used to achieve transmitter–receiver rendezvous, such
as the use of wake-up radios, shared time base, applica-
tion-layer knowledge, or duty cycles. This paper focuses on
transmitter–receiver rendezvous techniques using duty cy-
cles, taking advantage of recent advances in transceiver
technology.
. All rights reserved.

van).
To implement a duty cycle, a sensor node continually
switches its radio transceiver between listen and sleep
states. If the listen/sleep cycle of the receiver is fixed and
known then a transmission can be simply extended such
that an overlap between the transmission and the listen
phase is guaranteed to occur. Traditionally, this was
achieved using a long preamble immediately followed by
the packet payload. A receiver hearing the preamble would
keep its radio in a listen state until the packet payload was
received. This duty cycle concept was implemented in
B-MAC [1] and relies on transceivers such as the TR1000
[2] that can be used to control individual bit transmissions.
Modern radios such as the nRF2401 [3] and the commonly
used CC2420 [4] provide a number of additional enhance-
ments such as automatic packet header processing and
CRC computation and are normally used to send complete
packets rather than individual bits. With these transceiv-
ers, it is not possible to use a long preamble to achieve
transmitter–receiver rendezvous, and a slightly modified
approach is required. One solution is to transmit a series
of identical packets, which we call framelets, in such a
way that the receiver is guaranteed to catch at least one.
Despite the transmission overhead, the scheme is as en-
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Table 1
Framelet nomenclature.

Priority
interrupts

Opportunistic
aggregation

Adaptive
duty cycle

FrameComm Off Off Off
FrameCommPI On Off Off
FrameCommOA Off On Off
FrameCommAD Off Off On
FrameComm+ On On On
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ergy- and bandwidth-efficient as the classical long pream-
ble approach because the new transceivers provide much
higher data rates, while consuming roughly the same
amount of energy. This duty cycle concept was proposed
by Barroso et al. [5], and Mahlknecht and Bock [6] and is
also included in the TinyOS 2.0.2 distribution [7], where
it is known as the low power listening (LPL) module.

The outlined framelet communication mechanism is
successfully used in many WSN deployments. However,
this basic mechanism is static and unable to adapt to fluc-
tuating traffic requirements or traffic patterns. For exam-
ple, the basic framelet communication mechanism can
neither handle high priority packets, nor deal with traffic
bursts. This paper shows how this inflexibility can be over-
come and how it is possible to construct a self-adaptive
framelet-based medium access control protocol. The paper
describes three new communication enhancements that
introduce self-adaptive behaviour to a framelet-based
medium access control protocol. The first feature is named
priority interrupt and is used to implement priority level
dependent message forwarding in the network. The second
is named opportunistic aggregation and allows us to deal
with temporarily increased traffic loads. The third feature
is called adaptive duty cycle and is another option for han-
dling traffic bursts. The aforementioned three enhance-
ments can be used individually or in combination to
achieve the required MAC layer flexibility demanded by
the target WSN application.

The self-adaptive framelet-based medium access con-
trol protocol presented in this paper is called FrameComm.
Some initial research results on specific FrameComm as-
pects were previously presented in [8] (opportunistic
aggregation) and [9] (priority interrupt). This paper de-
scribes the three FrameComm enhancements and their
combination in detail and gives a comprehensive evalua-
tion. The specific contributions of this paper are the
following:

(1) New additional features such as adaptive duty cycles
are presented.

(2) All FrameComm features and enhancements are
employed in a single communication protocol.

(3) The FrameComm protocol is evaluated comprehen-
sively using both simulation and test bed
experiments.

The FrameComm protocol presented in this paper was
designed to be used in real-world sensor network deploy-
ments. Its design was influenced by our experience with a
number of such deployments [10], and so in making key
design decisions, we opted for choices that were pragmatic
and relatively simple. It has to be noted that FrameComm
needs to be implementable on small embedded devices
with limited capabilities. For example, the number of pro-
tocol states is limited and complex random number gener-
ators are not available. Additionally, the protocol design
should not be too complex as it must be possible to debug
the protocol in a real-world deployment.

Throughout this paper, the FrameComm protocol is de-
scribed. In some cases, one or more of the optional
enhancements will be enabled. While it is always the same
protocol being discussed, different names will be used to
denote which enhancements, if any, are enabled. See Table
1 for details.

The next section describes the basic framelet communi-
cation mechanism. Section 3 details the priority interrupt,
opportunistic aggregation and adaptive duty cycle
enhancements, which constitute the first contribution of
the paper. Sections 4 and 5 describe evaluations performed
on a small laboratory test bed and on a simulator, respec-
tively. Section 6 gives an overview of related work and
Section 7 concludes the paper.

2. The framelet communications mechanism

The framelet communications scheme is a lightweight,
energy-efficient MAC protocol. By employing a duty cycle,
the radio transceiver spends much of the time in sleep
mode, providing a significant saving in energy. Transmit-
ter–receiver rendezvous is achieved by sending the data
repeatedly in a manner that ensures at least one of the
messages sent coincides with the listen period of the des-
tination node.

2.1. Assumptions and definitions

It is assumed that the clocks of the transmitter and re-
ceiver operate at approximately the same rate. Note that
this does not imply time or sleep cycle synchronisation,
rather the clock drift between any two nodes is insignifi-
cant over a short period. It is also assumed that a fixed rate
radio duty cycle is used, i.e. each node periodically acti-
vates its radio for a fixed time interval to monitor activity
in the channel. The duty cycle period is represented as
P = D + D0, where D is the time the radio remains active
and D0 is the time the radio is in sleep mode. The duty cy-
cle ratio, or duty cycle for short, is defined as:

Duty Cycle ¼ D
P
¼ D

Dþ D0
: ð1Þ
2.2. Rendezvous using framelets

In general, framelets can be described as small, fixed-
sized frames that can be transmitted at relatively high
speeds. Certain types of ultra low-power transceivers, such
as Chipcon’s CC2420, are able to transmit small frames at
speeds of up to 250 kbps. Framelets are defined as having
a fixed or limited size. For example, the maximum size of
a CC2420 packet is defined at compile time (despite having
a 128-byte buffer, the default for TinyOS is a 28-byte



Fig. 1. Framelet rendezvous.
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payload plus the message header) and cannot be exceeded
during run time without fragmentation. Rendezvous re-
quires the repeated transmission of several frames con-
taining the entire payload as depicted in Fig. 1. If the
receiver captures one of these, the payload is delivered.
The trail of framelets is defined by three parameters:

� Number of transmissions: n.
� Time between framelets: d0.
� Framelet transmission time: d.

In order to ensure rendezvous, a proper relationship be-
tween the parameters D, D0, n, d, and d0 must be obeyed.
First, the listening phase of the duty cycle D must be such
that:

D P 2 � dþ d0: ð2Þ

This ensures that at least one full framelet will be inter-
cepted during a listen phase. Furthermore, to ensure over-
lap between transmission and listening activities, the
number of retransmissions n needs to comply with the fol-
lowing inequality when D0 > 0:

n P
D0 þ 2 � dþ d0

dþ d0

� �
: ð3Þ

This ensures that a framelet trail is sufficiently long to
guarantee rendezvous with the listening phase of the re-
ceiver and ensures that at least one framelet can be cor-
rectly received.

In general, the values of d and d0 should be as small as
possible, as this influences (according to Eq. 2) the smallest
possible active time, D, of the duty cycle. The duration of
the time D determines message delay, throughput, and en-
ergy savings.

