
Software Update Recovery
for Wireless Sensor Networks

Stephen Brown1 and Cormac J. Sreenan2

1 Department of Computer Science, NUI Maynooth, Ireland
stephen.brown@nuim.ie

2 Mobile and Internet Systems Laboratory, University College Cork, Ireland

Abstract. Updating software over the network is important for Wire-
less Sensor Networks in support of scale, remote deployment, feature
upgrades, and fixes. The risk of a fault in the updated code causing
system failure is a serious problem. In this paper, we identify a sin-
gle, critical, symptom loss-of-control, that complements exception-based
schemes, and supports failsafe recovery from faults in software updates.
We present a new software update recovery mechanism that uses loss-of-
control to provide high-reliability, low energy, software updates, including
a comparison of optimised-flooding against spanning-tree for determin-
ing loss-of-control in a multi-path environment. The solution presented
supports a trial phase (with lower latency), and an operational phase
(with lower energy). The energy/latency tradeoff of this is shown, and
the high-reliability of this update recovery is demonstrated by analysis
and simulation. The results presented control the risk in existing WSN
software update mechanisms.

1 Introduction

Continuing advances in miniaturization and integration are making wireless sen-
sor network (WSN) technology more realistic for deployment. Over-the-air soft-
ware updating is an important feature for a number of reasons: high maintenance
levels, development, and new software features[1][2][3].

A number of WSN software update mechanisms exist. But, in the field, there
can be significant hesitancy to use these to perform software updates. This is
due to the risk of system-wide failure, requiring expensive and time consuming
manual recovery, or possible leading to complete loss of a sensor network. For
example, the software update functionality was not used in [4] due to the risks,
as the nodes were inserted deep into a glacier. During the development process,
failsafe software updates can remove the need to manually reset the nodes, and
replace parallel communication channels for development.

Traditional fault detection mechanisms, such as watchdog timers and excep-
tion handlers catch certain classes of software faults, but there are others classes
which can prevent the nodes from participating in the WSN’s future operation.
In this paper we propose and evaluate a novel failsafe recovery mechanism based
on detecting this single symptom: loss-of-control.



2 Stephen Brown and Cormac J. Sreenan

The paper is organized as follows. Section 2 discusses related work. Section 3
describes our automated recovery model. This model uses high reliability broad-
casting; Section 4 provides an analysis and simulation results for this. Section 5
describes a protocol to realise the model, and simulation results are provided in
Section 6. Conclusions and future work are addressed in Section 7.

2 Related Work

Software update research is a key topic for wireless sensor networks[5]. The
need to update the update mechanism itself, to reconfigure parameters, and to
provide users with standardized utilities to manage online changes have also
been identified, along with the need for overall update management[1].

There are a number of systems for updating wireless sensor network software
’over-the-air’, with the focus to date on efficiently propagating the update to the
nodes (e.g. ZebraNet[6], DelugeM[7], SensorScheme[8]). If the software update
fails, then recovery mechanisms based on exceptions and watchdog timer are
used to try and recover. This is the key risk: node loss will occur if management
connectivity is lost without triggering one of these mechanisms. Given the self-
evident high risk of failure immediately after activating a software update, this
prompts the need for a fail-safe software update mechanism which includes auto-
mated recovery if management connectivity is lost. This work does not address
the downloading of software updates, but rather the recovery from downloads
which contain faults which would prevent further downloads.

There are two activities required to update software in a WSN: propagating
the new software to all the nodes, and activating this software on each node. The
benefits of separating these activities are explored in [2] and [3]. This separation
is supported, for example, in Deluge with the ’injection’ and ’reprogramming’
activities. If the update fails, causing loss of network connectivity, then a third
activity is required: automated local recovery.

