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Abstract
We address the problem of analysing performance

anomalies in sensor networks. In this paper, we propose
an approach that uses the local flash storage of the motes
for logging system data, in combination with online statisti-
cal analysis. Our results show not only that this is a feasi-
ble method but that the overhead is significantly lower than
that of communication-centric methods, and that interesting
patterns can be revealed when calculating the correlation of
large data sets of separate event types.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics; D.4.8

[Performance]: Monitors; G.3 [Probability and Statis-
tics]: Correlation and regression analysis

General Terms
Measurement, Performance

Keywords
Performance Anomalies, Sensor Networks

1 Introduction
Deployments of sensor networks can experience surpris-

ingly poor results when challenged by unexpected con-
ditions. Possible causes of failures include faulty soft-
ware [10], challenging weather conditions [1], and complex
interactions between protocols [4]. Understanding the exact
causes of failures and poor performance is difficult, since it
may be impossible to provide detailed data reports using the
radio in such a situation.

In this paper, we tackle the problem of analysing perfor-
mance problems in deployed sensor networks. Our objec-
tive is to be able to analyse log data of high fidelity—even if
the communication exhibits severe problems. Earlier meth-
ods for analyzing performance problems typically depend on
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having a communication channel to each mote in the net-
work, through which live debug data is requested from a
sink [14]. Another method is to have extra motes listening
on radio traffic and reporting problems [2, 16]. This method
requires additional hardware to be deployed, however, and
can only deduce information from the overheard traffic.

We exploit the storage capabilities of motes to enable both
in-situ andpost-mortemperformance analysis of sensor net-
works. Each mote in a network periodically stores detailed
performance data, which can either be analysed locally or
collected later for analysis on a PC. Our in-situ analysis soft-
ware includesPearson’s correlationandmutual information
to demonstrate that interesting results can be obtained by the
motes themselves. Our method is not limited to these formu-
las, however: since we can obtain all data for post-mortem
analysis, more comprehensive statistical analyses can be em-
ployed if necessary.

The contributions of this paper are the design and evalua-
tion of a storage-centric scheme for the detailed diagnosisof
performance anomalies in sensornets. We demonstrate that
we can store large quantities of data efficiently, and show the
node-local analysis possible on the stored data. The perfor-
mance information can be stored at much higher fidelity than
is practical with a communication-centric approach, also im-
proving post-mortem analysis capabilities. Our results show
that the energy consumption of transmitting and receiving
four packets, in optimal conditions and over one hop, is sim-
ilar to reading 2,000 logged samples from the on-node file
system and computing a correlation function.

2 Motivation
Anecdotal evidence of sensor network deployments

clearly indicates that they are error-prone and often perform
poorly [10, 17]. Environmental conditions, component fail-
ure, and programming error can all cause problems. Hence,
a variety of debugging tools have been developed to help re-
searchers to understand faults. Such tools commonly require
that state be sent to a sink, either at regular intervals or upon
a query from a network operator [14].

In recent work, Gnawali et al. emphasise that, from a sys-
tem implementation point of view, providing a detailed log-
ging layer was the most important design decision in CTP
Noe [9]—a protocol that has been tested and debugged in
a large variety of environments. All of these environments,
however, are in-house testbeds where the events can be re-



ported over a serial line. In contrast, real deployments are
limited to delivering debug data over radio.

The problem with mixing debug packets and ordinary
packets in the network is that 1) the packets may not get
through in case of bad performance, 2) “heisenbugs” may
be introduced, and 3) it is limited to low-fidelity data. Al-
though frequent sampling and reporting gives a more accu-
rate picture of the network, it requires extra traffic. In large
networks, this cost can be considerable. Given a fixed and
often tight energy budget for fault diagnosis, only a limited
number of variables can be reported to the sink regularly, and
only at moderate rates.