2.3. Acknowledgments

An acknowledgment mechanism can be added to the
framelet communication scheme. The radio switches to
a listen state in the transmission gaps, d0. Once the desti-
nation has received one of the framelets, it sends an
acknowledgment (ACK) message in response. After recep-
tion of this acknowledgment, the sender ceases transmis-
sion of its framelet trail. Thus, using acknowledgments,
most transmissions will not require the full n framelets.
As a result, a transmission will occupy the channel for a
shorter period of time, this provides further energy sav-
ings while reducing contention and increasing through-
put. To accommodate acknowledgments, d0 must be
long enough to cater for transceiver switching times as
well as transmission and receipt of the acknowledgment
message. An acknowledgment request flag in the message
header is used to indicate whether or not the sender ex-
pects an acknowledgment. This optimisation is only in-
tended for unicast messages; broadcast messages should
send all n framelets.

2.4. Backoff

Another problem, aside from achieving rendezvous, is
how to determine the correct backoff strategy and backoff
times. We have developed a backoff strategy that takes
into account the fundamentals of framelet-based transmis-
sion and leverages overheard data to influence backoff
times. Unicast transmissions requesting acknowledgment
receive a shorter backoff because it is likely that an
acknowledgment will arrive and cut short the framelet
trail possibly leaving the channel free thereafter. Messages
that do not request an acknowledgment, like broadcast
messages, are longer, since the framelet trail must run to
completion before releasing the channel. The scheme is de-
scribed in detail in [8].

2.5. Fragmentation

One of the requirements for this framelet communica-
tion scheme is a maximum limit on the packet size, d.
Various factors such as the operating system and the
specification of the radio transceiver of the node may
have an impact on the value chosen for d. If the size of
the data a node has to send exceeds d, then it becomes
necessary to split the data into several fragments that
are smaller than the limit imposed by d and send each
piece in a separate message. This can be done by includ-
ing a fragmentation layer, see [9] for a description of the
fragmentation layer.

2.6. Implementation details

FrameComm was implemented in TinyOS 2.0.2 and pro-
grammed into Tmote Sky [11] nodes, which were used in a
small-scale deployment. Like low power listening (LPL), the
de facto standard power saving communication protocol in
the TinyOS 2.0.2 release and the wireless sensor network
community, FrameComm uses framelet trails to ensure
rendezvous. The listening cycle length of both FrameComm
and LPL is dictated by the duty cycle and the times d and d0.

The key differences between FrameComm and LPL are
the following:

(1) To check for incoming messages LPL performs
repeated clear channel assessments (CCA), whereas
FrameComm performs a full listen of length, D,
which should guarantee interception of any packets
in transmission.



Fig. 2. High-priority interrupts.
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(2) Before beginning transmission of a message Frame-
Comm uses a full listen to detect channel activity;
LPL merely uses a brief CCA before beginning its
transmissions. A CCA is not sufficient and can lead
to problems when there is contention for the
channel.

(3) FrameComm employs a full listen to check for ongo-
ing transmissions and exploits the overheard infor-
mation to influence its backoff strategy. LPL’s
backoff is unrelated to the duty cycle and results in
numerous backoffs, which are insufficient to remove
unnecessary contention for the channel.

3. Framelet enhancements

The framelet scheme is a reliable, lightweight conten-
tion-based protocol that has been shown to be energy effi-
cient [5]. This section describes optional enhancements to
the scheme such as aggregation, prioritised message han-
dling, and self-adaptivity to different traffic requirements
and patterns. These enhancements can be employed indi-
vidually or in combination according to the requirements
of the application.

3.1. Priority interrupts

An ongoing framelet transmission can be interrupted by
any node in communication range by sending a short mes-
sage similar to the acknowledgment described in Section
2.3. This feature may be used by nodes that have to send
high priority data and need to access the channel
immediately.

3.1.1. Interrupt concept
If a node has data to send, it will attempt to access the

channel. To do this, it must first perform a carrier sense of
duration D to ensure no other node is transmitting. If, dur-
ing this listen phase, it receives a single framelet sent by a
current transmitter, it examines the header of this fram-
elet. If this header indicates a priority equal to or higher
than the message in the transmit buffer, then the usual
backoff occurs. On the other hand, should the priority of
the received framelet be lower than the message awaiting
transmission, then a priority interrupt will be performed.
The node sends an interrupt packet to the current trans-
mitter. The current transmitter receives this interrupt
packet as it would be waiting for an acknowledgment from
the destined receiver of the framelet transmission. If the
current transmitter correctly receives this interrupt it will
send an interrupt acknowledgment, cease transmissions,
and then enter a backoff phase. After this backoff, the inter-
rupted node will attempt to send its message again. Upon
receipt of the interrupt acknowledgment, the interrupter
will immediately begin transmitting its own framelet trail.
If an interrupt acknowledgment is not received, the inter-
rupter will enter a backoff phase.

The mechanism can be seen in Fig. 2. Node B has a high-
priority message to send and interrupts Node A, who is
transmitting lower-priority messages.

The basic scheme described here assumes that high
priority messages will always take precedence over low
priority messages. As with other prioritisation schemes,
however, this can lead to low priority messages being de-
layed or in some cases dropped. Modifications could be
made to the scheme to avoid flow starvation and excessive
numbers of low priority packets being dropped. For exam-
ple, a node could increase the priority of its message after it
has been interrupted to prevent subsequent interruptions
or it could simply choose not to cede access to the channel
by not sending an interrupt acknowledgment.

3.1.2. Collision avoidance
Usually, the number of neighbouring nodes accessing a

shared radio channel is limited in order to reduce colli-
sions. Sampling the channel before transmission is an ef-
fort to eliminate collisions among one-hop neighbours.
Note that when interrupts of framelets are used there is
an increased chance of collisions among neighbouring
nodes seeking to interrupt the current framelet trail.
Should two interrupts be sent simultaneously from differ-
ent nodes (Node B and Node C, for example), a collision
may occur. There is a possibility that Node A (the current
sender), Node B, and Node C will all try to send their fram-
elet trail simultaneously. This situation can be avoided by
the use of a handshaking mechanism similar to an RTS-
CTS method.

The method works as follows. After sending an inter-
rupt message to Node A, both nodes will wait and listen
for Node A to acknowledge the interrupt or to send its next
packet. If either node should be successful in its attempt to
interrupt Node A, then Node A will send an acknowledg-
ment to the successful interrupter. Both Node B and Node
C will hear the acknowledgment and know if their bid to
interrupt Node A was successful or not. The winning node
(Node B) will assume control of the channel, while the los-
ing node (Node C) will back off and retry at a later time to
interrupt the current sender. If neither packet is successful
due to both attempted interrupts colliding, then Node A
will continue its framelet trail as normal, and both Node
B and Node C will use a short random backoff before trying
to interrupt again.

3.1.3. Arbitration
This priority interrupt mechanism can be used with

several levels of priority, allowing multiple interruptions
in a single duty cycle period. Any node that has a message
to send can interrupt an ongoing lower priority framelet
trail from a neighbouring node. A node, Node B, that suc-
cessfully interrupts another, Node A, can subsequently be
interrupted by a third node, Node C, provided that Node



Fig. 3. Gaining the channel after carrier sense.

1 For illustrative purposes, a packet stuffing approach is taken. However,
other forms of aggregation are possible and described in [8].