3 Automated Local Recovery

To provide a low-risk environment for updating the software on the nodes in
a WSN, every node must locally recover from faults in the updated software.
(These faults are those that cause loss of management connectivity. Fault-
tolerant data collection is not addressed here: it is an entirely separate matter
from ensuring system recovery.) The keystone of failsafe recovery from faulty
software updates is to be able to revert to a working software image, on each
affected node, following loss-of-control. If a hardware errors occurs, but it allows
connectivity to be maintained, then the node can be controlled (perhaps dis-
abled) through network management. If not, the node will fallback to a known
good software image, which may under some conditions help to re-establish con-
nectivity. The price to be paid for a fail-safe fallback mechanism is false positives:



Software Update Recovery for WSNs 3

where temporary loss of connectivity causes a node to fallback. In this case, when
connectivity is restored, the node can revert to the operational software image.

Having a maintenance image to reboot to when all else fails is an impor-
tant element of node recovery (e.g. in [9]). But, to be effective, this depends
on a mechanism to detect when it is needed, and to initiate its execution. In
this paper, we introduce the term loss-of-control to describe the case where a
software fault causes a loss of (management) connectivity from the management
station to a node. Such loss of connectivity could be caused by various classes
of faults in the updated code, but if the fault causes loss of management con-
nectivity without triggering watchdog timeouts or exceptions, then each effected
node is lost, and will require physical recovery. There are significant benefits in
providing more complex recovery then just invoking the maintenance image[3] -
for example, supporting fallback to the previously working version.

3.1 Identifying Loss of Control

We consider the case where a WSN is controlled by a management station via
a gateway node. We assert that the only way a node can identify loss of control
is whether it receives management traffic from the management station(s).

Accurately identifying loss-of-control requires a high-reliability, end-to-end
communication path from the management station to every node in the WSN,
over unreliable and asymmetric links. Data paths are not suitable: they are
mainly in the opposite direction, they may not be periodic to every node, and
generally do not have a very high level of guaranteed delivery: this precludes
piggybacking on data traffic or acknowledgements. Also, when nodes are running
the maintenance image, dedicated connectivity traffic would still be required.

The automated recovery mechanism described here uses periodic traffic from
the management station, referred to as beacons. This is similar to a keep-alive
heartbeat used in many embedded systems, but unreliable wireless links, and the
constraints of wireless sensor nodes (e.g. energy, memory) make achieving high-
reliability operation more difficult. Unlike the Trickle/Drip distribution method
used in SNMS [9], designed to eventually update all nodes, it is important that
nodes do not re-broadcast messages periodically: this would propagate out-of-
date connectivity information. Also, protocols like Trickle do not provide the
very high per-node reliability needed to ensure high system-wide reliability. Well
established mechanisms for distributing network state, such as OSPF, are too
heavyweight for infrequent communications in a WSN environment, both in
terms of traffic and data storage. For example, every node maintains a full copy
of the network-wide database. They also rely on low loss rates to establish stable,
bi-directional connections with neighbours. For these reasons, many authors have
argued that reactive protocols, such as described in this paper, are more suitable
in a low traffic WSN environment than proactive protocols such as OSPF.

We assert that there is no way, in an ad-hoc and multi-path environment,
for any node (or local group of nodes) to determine whether loss of connectivity
is due to a single node or a system-wide failure. Thus every node that loses



4 Stephen Brown and Cormac J. Sreenan

connectivity must take action, whether it can communicate with other local
nodes or not.

3.2 Recovery Action

There are two principle actions that can be taken to recover a node (and even-
tually an entire WSN). The first is to fall back to an ’known good software’
image. If this fails (or is not available) then the second action is to fall back to
a maintenance image (e.g. Golden Image [10]). This needs a high level of relia-
bility, and must provide at a minimum support for downloading and activating
software updates.

If the connectivity failure is due to faults in the software update, then re-
covering to ’known-good’ software restores network management connectivity
(allowing further software updates to be downloaded/activated). If the connec-
tivity failure is due to other causes (e.g. temporary loss of radio connectivity)
then recovery returns the network to a state where, once the external factor
is removed, it will be manageable. Data collection may be interrupted during
recovery: so long connectivity timeouts are required, and the recovery mecha-
nism should be used a last resort - other mechanisms (such as rerouting around
effected areas) should activate on a shorter timescale.