By logging sensor values together with performance
statistics, we enable correlation of arbitrary data sets, self-
monitoring, and detailed diagnosis of performance anoma-
lies. Earlier research has uncovered unexpected correlations
between performance and different types of environmental
characteristics, or hardware failures. Boano et al. [1] have
shown that the temperature has a significant effect on the
packet reception rate (PRR), even inside an office building.
Finne and Eriksson observed that radio communication trig-
gered sensor readings, causing superfluous alarms [7].

3 Design Overview
There are three distinct elements to the storage-centric

approach. Firstly, the storage itself, which relates to what
data is stored, how frequently, and for how long it should be
kept. Secondly, the computational capabilities of the motes
are employed to perform some statistical analysis, allow-
ing the nodes to detect and possibly even diagnose perfor-
mance problems. Finally, data collection involves the meth-
ods available to the network operator for accessing the stored
data, whether it is only a summary, a subset, or all of the in-
formation that is required.

3.1 Storage
A simple, yet essential point of our work is to exploit the

node-local storage that exists in many types of motes. Un-
like traditional debugging tools that mainly support queries
for live data only, our approach supports analysis of detailed
data collected over a long time. For this purpose, we use the
Coffee file system [19] in Contiki to store vast amounts of
sensor data and networking statistics in a circular log. Cof-
fee is able to append data in files at a speed close to that of the
underlying flash driver, and uses a constant RAM footprint
for each file, regardless of size.

The online logs accommodate arbitrary metrics that are
relevant to the performance. Each mote is able to scan and
analyse its own performance, sending only statistical sum-
maries or warning messages back to the sink. After in-
specting these summaries the network operator can decide
to download more detailed data from a node that reports
anomalous performance. The implication is that analysis of
the network performance is significantly less likely to affect
the behavior of the network. Moreover, even without hav-
ing some form of analysis online, the stored data is useful
in post-deployment analysis of performance, effectively re-
moving the need for any debug-data messages to be sent.

3.2 Statistical Analysis
Diagnosis of a performance problem requires analysis of

the data available to determine the cause. Given the infor-
mation stored on the motes and their computational capabil-
ities, many techniques are possible. Examples include find-
ing the maximum, minimum, or average of a variable–such
as RSSI–over a specified period, or searching for deviations
in the logs. Another option is to examine different sets of
events looking for any correlation between them.

In order to illustrate the type of online analysis possible,
we have implemented two functions on the motes for cal-
culating such correlations using standard statistical methods.
The first function is Pearson’s correlation coefficientrxy, be-
tween the setsx andy as shown in Equation 1.

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n
i=1 (xi − x̄)2

√

∑n
i=1 (yi − ȳ)2

(1)

In this equation,xi andyi are thei-th measurements of two
series ofn measurements of the random variablesX and
Y. x̄ and ȳ denote the sample means ofX andY. Using a
medium effect size of 0.3 and alpha error 0.05, an estimated
84 records or more are needed to detect a significant correla-
tion (with 80% power).

Our implementation of this function retrieves the data se-
ries from the Coffee file system and computes the correla-
tion. We implement Pearson’s correlation coefficient as an
iterative algorithm that reads one sample and computes one
step. By only storing a small number of intermediate data
samples, we are able to keep the memory footprint of this
function low. We need to make two passes over all samples:
the first one to compute the average and the second for the
sums in the equations.

Pearson’s correlation coefficient is widely used but can-
not compute the correlation between a binary and a contin-
uous variable. Therefore, we have also implemented an al-
gorithm to compute the mutual informationI(X;Y) between
a discrete variableX and a continuous random variableY.
I(X;Y) is also a more generic correlation measure than Pear-
son’s correlation coefficient.

I(X;Y) =
1
2

log(2πeσ2)−
1
2 ∑

x∈X
P(x) log(2πeσ2

x) (2)

We compute mutual information as depicted in Equation 2.
In this equation,σ2 is the variance of the continuous variable
Y and σ2

x is the variance ofY given thatX = x. The im-
plementation of the algorithm is similar to the one for Pear-
son’s coefficient described above in that we need to make
two passes over the data. The first to compute the averages
and the second to compute the variances.