2562 T. O’Donovan et al. / Computer Networks 55 (2011) 2558–2575
C’s message priority exceeds that of Node B. In effect, this
provides priority arbitration, ensuring the highest priority
message gets access to the channel. A more detailed expla-
nation can be found in [9].

3.1.4. Expected benefits
The process of interrupting another node takes place

very quickly and the interrupting node can seamlessly take
control of a busy channel to transmit its own high-priority
message. Multiple interrupts may take place among a
group of nodes (e.g., A interrupts B, which is then inter-
rupted by C, etc.). Thus, it is ensured that at a given time
the highest priority message is very likely to gain access
to the channel.

3.1.5. Implementation details
The basic FrameComm implementation was modified to

include Priority Interrupts as described in Section 3.1. The
TinyOS message header contains a message type field that
is used to determine the priority of a message, and a differ-
ent message type is assigned to each priority. As in the ba-
sic FrameComm scheme, a node must perform a listen
operation in order to check the channel before it can send
a message. In the event of a message being received during
this ‘pre-send’ listen, its priority is obtained from the mes-
sage type and compared to that of the message waiting to
be sent. If the priority is equal to or higher than the mes-
sage in the transmit buffer, then the usual backoff occurs.
On the other hand, should the priority of the received
framelet be lower than the message awaiting transmission,
a priority interrupt packet is generated and sent to the cur-
rent transmitter.

Upon receipt of a priority interrupt packet, a sender
ceases transmission of its framelet trail and sends an inter-
rupt acknowledgment; this is little more than a message
header addressed to the source of the priority interrupt.
The interrupted sender then enters a backoff phase similar
to a congestion backoff, after which it attempts retransmis-
sion of the interrupted message.

Once the higher priority sender receives the acknowl-
edgment of its interrupt, it knows the channel is now avail-
able and begins its transmission.

3.2. Opportunistic aggregation

In addition to providing prioritised message handling,
the interrupt concept described in Section 3.1.1 can be
used to introduce an aggregation scheme to the framelet
protocol.
A node (called Node B, for example) with a message to
send (to Node C) must first sample the channel for a fixed
duration to ensure that the channel is clear. During this
phase, its radio transceiver is on, and messages on the
channel can be heard. If the channel is busy, Node B will
keep its radio active long enough to receive a single fram-
elet of the ongoing transmission.

If Node B receives a packet (from Node A for example)
during this listen it checks the address of that packet.
Should the packet be addressed to Node B, an acknowledg-
ment will be sent to Node A in the normal way and the
channel will then be clear for Node B to transmit its packet,
as seen in Fig. 3. If the received packet is also addressed to
Node C, the destination of the message it is currently trying
to send, then both messages may possibly be aggregated.
Node B checks to see that aggregation1 is possible and
builds an aggregate packet if it is. An interrupt is then sent
to the current sender (Node A), offering to include its data
in an aggregated packet. Upon receipt of this interrupt, Node
A can cease its transmissions, and Node B will take over the
channel and begin to transmit a framelet trail of its own that
is addressed to Node C and contains the aggregated data of
both Nodes A and B, as in Fig. 4. If aggregation is not possible
or the address of the received packet is neither Node B nor
Node C, then the overheard message will be discarded and
Node B will activate its backoff mechanism.

3.2.1. Expected benefits
In the scenario outlined above, there should be a signif-

icant advantage in terms of overall next hop message
delivery latency (i.e., if there are many messages to be
delivered from different nodes to a common destination,
the time taken to deliver all messages should be shorter).
Using a fixed duty cycle with no interrupts and aggrega-
tion, the time taken to deliver n messages from n peer
nodes to a fixed duty cycled receiver will be approximately
(n � 1)P. Recall that P = D + D0. The first message will be
delivered somewhere between 0 and P, and all remaining
messages will be delivered sequentially during the follow-
ing listening periods and will therefore take an additional
(n � 1)P. Assuming that on average 0.5P will expire before
rendezvous, the next hop latency may be given by the fol-
lowing approximation:

0:5P þ ðn� 1ÞP:



Fig. 4. Opportunistic aggregation.
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In comparison, if we assume that m messages, can be
aggregated on average during a period D, then the total
next hop latency reduces to the following approximation:

0:5P þ n� 0:5m
m

P
� �

:

For example, if we have n = 8 messages from different
peers and m = 4 messages can be aggregated during a time
period, the latency is 2.5P.

This is significantly better than the 7.5P it would take
under normal conditions. Note that this approach is also
more energy efficient for the senders because the time they
need to spend with their radios active is collectively less.
An alternative way of looking at this is to consider that
the individual packet latency reduces to the latency that
would be experienced on a contention-free channel
(assuming that there is always room to aggregate packets
and only peer nodes are contending to send).

The data throughput of the network is also increased
significantly. In the example above, eight messages are
sent in 2.5P, as opposed to 7.5P under normal circum-
stances. The use of interrupts and interception allows a
variable throughput, despite having a fixed-length listen
period. An alternative method for variable throughput that
increases the listening time of the receiver to cope with
additional data transfer is shown in Section 3.3. In order
to modify the listening period, a node must first wake up
from its sleep cycle. This means that there is a latency di-
rectly related the length of the duty cycle before any extra
traffic can be handled. In addition, the increasing of the lis-
tening period requires that when a packet is received, the
radio must be kept on for some minimum additional time
regardless of whether or not there is more data. If bursts of
high traffic are rare, then this may present a significant
overhead. Our protocol does not need such modifications
and is highly reactive to bursty traffic. The advantage of
this approach is that a network can be configured to oper-
ate in an extremely low-power duty cycle mode, yet deal
seamlessly with increases in traffic due to local sensor
events.

3.2.2. Implementation details
Similar to FrameCommPI, described in Section 3.1.5, a

listen is required to check the channel status prior to any
transmission by a node, say, Node A. If the channel is found
to be clear, then the message is sent; however, if a packet is
received during this ‘pre-send’ listen, a check is performed
to see if aggregation is possible. First, the message header
of the overheard packet, from Node B, is examined to see
if both messages have the same destination. If so, the com-
bined payload length is calculated to decide if both mes-
sages will fit in a single TinyOS message. TinyOS 2.0.2
allows 28 bytes of data by default. In the event of both
senders having a common destination and there being suf-
ficient space in Node A’s message to include the overheard
message from Node B, an interrupt message is generated
by Node A and sent to Node B. When Node B receives the
interrupt, it first sends an interrupt acknowledgment to
Node A, it then triggers a sendDone event, indicating its
transmission is complete, before finally entering sleep
mode.

A packet stuffing approach is used, whereby spare space
in the packet payload was filled with data from interrupted
packets. Note that additional and alternative forms of
aggregation could be implemented and are described in
[8]. Information from the CC2420 header regarding the size
of the payload is used to quickly ascertain if aggregation is
feasible.