The minimum hardware/memory requirement is for a full-size image and a
smaller maintenance image (with software updates performed from the main-
tenance image). If a node can store two full-sized images, then the software
updates can be performed during operation, reducing disturbance to the appli-
cation. This is reasonable: a MICAz mote has 128KB internal/512KB external
flash; the TmoteSky has 48KB/1MB. A maintenance image might take up an
estimated 32KB (e.g. Golden Image at c. 24KB). Where the image is stored will
depend on the software download protocol and bootstrap loader.

3.3 Two-Phase Approach

It is likely that a WSN will exhibit early software update failures (for reasons
explored in [3]). This motivates a two-phase approach to save energy. Software
updates are initially run on a trial basis with a high frequency of monitoring
providing for quick recovery, but using more energy. Following a successful trial,
the same software version continues to execute, but on an operational basis, with
a lower frequency of monitoring, providing slower recovery, but lower energy use.

3.4 State Machine

A node can be running in one of four modes from a software update and recov-
ery viewpoint - see Figure 1. The TRY, RUN, and RTM commands are issued
over the recovery protocol: TRY(x) starts a trial with software version x; RUN(x)
starts operational use; and RTM initiates a Return to the Maintenance Image.
As shown with the bold arrows in Figure 1, in normal use a node will startup in



Software Update Recovery for WSNs 5

Fig. 1. Recovery State Machine

MAINTENANCE mode; and, for the first software update, will be transitioned
to TRIAL mode, and then to OPERATIONAL mode. Subsequent software up-
dates will be run initially in TRIAL mode and then in OPERATIONAL mode.
In each state, a node will be running the software image as shown:

– MAINTENANCE: running the maintenance image;
– TRIAL and OPERATIONAL: running the specified software (version ”x”);
– FALLBACK: the previous software image, or the maintenance image.

The inclusion of a version id causes all (connected) nodes to try and activate
the same version. It is regarded as a feature of the software download propagation
functionality to ensure that this version is available. Protocols such as DHV[17]
address the problem of ensuring that all the nodes are running the same software
version following network partitioning, etc.

The ”Timeout” events are raised by loss-of-control (i.e. beacon timeouts).
The next section presents an investigation into reliably determining this.

4 High-Reliability Polycasting

The term polycasting is used in this paper to mean the propagation of traffic from
a single node to all other nodes in the WSN (i.e. network-layer broadcasting);
this allows clear differentiation from the term broadcasting which is used at the
MAC layer. For each node to determine connectivity, a beacon must be polycast
periodically from the management station (via a gateway). To provide a low level



6 Stephen Brown and Cormac J. Sreenan

of unnecessary recovery, this propagation must have a high level of reliability.
For example, if the maximum allowed probability of an unnecessary recovery in
a 100-node WSN within 1 year is 5%, and connectivity traffic is polycast once a
day, then the maximum connectivity error rate for each node is 0.0000014.

In this paper we focus on multi-path physical network topologies; these are
common for wireless sensor networks due to the robustness properties that they
present. The overlay network may form, for example, a spanning-tree, or linear,
or grid, or clustered topology - but in general nodes will be placed so as to allow
for alternate paths to cope with link or node failure.

Two algorithms for high-reliability polycasting are Flooding and Spanning
Trees. In [11] it is shown that Spanning Trees perform better for some met-
rics (i.e. count of relay nodes); here we show that, with energy consumption
as a metric, optimised flooding can provide higher reliability for lower cost.
Flooding has the additional energy benefit of not requiring any setup or main-
tenance. For generality, link-quality data and node position data is not knowna
priori. In both cases a random transmit delay timer (”jitter”) is used to reduce
medium contention. Optimizations with high overheads for low traffic levels (e.g.
Clustering[12]) are not considered as candidate solutions: see [18] for a compar-
ison of Clustering and Spanning-Tree approaches in WSNs. Also optimisations
that would impact application traffic (e.g. power modifications[13]) are not con-
sidered.