3.3 Data Collection
Performance anomalies have many causes, as already out-

lined, that can result in a variety of problems. For example,
congestion may result in increased delivery delays and inter-
mittent connectivity, whereas a node failure will result ina
disconnection from the affected node and possibly any nodes
that use it to forward messages. As a result several methods
for accessing the stored data are required.



When there is no physical access to a deployed network,
the preferred method is remote querying. The network op-
erator is able to request and receive data summaries from
selected nodes in the network. Upon receipt of such a query,
the node performs the requested calculation, returning there-
sults required. The correlation procedures described in Sec-
tion 3.2 are examples of this. Since only summaries are sent,
this method has little impact on the network.

Alternatively the operator can take a mobile sink (e.g, a
laptop) into the field to query nodes directly. For partitioned
networks this may be the only option available. This method
has a smaller response delay and a lower overhead since all
communication is single-hop, making it suitable for diagno-
sis isolated to a small section of the network.

To allow for deeper analysis than what is practical on the
nodes, all stored data can be downloaded in a batch transfer
over the radio or using a node’s UART bus. While a UART
download has no impact on network operation, it does re-
quire a physical connection to the node. A batch download
over the radio is best done using a separate channel or a mo-
bile sink to avoid forwarding the data over the network.

4 Evaluation
To evaluate our storage-centric approach to performance

debugging, we quantify the energy required to store infor-
mation locally on a node in comparison to sending it via the
radio. We also use the motes to efficiently calculate statisti-
cal correlation among events. Finally, we collect data froma
testbed to demonstrate typical observations that are possible
using storage-centric performance analysis.

4.1 Energy Analysis
In this experiment, we compare the cost of logging data

locally with that of transmitting it over the radio. Our setup
consists of a set of emulated Tmote Sky motes in the cycle-
accurate Cooja/MSPsim simulator [6]. Each log record is
64 bytes, comprising debug information from several parts
of the system.

We run the Contiki operating system on the motes, and
use the Coffee file system and the unicast primitive in
Rime [5]. The MAC protocol under Rime is X-MAC, con-
figured with a 1.25 % duty cycle. The duty cycle is selected
using the default radio on-time of1160 s, and an off-time of
0.5 s, which is half of the average packet transmission in-
terval. We send 1,000 packets and measure the per-packet
energy consumption using Contiki’s Compower library.

Figure 1 shows that the energy consumption is consider-
ably lower for storing the data locally. Whereas the packet
costs vary, the cost of storing the data locally is the same
since Coffee’s optimised file append operation closely fol-
lows the performance of the underlying flash device driver.

We have used an optimal setup for unicast transmissions:
a single-hop network without interference. The total cost
of transmitting the data from a mote to a sink in a multi-
hop network is a multiple of the single-hop cost. Further-
more, the contention and the collision rate in the network
will increase significantly if performance debugging pack-
ets are transmitted at high rates: our 1,000 packets sent in
the network layer generated 3,762 packets in the link layer
because of the strobing procedure in X-MAC.
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Figure 1: Storing performance data to the flash requires sig-
nificantly less energy than sending the data over the radio,
even under optimal radio conditions.

Using Contiki’s energy estimation utility, we also charac-
terize the energy overhead of logging over a range of sample
sizes [50, 200]. The average overhead is 0.435µ J per stored
byte, with maximum and average estimation errors of 5.3%
and 2.1% respectively.

4.2 Computing Correlations
The purpose of this experiment is to determine if any cor-

relation exists between the environmental conditions and the
minimum transmission power required for successful com-
munication (TXmin). We use a data set that we obtained pre-
viously from an office testbed [1]. The data consists ofTXmin
along with samples collected from the nodes’ temperature,
humidity, and light sensors. Tmote Sky nodes are equipped
with two light sensors; a photo-active radiation sensor (PAR)
and an ambient light sensor (TSR). The data is measured
over 48 hours, during which time-significant fluctuations in
the data were observed.