In the implementation of FrameCommOA, it is vital that
the different types of packets be quickly and easily distin-
guishable from each other. This is done by examining the
CC2420 packet header which, contains a 1-byte type field.
Thus, interrupts are quickly distinguished from data pack-
ets, acknowledgments, or control messages.
3.3. Adaptive duty cycle

Regardless of the speed capabilities of the radio trans-
ceiver, only a single message can be handled by a forward-
ing node per duty cycle period P. This results in increased
data delivery times and reduced throughput in the net-
work. In some situations, such as bursts of heavy traffic,
it may be desirable to increase the throughput or reduce
the latency for a short period at the cost of some additional
listen time at the forwarding node. This can be achieved by
temporarily adapting the duty cycle so that more time is
spent active.
3.3.1. Traffic-aware dynamic duty cycle
The major source of energy waste in wireless communi-

cations protocols is idle listening. This is where a node
spends extended periods listening to an empty channel
waiting to receive data. Duty-cycled protocols dramatically
reduce the amount of idle listening by putting the trans-
ceiver in sleep mode most of the time. This works well
when the traffic load is low; however, if the network expe-
riences bursts of heavy traffic, the energy saved on the for-
warding nodes is offset by the extra time the leaf nodes



Fig. 5. Adaptive duty cycle.
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must spend transmitting. During such periods of bursty
traffic, a temporary increase in the amount of listening
time at a forwarding node will reduce the power used by
the leaf nodes. In addition to energy savings on the leaf
nodes, this increase in listening time will result in signifi-
cantly lower delivery times.

There are two possible approaches to modifying the
duty cycle, as shown in Fig. 5. Method 1 extends the node’s
standard listen time, while Method 2 adds an extra listen
halfway through the node’s sleep time. Consider the case
where Node A has a message to send but finds the channel
already occupied by Node B. Node A will back off for a short
time to allow Node B to complete sending. Node B’s trans-
mission will complete when Node C, the receiving node,
wakes up for a scheduled listen. Having noticed an increase
in incoming messages Node C modifies its duty cycle to al-
low more messages through. With Method 1 Node A only
has the length of the extra listen time, D, to return from
back off, gain access to the channel and begin transmission
if it is to avail of Node C’s extra listen time. However, with
Method 2 Node A has D0�D

2 þ D to return from back off, gain
access to the channel and begin transmission to benefit
from Node C’s extra listen time. That is, Method 2 allows
more time than Method 1 for a sending node to gain access
to the channel and begin sending if it is to be heard during
the extra listen time at the receiver. More than 1 extra lis-
ten time can be added, for n listens Method 1 gives
(n � 1)D and Method 2 gives D0�nD

nþ1 þ D for a sender to avail
of the extra listen time.
3.3.2. Expected benefits
During bursts of heavy traffic, a small increase in the lis-

ten time of a forwarding node can significantly reduce the
delivery delay of a message and the energy required to
send it. Consider the situation where Node A wishes to
send to Node B, and Node B has a duty cycle period of P,
with a listen time D as in Eq. 1. On average, sending a mes-
sage from A to B will take P/2. By introducing an extra lis-
ten of duration D to the sleep interval of Node B it incurs a
small increase in energy spent. However, this increase is
offset by a reduction Node A’s average sending time to P/
4, reducing both the energy spent by Node A and the mes-
sage latency. In a multihop network, these savings will be
experienced at each hop.
3.3.3. Implementation details
While the default duty cycle is suitable for standard low

data rate network conditions, it is sometimes desirable to
temporarily modify the duty cycle to allow more efficient
handling of bursts of heavy traffic, as described in Section
3.3. Implementation of this feature has two requirements:
first, bursts of heavy traffic must be detectable, and second,
the duty cycle itself must be dynamically modified.

Detection of heavy traffic bursts is achieved by record-
ing whether or not consecutive scheduled listen operations
result in a message being received. If this is the case, the
sleep interval is reduced, giving sending nodes an extra
opportunity to have their message delivered. This reduces
the amount of energy required to transmit a message on
the sender side and allows any backlog of messages that
may have built up to be cleared more quickly. Once the
traffic rate returns to normal, the forwarding node will
be carrying out listens where nothing is heard; when this
is observed, the duty cycle reverts back to the default.

Different rates of duty cycle modification are possible;
these are evaluated in Section 4.6.

3.4. Summary

The basic framelet scheme can be enhanced with the
addition of a priority interrupt, opportunistic aggregation,
or adaptive duty cycle feature. These optional enhance-
ments can be used individually or in combination to pro-
vide prioritised message handling and traffic aware
congestion control. A practical example of how these op-
tions can be employed follows.

A physical intrusion detection system is being devel-
oped to secure an office building [12]. A number of wireless
intrusion detection sensors are distributed in the building
and report their observations to a central sink for data
analysis. As well as generating alerts the sink is responsible
for network control and security key updates.

To ensure timely detection of intruders, it is necessary
to transport messages with positive detection events with
the highest priority. Heartbeat and network maintenance
messages are not time critical. Thus, an efficient net-
work-wide scheduling mechanism is needed.

Part of the solution is a priority scheduler on each node,
which is able to correctly schedule messages locally. How-
ever, a scheduler alone is not sufficient, as it is not possible
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to claim the channel immediately if another node is al-
ready in the process of transmitting a low priority mes-
sage. For example, it is frequently observed that a control
message or key update is sent from the sink to all nodes
(broadcast, downstream), blocking the channel needed
for an event detection to be sent to the sink (unicast, up-
stream). Including priority interrupts in FrameComm al-
lows us, in such cases, to clear the path for an important
message travelling upstream.

When a node detects an intrusion, there is a high prob-
ability that neighbouring nodes will also observe the event,
generating a sudden burst of traffic. In such situations
either the opportunistic aggregation or adaptive duty cycle
enhancements (or both) can be used to reduce the latency
caused by the heavy traffic load, ensuring messages are
delivered in a timely manner.

4. Test bed evaluation

In this section, the behaviour of a small number of
nodes is observed in detail. Evaluating the protocols with-
out any obscuring factors (such as network dynamics,
background traffic, or queueing effects) allows us to gain
a clear insight into their effectiveness. While this approach
does not accurately represent the potential ‘‘in-the-field’’
performance of the protocols, it does offer a transparent
and fair evaluation.

4.1. Experiment setup

The experiments were carried out using Moteiv Tmote
Sky and Tmote Invent sensor nodes running TinyOS 2.0.2.
A small tree topology consisting of some leaf nodes, a for-
warding node, and a base station (sink) as shown in Fig. 6
was used. The leaf nodes and the forwarding node were
duty cycled, while the base station was always on.

4.2. Evaluation metrics

A variety of experiments were carried out to assess the
performance of FrameComm and its enhancements. A
number of different measurements were required for com-
prehensive results.

4.2.1. Losses
While energy efficiency, latency, and throughput are

significant metrics for communication protocols, particu-
larly in wireless sensor networks, reliability is critical for
any protocol that is to be deployed in a real world applica-
tion. Packet losses were used as an indication of reliability.
Any experiment where reliability was a factor of interest
involved sending a specific number of packets from each
leaf node and logging those received by the sink. Given
the number of packets sent and received, the calculation
of losses is trivial.

4.2.2. Latency
Another measurement of interest is the node-to-node

delivery latency, t, of messages. However, without a com-
mon time source or complex synchronisation mechanism
it is difficult to measure this latency. With this in mind,
we decided to measure the latency locally on each node
by comparing the time the node decides to schedule a mes-
sage for transmission, t1, and the time the node receives an
acknowledgment, t2, (t = t2 � t1). More specifically, within
the TinyOS implementation, we measure the period be-
tween the application calling a send and receiving a send-
Done signal. While there is some overhead associated
with a message being sent down the TinyOS communica-
tion stack and the sendDone being delivered, this time does
not vary between experiments or across nodes. The mes-
sage size is constant throughout and the nodes are not car-
rying out any other operations or activities that could
affect these times. As a result, the only variable is the time
taken to access the channel and deliver the message.