4.1 Minimum Spanning Tree Algorithm

The Minimum Spanning Tree (MST) algorithm used for comparison was based
on Bellman-Ford. MAC broadcast messages are used to minimize transmissions
for data to multiple children, and overheard data packets provide free acknowl-
edgements using the ”wireless broadcast advantage” ([14]) to parent nodes, with
onyl leaf nodes sending an explicit acknowledgement. Link weight is expected
transmissions to the root node, calculated from collected link-quality data.

4.2 Flooding Algorithm (FDMT)

Flooding with Duplicate-suppression, Missing packet regeneration, and Timeout
(FDMT) removes the broadcast storm problem. A beacon is sent as a series of
packets in a burst, with a burst ID (Burst Index) and a packet-in-burst counter
(Burst Size). This allows each packet to be uniquely identified - only the first
copy received of any packet is re-broadcast (Duplicate Suppression), using the
burst ID and packet-in-burst counter. When missing packets are identified, from
gaps in the received packet-in-burst counter, the node regenerates them (Missing
Packet Regeneration). A lifetime field allows the burst IDs to be reused. The fun-
damental novelty of this algorithm is in using controlled duplicate (multi-path)
reception in order to provide very high reliability for one-to-many trafic in an
ad-hoc wireless network. See Table 3 for the protocol fields.



Software Update Recovery for WSNs 7

4.3 Analytical Comparison

To demonstrate the benefits of FDMT (higher reliability for lower energy cost)
we compare the results for a 4x4 grid of 16 nodes (see Figure 2) with the FDMT
and MST algorithms described above. The root in both cases is at the top
left hand corner, and the link quality/packet-receive-rate (PRR) pi

j is shown
(reflecting noise, distance, and interference-related packet loss). The probability

Fig. 2. 4x4 Grid Data Flows

of system failure is determined by the equation shown, where Pri(success) is
the probability that node i receives at least one packet from P packets injected
in a network of N nodes:

Pr(systemfailure) = 1−
N∏

n=1

Pri(success) (1)

For the spanning tree, the probability of success is determined as follows:

Pri(success) = Prparent(success) ∗ (1− (1− pparent
i )P ) (2)

And for FDMT:

Pri(success) = 1−
n=N∏
n=1

(1− (Prn(success) ∗ (1− (1− pn
i )P ))) (3)

The results of applying these equations to the 4x4 grid are shown in Table 1
for increasing P, showing the probability of system failure and energy cost (Tx
count) in each case.

FDMT provides higher reliability for lower cost. For P=1, using FDMT each
node only transmits once (reliability is attained through multiple receptions);



8 Stephen Brown and Cormac J. Sreenan

Table 1. MST vs FDMT

Packets MST FDMT

P Pr(Fail) Tx Count Pr(Fail) Tx Count

1 0.316934 18.4 0.293000 16

2 0.100447 36.8 0.085849 32

3 0.031835 55.1 0.000003 48

4 0.010090 73.5 6.73E-12 64

5 0.003198 91.9 1.08E-14 80

6 0.001013 110.3 1.75E-17 96

but using MST, each node must reliabily transmit both an ack packet to its
parent, and a data packet to each of its children in the tree. So, for example, to
achieve a failure rate < 1-in-1000, costs 110 transmissions for MST, and 48 for
FDMT. Or, for an energy cost of 48-55 transmissions, MST provides a failure
rate of 32, 000 ppm, and FDMT a significantly lower failure rate of 3 ppm.

4.4 Experimental Comparison

To validate these results with a more realistic radio model, and a larger network,
the two algorithms were simulated using TOSSIM [15], with the default TinyOS
MAC (details in Section 6). This radio model introduces significant traffic losses
due to both noise and interference. Similar results (not included for space rea-
sons) are seen for random topologies with the same average node densities as for
the three topologies shown.

A random transmit delay after reception of a new packet is used to reduce
medium contention - the maximum value is specified in the ”Jitter” field. A
minimum inter-packet transmission interval of 4*Jitter is used. A Jitter value of
675mS was used: 225 slots of 3mS each (large anough for an average transmit).
Experiments have shown that this value achieves a reception rate over 99.9% for
all densities with 225 nodes.

