
Poster Abstract: Storage-Centric Debugging of

Performance Problems in Sensor Networks

Tony O’Donovan1, Cormac J. Sreenan1, Nicolas Tsiftes2, Zhitao He2, and
Thiemo Voigt2

1 University College Cork
2 Swedish Institute of Computer Science

1 Introduction

After almost ten years of research into sensor networks, deployments continue
to fail [5]. Such failures are due to the distributed nature of sensor networks and
the complex interactions of protocols [1]. A variety of debugging tools have been
developed to determine the exact causes of failures, and to mitigate the poor
visibility into the operation of many sensor network protocols [8].

Performance debugging of sensor networks has been limited to testbed ex-
periments in the pre-deployment phase, where the developer typically has access
to a separate wired channel for unintrusive debugging. Since it is difficult to
mimic the environment of a deployed network in a testbed, debugging tools for
deployed networks are desirable. Examples of tools developed for this purpose
are Sympathy [6] and Clairvoyant [4]. These tools are limited to data of low de-
tail or low-rate querying, however, since the performance debugging itself must
not cause further protocol disturbances.

We propose a storage-centric method for debugging where performance and
log data are stored locally on the node. This method opens new possibilities
for debugging: 1) A node can process the data itself. 2) Neighbors can share
performance and log data to detect root causes of problems and maybe even
resolve problems. 3) An operator can in an efficient one-hop batch download the
data using a mobile node. 4) A node can decide on its own when it is time to
send stored log data to the sink for processing. 5) The sink can request data on
demand at the desired level of granularity.

2 Storage-Centric Performance Debugging

Currently the most common approach to network monitoring and debugging
involves sending state to a base station [6]. This approach implies a trade-off
between the size and frequency of updates, and the quality of the data available
to the network operator. Frequent updates give a more accurate picture of the
network, but at the cost additional traffic and control overhead. In large multi-
hop networks this cost can be considerable.

An alternative is to use the external flash storage provided by many sensor
node platforms. For example, the Moteiv Tmote Sky has 1 Mb of external flash.



With an efficient file system like Coffee [7] we can store the node and network-
performance data on the nodes rather than sending it to the base station or
discarding it. With the logged data, the nodes detect, diagnose, and fix faults–
either individually or with the help of their neighbours. Furthermore, the sink
can ask nodes for stored information at the desired level of detail. The benefit
of this approach is reduced overhead since less information is sent to the base
station. This leads to energy savings, less contention, and more bandwidth for
application traffic.

Storage-centric debugging is useful in many scenarios. For example, if part of
a network suffers from excessive packet loss, or in case of a network partition, it is
possible to send a network operator into the field for diagnosis. The operator can
either download all data to a mobile management station for analysis, or query
the nodes which can return the required results only. In addition, the operator
can retrieve any application data not delivered to the base station from the node’s
local storage. Network performance can be degraded because of environmental
conditions, external interference, or faulty hardware and software. When a node
notices anomalous behaviour, it can check the stored data for similar anomalies.
If found, they can be correlated with other data available such as temperature
or humidity to identify patterns helping to fix the problem.Using local storage,
the data is also available after a reboot. Therefore, a node can report to the base
station when it notices that it has rebooted frequently.

3 Preliminary Evaluation

Although our work is in an early stage, we have made a preliminary evaluation of
storage-centric performance debugging, showing promising results. Our experi-
mental setup consists of a set of emulated Tmote Sky motes in the cycle-accurate
Cooja/MSPsim simulator [3]. The purpose of the experiment is to compare the
cost of logging data locally with the cost of sending or transmitting it over the
radio. Each log record is 64 bytes large, and consists of debug information from
several parts of the system.

We run the Contiki operating system on the motes, and use the Coffee file
system and the unicast primitive in the Rime communication stack [2]. The
MAC protocol in use beneath Rime is X-MAC, configured with a 1.25 % duty
cycle. The duty cycle is selected using the default radio on-time of 1

160
s, and

an off-time of 0.5 ms, which is half of the average packet transmission interval.
We send 1000 packets and measure the per-packet energy consumption using
Contiki’s Compower library.

Figure 1 shows that the energy consumption is considerably lower for storing
the data locally. Whereas the packet costs vary, the cost of storing the data
locally is the same since Coffee’s optimized file append operation closely follows
the performance of the underlying flash device driver.

In our experiment, we have used an optimal setup for the unicast transmis-
sions: a single-hop network without interference. The total cost of transmitting
the data from a mote to a sink in a multi-hop network is a multiplicity of the



 0

 0.5

 1

 1.5

Local
storage

Packet
reception

Packet
transmission

E
ne

rg
y 

(m
J)

0.10

0.46

0.97

Fig. 1. Storing performance data to the flash requires significantly less energy than

sending the data over the radio, even under optimal conditions.

single-hop cost. Furthermore, the contention and the collision rate in the network
will increase significantly if performance debugging packets are transmitted at
high rates: our 1000 packets sent at the network-layer generated 3762 packets in
the link layer because of the strobe procedure in X-MAC.

4 Conclusions

In this paper we propose a storage-centric method for performance debugging.
Our results suggest that this method is energy-efficient, and motivate further
efforts for realizing this into a powerful debugging tool.

References

1. J. Choi, M. Kazandjieva, M. Jain, and P. Levis. The case for a network protocol

isolation layer. In Proceedings of ACM SenSys, Berkeley, CA, USA, 2009.

2. A. Dunkels, F. Österlind, and Z. He. An adaptive communication architecture for

wireless sensor networks. In Proceedings of ACM SenSys, Sydney, Nov. 2007.

3. J. E. et al. Accurate Network-Scale Power Profiling for Sensor Network Simulators.

In Proceedings of EWSN 2009, Cork, Ireland, Feb. 2009.

4. J. Y. et al. Clairvoyant: a comprehensive source-level debugger for wireless sensor

networks. Proceedings of ACM SenSys, 2007.

5. K. L. et al. Murphy loves potatoes: experiences from a pilot sensor network deploy-

ment in precision agriculture. In Proceedings of IPDPS, 2006.

6. N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sympathy

for the sensor network debugger. In Proceedings of ACM SenSys, 2005.

7. N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling Large-Scale Storage in Sensor

Networks with the Coffee File System. In Proceedings of IPSN, San Francisco, 2009.

8. M. Wachs, J. Choi, J. Lee, K. Srinivasan, Z. Chen, M. Jain, and P. Levis. Visibility:

A new metric for protocol design. In ACM SenSys, 2007.