4.2.3. Radio-on time (energy efficiency)
Measuring energy-efficiency or power consumption

presents difficulties, especially when only the power con-
sumed by the radio transceiver is of interest. With this in
mind, we decided to measure the amount of time the radio
transceiver was operational, i.e., not sleeping. Since the en-
ergy used by the radio during listen, receive, and send
activities is similar, the radio-on time measurement is rep-
resentative of the energy consumed. The unit for this met-
ric is milliseconds (ms).

4.3. Comparison to TinyOS’s LPL

Initially, the basic FrameComm scheme was compared
to the default TinyOS 2.0.2 low power listening (LPL) com-
ponent for benchmarking purposes.

4.3.1. Experiment 1
Data was generated at each leaf node periodically at

varying rates, namely every 500, 1600, 2700, 3800 and
4900 ms. These message generation intervals were chosen
to test the performance of the schemes at different levels of
contention, ranging from low (when data is generated
every 4900 ms) to in excess of the channel capacity. Each
node generated 100 five-byte sensor messages per run.
The five-byte sensor message included a 16-bit node ID,
an 8-bit sequence number, and a 16-bit data reading.

One striking observation that can be made from the
graph in Fig. 7(a) is that the data losses of FrameComm
are much less than those of LPL. LPL appears to be only
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able to deliver approximately 120 sensor messages, irre-
spective of topology or data generation rate. It must be
noted that LPL appears to have significant problems with
interleaving and its backoff strategy. The problems with
the interleaving of messages, evident from data traces
generated during the experiments, seem to stem from
the fact that LPL does not perform an adequate listen be-
fore sending. LPL merely performs a very brief clear chan-
nel assessment (CCA) before sending each packet. If this
CCA falls in the gap between successive transmissions
from a neighbouring node, as it often does, the busy chan-
nel appears free, and interleaving occurs. This interleaving
often results in the loss of packets from one or both of the
nodes.

Also, it is apparent that FrameComm is handling much
more packets than would seem theoretically possible. This
is due to the fact that prior to sending, a listen period is
used by the intermediate forwarding node, n1. During this
period, another packet may be received. The first packet is
quickly sent (since the base station is always on), and the
second packet is passed back down to the lower layers
for sending. Again, a listening period is used prior to send-
ing, and this process continues until nothing is received
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Fig. 7. FrameCom
during the listen period. Therefore, at n1, there are more
listening periods than the duty cycle would suggest. Note
that this phenomenon does not happen all the time, but
the likelihood of such occurrences increases with the traf-
fic. Therefore, our implementation of FrameComm seems
to be somewhat traffic aware in some conditions, albeit
inadvertently, and modifies the amount of listening peri-
ods used accordingly.

In terms of radio-on time, and thus energy consump-
tion, it appears from the graph in Fig. 7(b) that LPL per-
forms better than FrameComm as the number of leaf
nodes increases. Note, however, that LPL’s radio-on time
is relatively constant. This is primarily because the data
losses when using LPL were so high. Indeed, LPL tended
to deliver approximately 120 messages, regardless of the
number of leaf nodes or the data generation rate. The rest
of the data is lost due to a mixture of interleaving and
dropped packets. Since so many packets were not sent cor-
rectly relative to the other protocols, this is a somewhat
unfair comparison. A fairer comparison is shown in
Fig. 7(c), where the radio-on time per sensor message
received is shown. Here, we can see that FrameComm
significantly outperforms LPL.
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4.4. FrameCommPI

This experiment examines the behaviour of Frame-
CommPI in terms of average latency t with various combi-
nations of normal- and high-priority senders. This gives an
indication of how FrameCommPI performs in a larger scale
multihop network with a mixture of priorities, particularly
in upstream forwarding nodes, where data converges
approaching the sink. Each run of this experiment had four
leaf nodes generating messages. Messages are generated at
random intervals, which have an average of 4 � 500 ms =
2000 ms = 2 s. To begin with, all four leaf nodes sent mes-
sages of normal priority. In each subsequent variant of the
experiment, the priority of one sender was increased, giv-
ing three normal and one high priority, then two normal,
two high, and finally one normal and three high. The re-
sults of this experiment are shown in Fig. 8. A cumulative
distribution for the latency of both normal and high prior-
ity traffic is presented for each variant of the experiment.

With a single high-priority sender, an average latency of
very close to P/2 = 300 ms = 0.3 s is achieved, despite the
extra network traffic. This value increases with each addi-
tional high-priority sender; however, even with three
high-priority senders, the average latency for high-priority
messages is still half that of when the priorities of all mes-
sages are equal. A more dramatic jump for the latency of
low-priority messages can also be seen. This is expected
0.0

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12  14
Latency [s]

4 Normal & 0 High Priority Senders

Normal
0

0

0

0

0

1

0.0

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12  14
Latency [s]

2 Normal & 2 High Priority Senders

High Priority
Normal

0

0

0

0

0

1

Fig. 8. Cumulative distri
as a larger proportion of high-priority messages leads to
more interruptions and more backoffs for messages with
a low priority.

4.5. FrameCommOA

The same small tree structure was used again when
testing the opportunistic aggregation that is part of the
FrameCommOA variation.

In all experiments, 100 messages are generated by each
leaf node. A debug packet was sent at the end of each run
by every leaf node, which logged various attributes. These
attributes included the total number of packets sent, the
total radio-on time, the total backoff time, the number of
backoffs, and, where applicable, data about aggregation
events. Each experiment run was repeated three times
for each data point.

We consider three individual experiments. The first
experiment examines how many messages are successfully
delivered to the base station at varying message generation
intervals. We do not use a buffer to hold excess messages.
If a message is generated while a node is already sending,
the message is simply dropped. The power consumption is
also examined here, and we use the time the radio is active
as our metric.

The second experiment considers the throughput of the
three protocols for a fixed message generation rate. Here,
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we use a virtual infinite buffer unlike the previous experi-
ment where there is no buffer. This means that no packets
are lost at the node due to queue overflows, but additional
time is used to complete the sending of the 100 messages.
This provides an accurate and fair way to determine the
characteristic throughput of each protocol.

In the final experiment, we adopt a fixed message gen-
eration rate and progressively reduce the duty cycle. As in
the first experiment, there are no buffers. Data losses are
examined with respect to duty cycle for FrameComm and
FrameCommOA.

4.5.1. Experiment 1
The setup of this experiment is the same as that of Sec-

tion 4.3.1; again, each node generated 100 five-byte sensor
messages per run. The five-byte sensor message is made up
of a 16-bit node ID, an 8-bit sequence number, and a 16-bit
data reading. The experiment was run for the same range
of message generation rates, i.e., a message generated
every 500, 1600, 2700, 3800, and 4900 ms, with 2, 3, and
4 leaf nodes producing data.
As can be seen from Fig. 9(a), the data losses for Frame-
Comm and FrameCommOA are very low. Again, as in Sec-
tion 4.3.1, the extra listens performed by the forwarding
node allows FrameComm to handle more messages than
should be theoretically possible. This is one reason Frame-
Comm and FrameCommOA perform quite similarly with
respect to packet losses. Another reason is that any losses
of an aggregate mean that the equivalent of several sensor
messages are lost. This fact tends to skew the results
against FrameCommOA somewhat. Examination of the
raw data verifies that FrameCommOA has far fewer inci-
dences of loss, but the magnitude of individual losses tend
to be greater.