To prepare the calculation, we transfer the data to a mote
and store it in a file. We compute the correlation between
TXmin and the temperature using Pearson’s correlation coef-
ficient using Equation 1, then we compute the mutual infor-
mation (MI) using Equation 2. In contrast to Pearson’s cor-
relation coefficient, MI allows us to compute the correlation
between a binary variable and a continuous one.

We use Contiki’s power profiler to measure the energy
consumption for reading the data from the file system and
computing the correlations. We vary the amount of samples
used as input to the correlation functions. We have also ver-
ified that the computed correlation is correct.

4.2.1 Pearson’s Correlation
Figure 2 confirms our expectation that the energy con-

sumption increases linearly with the sample size where one
sample consists of aTXmin and a temperature value. The
figure also shows the power consumption for computing the
Pearson’s correlation coefficient is low. In particular, the cost
of reading the file from flash is lower than the cost of the
CPU activity.

The results of the Pearson’s correlation coefficient calcu-
lation are shown in Table 1. This value is between 1 and
-1, with values approaching±1 indicating that there is cor-
relation between the data sets. Values close to 0 denote that
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Figure 2: The energy consumption for computing a Pear-
son’s correlation coefficient and mutual information (MI)
from locally stored data.

Table 1: The calculated Pearson’s Correlation Coefficient.

Sensor Sender Receiver

Temperature 0.779 0.670
Humidity -0.776 -0.689
TSR 0.641 0.608
PAR 0.640 0.590

no correlation exists. The results show thatTXmin correlates
with the temperature, consistent with the findings by Boano
et al. [1]. Incidentally for this deployment, we observe that
TXmin also correlates with humidity and light.
4.2.2 Mutual Information

We use a modified version of the trace in Section 4.2.1
to calculate the mutual information. In the trace, we pick
a transmission powerTX and convertTXmin into a binary
variable by setting it to 0 ifTXmin > TX and 1 otherwise. As
in the previous section we compute the energy consumption.
Figure 2 shows that the results are very similar. The reason is
that most of the CPU power is used for reading the files and
computing the sums. The calculation of mutual information
uses slightly less energy because the logarithm is cheaper to
compute than the square root.

Reading 2000 samples from a file and applying one of
the two correlation functions takes less than 300 ms, and can
hence be scheduled without affecting periodic tasks such as
sensing and logging. If needed, there is also the option of
yielding control of the processor at multiple points within
the iterative algorithms.
4.2.3 Packet Transmission vs. Local Analysis

When comparing the results in Figure 1 and Figure 2, we
see that reading 500 samples from flash and computing a cor-
relation requires the same amount of energy as transmitting
and receiving one packet over a single hop. The energy con-
sumption of transmitting and receiving four packets, in opti-
mal conditions, is similar to reading 2,000 samples and com-
puting the correlation. These results clearly demonstratethe
applicability of our approach.
4.3 Case Study of a Convergecast Application

We run a convergecast application on our 17-node TelosB
testbed. Each node takes a sample every 10 seconds. A sam-
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Figure 3: Timeline showing the retransmission count for
node 106 from data collected after deployment.

Table 2: Summary of node connectivity observed by sink

Node ID PRR (%) Tx/Msg Hops/Msg

17 49 1.77 1.67
59 58 1.93 1.86
103 67 2.13 2.08
106 15 4.91 4.57

ple consists of the values of 4 sensors, 6 energy estimates,
and 18 Rime statistics variables. The log module stores all
the current samples in a 108-byte record together with a sam-
ple ID number and a time stamp. Every minute, the node
constructs a message from the latest sensor and energy esti-
mates, and sends it to the sink using the Rime collect pro-
tocol over X-MAC; the sink augments the received message
with its own time stamp, and stores it in a file.