The results of the simulation (measured over 100 runs for FDMT, 20 runs
for MST) are shown in Table 2, showing the system reliability (Reliability) and
MTTF (Mean Time To Failure). The cost is the average per-node transmit
count, and the latency is the time from the first beacon injection, to full coverage
(reception by every node). Note that, as for the analytical case, FDMT provides
a higher reliability/cost ratio than MST.

Notes:

– if latency is used as an indication of cost, representing required receiver on
time, FDMT shows an even greater advantage;

– the Spanning Tree Tx figures show the transmit count required to build the
spanning tree;

– achieving this reliability for the spanning tree required, on average, up to 23
re-transmissions - this is a significant contributor to the large latencies.



Software Update Recovery for WSNs 9

Algorithm FDMT MST

Density Tight Medium Sparse Tight Medium Sparse

System Reliability 100.0% 99.999% 99.55% 99.97% 99.92% 99.84%

System MTTF 9.75×1012 1.93×105 2.42×102 3.93×103 1.33×103 6.28×102

Avg. Node Tx 1 2 4 5.17 4.06 4.54

Latency [S] 0.051 0.444 1.633 9.1 19.05 36.8

Spanning Tree Tx 0 0 0 29 29 29

Table 2. MST vs FDMT

For FDMT the key parameter is the burst size (number of packets sent in
a burst). This is set by monitoring the minimum-duplicates feedback field (see
Section V). In our experiments, modifying the burst size to produce a minimum
value of 5 to 6 duplicates provides the high reliability shown.

For the Spanning-Tree, the key parameter is the per-link reliability: only
one packet is injected as retransmissions are used to guarantee reliability. The
per-link reliability is used to calculate the maximum retransmit count per link,
based on the measured round-trip link quality (used as the weight for building
the minimum cost spanning tree). A per-link reliability figure of 0.999999 (i.e.
1 failure per million) was used to achieve the above results - this produces an
average system reliability of 0.999999225 = 99.978% (MTTF=225 bursts).

As in the analytical case, the results demonstrate that FDMT provides higher
reliability with lower cost. FDMT introduces no setup overhead, and has reduced
RAM requirements: 64 bytes vs approx 1KB in our implementations.

5 Protocol Overview

The protocol packet definition used to evaluate recovery is shown in Table 3. This
implementation contains 23 bytes, fitting into a standard TinyOS packet. The
management station periodically polycasts ”Activation and Recovery” PDU’s
into the network. The (wrapping) sequence number uniquely identifies the
packet, and is timed out by the lifetime (to allow for safe wrapping) which
is decremented on every hop. Burst Size and Burst Index are used to regenerate
missing packets. Mode-ID is the mode sequence number; it is changed for each
new Mode command. Mode specifies what state the node should take (reference
Figure 1). A burst is used, instead of single packets, to provide better reliabil-
ity within a power-cycled environment (higher reliability can be achieved with
one cycle); it also allows separation of the required recovery time and the bea-
con injection period (by allowing multiple packets to be injected per period). A
burst also provides quicker feedback to the management station (later packets in
the burst will piggyback feedback to the management station from more remote
nodes in the network).



10 Stephen Brown and Cormac J. Sreenan

Table 3. Protocol Field Summary

Field Description

Sequence Number unique ID for each burst (wrapping)

Lifetime timeout the wrapping Sequence No.