In terms of radio-on time, and thus energy consump-
tion, FrameCommOA appears to be the clear winner and
significantly outperforms FrameComm at higher data rates
and denser topologies. It is clear that the multiplexing abil-
ity of the FrameCommOA approach drastically shortens the
transmission times, compared to simply transmitting the
data sequentially. Some of the results may be unduly mis-
leading, however. For example, where two neighbouring
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nodes are generating data at a high rate, the message will
be passed back and forth as each node interrupts the other
multiple times, adding a sensor message each time. This
scenario would seem to be unlikely in a real deployment.

It can also be seen from Fig. 9(b) that the plots for
FrameCommOA have very large error bars. This is due to
the fact that the workload on the nodes is uneven. Some
nodes will typically aggregate more than others. Thus,
some nodes may do a lot less work than their counterparts,
leading to the large error bars seen on the graphs.

Note that in Fig. 9(b) and (c), there is no significant ben-
efit to using FrameCommOA over FrameComm at the
slower data generation rates with only 2 leaf nodes. How-
ever, a significant difference can be seen when the genera-
tion rate is at its fastest, and therefore, there are more
opportunities to aggregate. Likewise, it can be easily seen
that FrameCommOA easily outperforms Framecomm when
there are more senders.
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Fig. 11. The effects of reducing the duty cycle on data reception.
4.5.2. Experiment 2
In this experiment, we examine the time taken by the

protocols to deliver a fixed amount of messages. As before,
the experiment is performed for 2, 3 and 4 leaf nodes and
100 messages are generated and sent. A message is gener-
ated at each node every 300 ms. Should the radio be busy,
the message attempts to resend again in another 300 ms.
The message generation process will continue until 100
messages are sent by each leaf node. The time taken to
complete the operation is a good indication of the potential
throughput of each of the protocols. Fig. 10 shows the time
taken for all nodes to send all 100 messages. It is also clear
that FrameCommOA offers significant benefits over Frame-
Comm, sending the required number of messages in a frac-
tion of the time.
4.5.3. Experiment 3
As previously mentioned, a possible benefit of Frame-

CommOA is that it can support much lower duty cycles,
while delivering similar throughput compared to another
protocol using a less aggressive duty cycle. Imagine the
maximum message generation rate per node is known
and bounded. If the topology is known, then it is possible
to implement a minimal duty cycle sufficient to handle
the maximum amount of possible traffic. In this experi-
ment, we continually introduce a progressively lower duty
cycle to a fixed topology using three leaf nodes. Naturally,
if a particular duty cycle cannot sustain the volume of traf-
fic generated, then the packets will be dropped. Thus, our
success criterion is that a fixed percentage of packets must
be successfully received. In this experiment, we adopt a
similar topology to the one used in the previous experi-
ments. Every 300 ms, three leaf nodes generate a 4-byte
message, thereby allowing a possible 7 messages per pay-
load while aggregating, which is then forwarded to an
intermediate node. As before, this node forwards the re-
ceived messages to a base station. Data is not buffered, as
described in Section 4.5.

From Fig. 11, it is obvious that FrameCommOA is able to
support a much lower duty cycle, while maintaining a low
data loss rate.
4.6. FrameCommAD

Several approaches are possible when choosing the
ideal rate at which the duty cycle should be modified when
a burst of traffic is detected. With this in mind, the adap-
tive duty cycle enhancement was evaluated in terms of
duty cycle modification rate. This experiment used the
same small tree topology shown in Fig. 6, this time with
three leaf nodes generating data. To create conditions
where the network experienced bursts of heavy traffic, a
random message generation rate was used. The leaf nodes
generated a message each 2 s on average (the range was
±1 s). The forwarding node, n1, began with a default duty
cycle of 2%; in the event of heavy traffic, this was increased
to 10%. The rate at which the duty cycle changed between
the upper and lower bounds was varied.

A fast increase and fast/slow decrease were tested. With
a fast increase, the duty cycle was changed to the upper
and lower bounds immediately; a slow decrease, on the
other hand, involves a gradual change, with the duty cycle
reducing by half if no messages are heard in the next listen
period. In addition to fast increase, fast decrease (FI,FD)
and fast increase, slow decrease (FI,SD), the experiment
was run with no increase, no decrease (NI,ND). The NI,



Table 2
Adaptive duty cycle experiments.

Latency
(ms)

Radio-on time
forwarding node (ms)

Radio-on time leaf
nodes (ms)

FI, FD 547.75 9603.00 41010.56
FI, SD 478.40 10124.00 36691.11
NI, ND 645.84 7731.67 47299.56

Fig. 12. Simulation topology.
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ND option has a static 2% duty cycle, i.e., the basic Frame-
Comm with no enhancements enabled.

Any changes in latency and radio-on time for the leaf
nodes relative to the radio-on time of n1 was of interest.
As can be seen from Table 2 the basic FrameComm option
(NI,ND) has the worst latency and radio-on time for leaf
nodes, but the best radio-on time for n1. For a small
amount of extra listen time (and energy) at n1, there is a
significant saving in both latency and radio-on time at
the leaf nodes.

The best option tested was fast increase, slow decrease
(FI,SD) which was expected. This option increased the duty
cycle to 10% when a burst was detected, but gradually de-
creased afterwards. As a result, it was also most costly at n1.

Losses for the experiment were under 1%. The test was
rerun after reducing the range for the message generation
interval from ±1 s to ±0.25 s; the findings for these runs
were consistent with the first. All options are available in
the implementation but, fast increase, slow decrease
(FI,SD) is the default as it performs best.
5. Simulation evaluation

The lab experiments described in the previous section
have some limitations. First, all nodes in the lab experi-
ment are placed in the same collision domain. Thus, the
lab experiments cannot show how the FrameComm proto-
col performs in dispersed deployments where not all nodes
are in communication range of each other. Effects such as
the hidden terminal problem cannot be investigated in
our limited size deployment. Second, the lab experiments
consist of a small number of nodes, and effects only visible
in deployments with a large number of nodes cannot be
investigated. For example, our lab deployment is limited
to two hops and does not allow the investigation of larger
multihop networks.

To overcome the aforementioned evaluation limita-
tions, a simulation environment is used to evaluate Frame-
Comm. In addition, the simulation environment allows us
to compare the effect of the three different FrameComm
enhancements (priority interrupt, opportunistic aggrega-
tion, and adaptive duty cycle) within a standardised sensor
network deployment scenario.

To carry out the simulation, we implemented our own
lightweight simulation tool with a FrameComm stack
implementation. We duplicated the lab experiments
shown in Section 4 to ensure that the simulation imple-
mentation of FrameComm matches the TinyOS implemen-
tation of Framecomm used in the lab experiments.
5.1. Simulation evaluation setup

Fig. 12 shows the experimental setup. In the deploy-
ment, n = 10 nodes are used. Node n0 is used as the
sink. The radio of the sink node is always on. All other
nodes use a 2% duty cycle as was used in the lab exper-
iments. All nodes are organised in a tree topology
rooted at the sink node n0. Data is forwarded along
the tree towards the sink. neighbouring nodes are in
communication range of each other. For example, n4

can transmit messages to n2, n5, n6 (shown as range
range n4 in Fig. 12).