We collect over 8,000 samples in each node during a 24-
hour experiment, with more than 1,500 messages per node
sent to the sink. Some of these messages are lost after per-
hop retransmission fails repeatedly and a new route is not
found in due time. Using the information at the sink alone,
we calculate the PRR for each node. By observing gaps in
the message sequence numbers, we can also detect fluctua-
tions in the connectivity.

We summarise the sink log in Table 2. It is difficult to rea-
son about the causes of packet losses using only the limited
log at the sink. The local logs provide extra information in-
cluding the Rime statistics, reflecting changes at a finer time
resolution and giving a clearer picture of network operation.
Figure 3 is an example of this, showing the retransmission
count node 106 logged over the 24-hours.

After inspecting the detailed logs stored in the motes, we
discovered more unexpected problems. A power failure at
about 4 AM stopped several nodes. Later we were able to re-
cover all the local logs. By inspecting the time stamps of the
last record, we find the exact moment of the event. We also
found that among the 8,000+ time stamps, a few consecutive
time stamps were wrong by one hour. This bug is the cause
of the outliers in Figure 3 and is due to a peculiar flaw in our
calendar time library. We would find it difficult to analyse
this bug using only the coarse log of the sink.



5 Related Work
Sympathy is a network-monitoring tool for periodic data

gathering deployments [14]. The sink collects and analyses
performance metrics from all nodes in the network. Unlike
Sympathy, PAD and PerDB employ a passive approach to de-
tection by embedding a small amount of performance-related
data in application messages [11, 13]. PAD uses belief net-
works and causal diagrams for anomaly diagnosis, similar to
Sympathy’s decision tree. The Visibility metric is obtained
by adding weights to a decision tree’s branches to aid in the
design of network protocols that are easier to debug [20].

Using changes in routing and traffic patterns is a com-
mon method for fault detection, as seen in Sympathy, PAD
and PerDB. Our storage-centric approach allows fault detec-
tion on the nodes themselves, however, not the sink. Like
PerDB and PAD, one of our goals is to reduce the overhead
of performance debugging, but while those systems discard
data not embedded in application messages, we log it on the
nodes’ external flash for use in detection and diagnosis.

EnviroLog and our system both allow specified data to be
stored on a node’s flash memory for the purpose of improv-
ing performance [12]. The authors’ main goal is to enable an
exact replay of recorded events and conditions to statistically
analyse network performance. Our aim is to improve detec-
tion and analysis of performance problems using the nodes’
storage and computational capabilities.

Clairvoyant uses RPC to give the network operator some
debugging capabilities [21]. It provides a fully functional de-
bugger, but can affect code execution and also suffers from
increased network traffic. PD2 uses debugging to localise
performance anomalies post-deployment [3]. While our sys-
tem doesn’t provide debugging functionality, it does allow
recording of data for analysis, at little cost.

Tavakoli et al. provide global state monitoring and debug-
ging using a predicate specification, aiming to enable easier
troubleshooting of real-world networks [18]. We choose in-
stead to store debug data on the nodes themselves giving sig-
nificant energy saving over sending it via the radio.

Suelo analyses sensor data looking for predefined fea-
tures that indicate sensor faults [15]. Ganeriwal et al. use
outlier detection to find invalid data from faulty or com-
promised nodes [8]. Instead of using statistical analysis for
application-layer data integrity, as these systems do, we use
such analysis to find anomalies in the operation of the com-
munication layers.

6 Conclusions
We present a storage-centric approach for analysing per-

formance anomalies in deployed sensor networks. We eval-
uate the system, demonstrating not only is it feasible to store
and analyse large quantities of data on the nodes, but also
that it is more energy efficient than sending the information
to the sink. In addition we show that with the large quantities
of data this scheme can log it is possible to observe the net-
work operation in great detail, making it easier to diagnose
performance problems.
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