Jitter random delay to reduce media contention

Burst Size packets in the burst

Burst Index packet burst position - for regeneration

Mode-ID unique ID for the mode field (wrapping)

Mode the mode to run the software in

Software-ID the software version to run

LoffOfControl Timeout timeout for ”loss of control”

Recovery Timeout from MAINT to FALLBACK

Flags Flag0=Failure Seen Bit, set after recovery

Max Hops maximum hops seen

Min life minimum lifetime seen, used to set Lifetime

Min Dups minimum duplicates seen

6 Simulation

The protocol is simulated, both to demonstrate its correct operation, and also
to measure the reliability and cost in an environment that allows direct access
to each node to collect data. The protocol and state machine were simulated
using the TOSSIM 2 simulator. Results for 225 node, 15x15 grid configurations
(”tight”, ”medium”, and ”sparse”) are shown here representing networks with
the characteristics shown in Table 4 using the simulator’s default parameters1.
The radio model uses the log-normal shadowing path loss model, and provides a
realistic model of real-world conditions[16] with significant variability in packet
reception rates as shown in Figure 3. The topologies span a wide range of network
densities (from very tightly connected to very weakly connected), and provide
for validation of the protocol across this wide range, and also show the impact
that the network density has on the protocol performance characteristics.

6.1 Behavioral Results

The correct operation of the protocol is demonstrated here, showing 100% com-
pletion, and the latency times. Figure 4 shows the behavior of a successful soft-
ware trial followed by operational use of the new software version for a medium
density network. Initially the network is running the maintenance image. At
1 See www.tinyos.net for details



Software Update Recovery for WSNs 11

Fig. 3. PRR vs Distance

Table 4. Network Parameters

Sparse Medium Tight

Spacing 20m 10m 2.2m

Nbrs. 9.17 30.01 191.37

Gain -108±9dB -110±9dB -90±9dB

Noise -105±1.8dB

Power 0dBm

time=20 a ”Try” command is inserted into the WSN via the gateway, and at
time=30 a ”Run” command is inserted. In practice, it is likely that a trial would
last for multiple cycles of the WSN operation, possibly in the order of days rather
than seconds. Figure 5 shows the behavior of a recovery during a trial following
a software failure (with quick fallback, using the failure-seen flag) for a medium
density network. The center node (112) detects loss of connectivity at time 180,
and propagates the failure-seen flag quick, network-wide, automatic recovery.

6.2 Estimating Long-Term Reliability

Long-term reliability is measured as the probability that all the nodes receive
a beacon before timing out. The probability that no packets would have been
received by the node is calculated as follows, where c is the number of packets
received by node n from node i:

Reliability = Pr(success) = 1−
n=N∏
n=1

i=N∏

i=1

(1− pn
i )cn

i (4)



12 Stephen Brown and Cormac J. Sreenan

Fig. 4. Successful Trial

Fig. 5. Automatic Fallback



Software Update Recovery for WSNs 13

The PRR pn
i is measured during each simulation. This method allows the relia-

bility of the system to be estimated from a relatively small number of runs. The

Table 5. System Reliability

Tight Medium Sparse

Reliability 1.0 1.0 0.999994

99.9% CI <1.0E-9 1.81E-9 5.44E-6

MTTF >1000000 >1000000 166666.7

results in Table 5, averaged over 450 runs, show the high reliability achieved. The
99.9% Confidence Interval (CI) was calculated using the Student-t distribution.
The number of runs is based on producing a largest CI in the order of 10−6.

6.3 Propagation Delay

The propagation delay results (measured as the time from initial injection to
100% reception) are shown in Table 6 averaged over 93 runs, showing the min,
max, and average in seconds (with 99.9% Confidence Intervals calculated using
the Student-t distribution). The results show that higher network densities have
both lower and less variable propagation times, and that reasonable propagation
times can be achieved. Figure 6 shows a sample propagation delay pattern - the

Table 6. Average Propagation Delays [Seconds]

Density

Delay Tight Medium Sparse

Min. 0.035 0.369 1.5

Avg. 0.285 0.743 2.5

99.9% CI 0.015 0.023 0.16

Max. 0.6 1.2 9.3

X and Y axes are spatial dimensions (150m from side to side), and the gateway
node is in the bottom left corner. Note that the unreliable wireless links lead to
both peaks (nodes that receive the beacon much later than their neighbours) and
troughs (beacons that receive an early beacon over long-distance, low-reliability
links).

6.4 Recovery Latency

The ”failure-seen” flag provides feedback to the management station that a
connectivity failure has been seen and recovered from by some nodes. For a
”Quick-Trial”, no reaction is required: the network will automatically fallback.