In all experiments, the leaf nodes n4, n5, n6, n7, n8, and n9

are used to generate traffic. Node n6 is selected to emit
packets of high priority which should receive transport pri-
ority. The node n1, n2, and n3 are solely used as forwarders.
In the experiments, a traffic burst is simulated in which all
leaf nodes start to periodically generate packets with an in-
ter-packet interval randomly selected from a uniform dis-
tribution between 1 and 3 s, resulting in an average
packet generation rate of one packet every 2 s. During this
traffic, burst the network is operating at its capacity limit.
The aim of the experiments is to evaluate how the three
FrameComm communication enhancements impact the
selected traffic scenario.

All nodes have a queue size of 3 to buffer messages.
Messages are queued according to their priority to ensure
that high-priority messages are processed first by Frame-
Comm. The simulation environment models a lossless
channel. Framelets can be lost due to collisions; messages
can be lost due to buffer overflows.

Within the experiments, the following parameters are
investigated:

� Average message delay Dn: the average time for mes-
sages travelling from each leaf node nn to the sink is
recorded. Unlike the testbed the simulator allowed
end-to-end delay to be measure; this differs from the
latency metric described in Section 4.2.2.
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Fig. 13. FrameComm vs. FrameCommPI (high priority interrupts).
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� Radio-on time Rn: The percentage of radio-on time for
each node nn is recorded. This is the same metric as in
Section 4.2.3, but uses a percentage instead of being
measured in milliseconds.

5.2. Simulation experiments

The results for the simulation experiments follow. Each
of the enhancements are first plotted separately, then all
enhancements enabled together. All plots use FrameComm
as a benchmark for comparison purposes.

5.2.1. FrameComm
In the first experiment, the standard FrameComm pro-

tocol without any of the three new enhancements is used.
The simulation results are shown in Fig. 13(a) and (b).
Packets are queued at forwarding nodes, which accumu-
lates to a very high delay.2 Nodes n6 and n7 have a highly
increased message delay compared to the other leaf nodes,
as they overhear 5 neighbouring nodes. All other leaf nodes
overhear messages of only 3 neighbouring nodes. Nodes n6

and n7 have a lower data throughput than other leaf nodes
(0.34 packets per second as opposed to 0.41 packets per
second), as they encounter a busy channel more fre-
quently. An overall message loss rate of L = 10.2% is re-
corded. Radio-on times are significantly higher than the
2% that are consumed in an idle network. Forwarding node
n2 and n3 consume more energy than leaf nodes; n1 has a
low energy consumption as n0 is always on. As a conse-
quence, framelet trails emitted by node n1 consist of only
one framelet (if no collision occurs), which explains the
low energy consumption of node n1.

5.2.2. FrameCommPI
In this experiment, the high priority interrupt feature is

enabled. The simulation results are shown in Fig. 13(a) and
(b). Obviously, the network adapts to the fact that mes-
sages from node n6 have to be forwarded with high prior-
ity. Other leaf nodes have to pay the price in terms of
2 In an empty network, messages can travel, on average, within
D = P = 0.6 s to the sink.
slightly increased message delays; especially, n7 has to
pay a high price as its packets are interrupted on transit
from n7 to n3 and from n3 to n1. Nodes n7, n8, and n9 expe-
rience high packet loss rates. This is due to the fact that for-
warding node n3 is interrupted frequently by high priority
messages emitted by n6 and forwarded by n2. Thus, n3 has
to frequently drop messages due to queue overflows. An
overall message loss rate of L = 19.9% is recorded. However,
node n6 experiences a lower loss rate of L = 8.1%.

5.2.3. FrameCommOA
In this experiment, the opportunistic aggregation fea-

ture is enabled. A maximum of 3 messages can be aggre-
gated into a single packet. The simulation results are
shown in Fig. 14(a) and (b). The aggregation feature has
several beneficial effects. The data transport delay is signif-
icantly reduced, and the energy consumption of each node
is reduced as well. Both effects can be attributed to the fact
that aggregation reduces the number of packets that need
to be forwarded. An overall message loss rate of L = 13.4% is
recorded.

5.2.4. FrameCommAD
In this experiment, the adaptive duty cycle feature is

enabled. A minimum duty cycle of 2% and a maximum
duty cycle of 16% is allowed. The simulation results are
shown in Fig. 15(a) and (b). Compared to the basic Frame-
Comm, the message delay is largely improved. Also, the en-
ergy consumption of the nodes is improved, despite the
fact that nodes will employ more listen periods (temporary
duty cycle of 16%). The radio-on times are reduced as a
node has to transmit less framelets, before sender-receiver
synchronisation is achieved. Only node n1 uses more en-
ergy with adaptive duty cycles. This is due to the fact that
n1 transmits to n0, which is always on. Thus, the framelet
trails of n1 are not shortened, but n1 has to invest more en-
ergy for the additional listen periods. Basically, forwarding
nodes n2 and n3 benefit in terms of energy from the adap-
tive duty cycle, as saved transmission energy is larger than
invested energy for additional listen periods. Forwarding
node n1 has to invest more energy in additional listen peri-
ods, but does not save energy for transmissions. Compared
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to the basic FrameComm protocol, an improved overall
message loss rate of L = 1.25% is recorded.

5.2.5. FrameComm+
In this final experiment, all three FrameComm enhance-

ments are employed at once. The simulation results are
shown in Fig. 16(a) and (b). It can be seen that the positive
effects of adaptive duty cycles and opportunistic aggrega-
tion on message delay and transceiver on time are additive.
In addition, node n6 receives the required preferred service.
An overall message loss rate of L = 7.7% is recorded, and
node n6 does not experience any loss.

6. Related work

A great deal of research has been devoted to energy-
efficient methods of communication in wireless sensor
networks. One particular aspect of this body of research
deals specifically with duty-cycled communications and
medium access control (MAC) protocols which exhibit
duty-cycled or power-saving behaviour. Where duty cycles
are used, trade-offs are made typically between energy
efficiency and latency or throughput. There are three
well-known approaches for duty-cycled communications
that we now review: internode synchronisation, out-of-
band signalling, and asynchronous sampling. Then, we will
discuss published work specifically related to prioritised
transmission, aggregation, and adaptive communication.

One approach commonly used to improve the efficiency
of sleeping nodes is to synchronise or coordinate the wake
up phases of sensor nodes. For example, S-MAC [13] coor-
dinates the sleep cycles for groups of neighbouring nodes
by exchanging schedules and synchronisation messages.
Like S-MAC, T-MAC [14] operates using synchronisation
messages but extends the active listening period when
there is additional traffic for a particular node and allows
for limited prioritisation of the channel for nodes with full
or nearly full sending queues. RMAC [15] uses Pioneer
(PION) frames to set up relaying or forwarding nodes to
wake up at a particular time so that data can be quickly
moved through the network. The PION messages are sent
across multiple hops prior to the initiation of data transfer
and inform forwarding nodes when they should be awake
to handle the arriving data. This has the effect of decreas-
ing the overall latency experienced and helps to remove
contention in areas with high traffic loads. Contention is
also avoided by transferring data during the SLEEP period.
The AWAKE period is simply used to send PIONs to set up
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Fig. 16. FrameComm vs. FrameComm+ (high priority interrupts, opportunistic aggregation, and adaptive duty cycles all enabled).
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the relaying nodes to remain awake for data transfer while
any other nodes return to sleep mode. Synchronised ap-
proaches require a sensor network to implement explicit
coordination between all nodes, and thus involve addi-
tional software and/or hardware, in addition to ongoing
message overhead for maintaining close synchronisation.
Synchronised approaches are not suitable for distributed
wireless sensor networks.

An alternative approach is to use out-of-band signalling
such as that described in PAMAS [16] which uses probe
packets to determine when and for how long it should
deactivate its radio transceiver. Other approaches assume
the presence of an ultra-low power wake-on-radio that
can be used to activate the main radio when signalled
[17]. Note that both of these approaches assume the pres-
ence of additional hardware on each node in the sensor
network, thus adding to the total node cost and
complexity.

It is also possible to implement asynchronised duty cy-
cle behaviour. One of the advantages of this approach is
much simpler than synchronous approaches and does not
require any additional hardware to operate. The most com-
mon scheme is to precede packet transmission with a rel-
atively long preamble that can be used by the receiver to
extend its listening duration. An example of an asynchro-
nous protocol is B-MAC, described in [1], which is imple-
mented on TinyOS 1.x. WiseMAC [18] also operates in an
asynchronous manner but learns when potential receivers
will wake up in order to reduce the amount of preamble
transmitted and received before payload data transmission
occurs. SCP-MAC [19] also reduces the preamble size; it
uses synchronisation to achieve this. The synchronisation
can be particularly effective in multihop systems reducing
latency considerably. This comes at the cost, however, of
keeping schedules of neighbours.

The use of packetised radios requires a fresh approach
of implementing asynchronous duty cycles. Some schemes
use the same concept of framelet trails as our approach
does. The current default energy saving protocol in TinyOS
is based on the Low Power Listening component of [1], but
uses message retransmission instead of a long preamble in
order to accommodate packet-based radios. X-MAC [20]
also uses framelets to establish rendezvous between
sender and receiver but only retransmits a message head-
er, the payload is sent only after one of the replicas has
been acknowledged and the sender knows that the desti-
nation is listening. Other related duty-cycled schemes in-
clude Koala [21] and CSMA-MPS [6].

Turning specifically to support for prioritised transmis-
sion, there are a number of papers that are relevant. The
requirements for low-latency, hard real-time applications
and the potential for 802.15.4-based radios to satisfy them
is examined in [22]. The problem of scheduling access to
the wireless medium is the focus of most of the related
work, ensuring messages with high priority can gain access
to the channel first as in [23]. PR-MAC [24] is among many
protocols that use arbitration inter-frame space (AIFS)
from IEEE 802.11e [25] to prioritise channel access. Adap-
tive distributed fair scheduling (ADFS), described in [26],
incorporates a weighted queue to schedule messages
based on priority; however, the protocol requires synchro-
nisation of nodes to operate. Few works address the prob-
lem of interruptions on the shared medium. In particular,
to the best of our knowledge, no work addresses the prob-
lem of interrupting an ongoing transmission in the context
of duty cycled wireless sensor networks. RTQS [27] pre-
sents an approach to conflict-free transmission scheduling
and provides prioritised communications, however, it re-
quires static priorities. CoBRA [28] is a framework that
supports multiple classes of traffic in sensor networks by
enforcing rate control using distributed cluster-based
mechanisms. Prioritised transmission is provided in TO-
MAC [29], a TDMA-based MAC protocol that uses non-
destructive bitwise arbitration for message preambles. In
a TDMA slot, all nodes with data to send simultaneously
start to transmit their unique bit sequences as preambles.
The transmission of a 0 is dominant, and as a result, the
node with the lowest number transmitted as preamble will
win and continue to transmit the data block. Channel ac-
cess can be prioritised according to the bit numbers used
as preamble. An ongoing transmission is not interrupted,
instead, all transmitters start simultaneously, and the
transmitter with the highest priority will continue to the
end while others back off.

Aggregation has been a subject of intensive research, as
it offers a significant saving in energy. A common approach
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to implementing aggregation is to abstract aggregation
from the underlying network operation by implementing
a SQL-like query layer, which a programmer or end user
can use to pose queries to the sensor network [30–33]. In
essence, the sensor network is treated like a distributed
database running distributed queries. Other forms of
aggregation exist and many are application specific. Never-
theless, a common trait in all aggregation implementations
is the need to store data at a point (typically, a parent
node) and await the arrival of more data (typically, from
the remaining child nodes) to perform aggregation. In
[34], how and where best to spend time waiting if each
message has a latency bound is discussed. In [32], a cascad-
ing system is implemented, whereby each node must wait
before transmission so that all its children and sub-chil-
dren can report. Unlike these approaches, neighbouring
nodes can perform aggregation on the fly using our fram-
elet interception method, thus reducing the overall latency
necessary to perform aggregation.

Adaptive communication has been proposed as a suit-
able design methodology for sensor network protocols in
many contexts. For example, in ALPL [35] all nodes are de-
ployed with the same default duty cycle. A discovery phase
is carried out and routing trees are calculated, after which a
node modifies its duty cycle to reflect its role and the num-
ber of descendants it has. This information is advertised
and nodes record in a table the following details of local
neighbours: (1) duty cycle, (2) number of descendants,
and (3) role. When a node has a message to send, it uses
a cost function based on the neighbour table records to de-
cide on the node that should be used to forward it. Energy
efficiency and load balancing are the main motivations be-
hind the scheme. Neugebauer et al. modify IEEE 802.15.4
to include an adaptive duty cycle in [36]. Relay nodes mon-
itor the amount of traffic forwarded and calculate an
appropriate duty cycle to handle it. Unlike AFC, where each
node calculates its own duty cycle, this scheme requires a
coordinator and has communication overheads. AEM is a
MAC protocol for tiered sensor networks that use the Tenet
architecture [37]. It aims to provide energy-efficient, ro-
bust and transparent communication with low delivery de-
lays by employing static analysis to anticipate the
application and modifying the duty cycle accordingly. X-
MAC [20] attempts to improve energy-efficiency and la-
tency by calculating the duty cycle of the receiver based
on the probability of receiving a packet.
7. Conclusion and future work

We have shown that the three FrameComm enhance-
ments presented in the paper can be combined to create
an effective traffic-aware, self-adaptive communication
protocol. The protocol is able to increase network capacity
temporarily at a low energy cost if traffic bursts are de-
tected. In addition, the protocol is able to automatically
allocate transport capacity for high priority data messages.
Finally, the protocol reduces the overall energy consump-
tion in the network.

Communication protocols which outperform Frame-
Comm in one aspect or another are available for sensor
networks. Some protocols might achieve better energy sav-
ings or a lower data transport delay. However, many of
these protocols are limited to specific application scenar-
ios, network topologies, or traffic scenarios. The Frame-
Comm protocol balances parameters of interest such as
message delay and energy consumption well, especially
considering the fact that the protocol is not restricted to
a specific application scenario and that it can adapt to a
variety of traffic scenarios.

In wireless environments, changing channel conditions
are observed. Links might encounter increased loss rates at
times or become temporarily unavailable. FrameComm
needs to be able to accommodate these effects as well.
We are currently addressing this aspect by using the pre-
sented adaptive duty cycle mechanism. The adaptive duty
cycle can be used to deal with traffic bursts, but is poten-
tially useful as well to deal with fluctuating channel qual-
ity. If increased loss rates are detected, additional listening
periods can be introduced to increase the chance of receiv-
ing one framelet of a trail correctly. Duty cycle adaptation
to deal with traffic bursts and duty cycle adaptation to deal
with temporary decreased channel quality need to be bal-
anced correctly to obtain a useful self-adaptive protocol.

Our FrameComm implementation for TinyOS and the
simulation environment are available on request.
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