14 Stephen Brown and Cormac J. Sreenan

Fig. 6. Propagation Pattern

In ”Operational” use, the management station may query the nodes (using a
management protocol such as SNMS [9]), or issue further Software Activation
commands to recover the network.

Table 7 shows the recovery latency for a failed ”Quick” software trial, mea-
sured between a (simulated) software failure occurring and: that node identifying
loss of connectivity (T1), all the nodes automatically recovering (T2), and the
fail flag seen at the management station (T3). The failure was simulated on the
center node (112); the burst frequency was 20 seconds. The results are aver-
aged over 20 runs, and are shown in seconds (with ± 99.9% Confidence Intervals
shown in brackets). Table 8 shows the performance for an Operational software

Table 7. Recovery Latency [Seconds]

Tight Medium Sparse

T1 19.0 (±0.0) 19.3 (±0.13) 19.4 (±0.67)

T2 23.6 (±0.43) 25.4 (±0.34) 31.2 (±0.92)

T3 24.0 (±0.0) 25.0 (±0.33) 33 (±1.01)

failure in terms of the times between the simulated software failure occurring



Software Update Recovery for WSNs 15

Table 8. Reporting Latency [Seconds]

Tight Medium Sparse

T4 19.0 (±0.00) 19.3 (±0.13) 19.4 (±0.67)

T5 24.0 (±0.00) 25.0 (±0.33) 33.0 (±1.01)

and (a) the failed node identifying loss of connectivity (T4), and (b) the fail flag
seen at the management station (T5). The failure was simulated on the center
node (112), with a burst frequency of 20 seconds, with results averaged over
20 runs, and shown ± the 99.9% Confidence Interval in seconds. Note the close
correlation of results with the separate set of experiments shown in Table 7.

6.5 Energy Use

This activation and recovery protocol runs during powered-up cycles of a power-
cycled WSN, and thus works with the synchronisation mechanism in use (for
downloading software updates, and network management, as well as for the
sensornet application). This implies that no additional energy is required to
receive packets (typically transceiver power use is the same whether receiving or
not), so the incremental power used by the protocol is measured in transmits.
The low latency requires little extension to the power-up phase of the duty cycle.
If an alternative power saving approach, such as wake-on-wireless or preamble
sampling, is being used, the energy cost would be directly proportional to the
number of transmits. Figure 7 shows the energy use under normal operation (in
terms of packets transmitted): the average is one packet transmitted per node
per packet injected. This graph is extracted from a long run (10,000 beacons),
and shows 22 beacon cycles, with a burst-size of 2. This could represent, for
example, 22 days with one sequence per day (providing for a connectivity timeout
value of 2 days), or 22 hours with one sequence an hour (providing for a 2-hour
connectivity timeout). Energy use is linear with time, and with network size. If
transceiver on time is used as the energy metric, then the power requirement
would be in the order of 1 second per day for a medium network (based on a
measured maximum of 0.8S).

Figure 8 shows the energy use of recovery following a failed software trial.
There is higher energy use during the software trial operation, due to the higher
frequency of beacon sequences, and a lower latency for identifying failure (and
recovering). The energy use per beacon sequence is the same as for normal
operation, but additional energy is expended during the automated recovery
(steeper slope of the energy line) reflecting the propagation of the fail flag.

6.6 Energy vs Latency Tradeoff

The energy/latency tradeoff is shown in Figure 9 for a burst size of 2 beacons, and
using the Mica2 transmit power level of 0dBm=1mW with an average broadcast
transmitter on time of 2.1mS per packet (as measured in the simulator). The



16 Stephen Brown and Cormac J. Sreenan

Fig. 7. Energy Use, Normal Operation

Fig. 8. Energy Use, Quick-Trial Recovery



Software Update Recovery for WSNs 17

Fig. 9. Energy/Latency Tradeoff

latency is for a node to identify loss-of-connectivity. This shows the benefit of
two-phase operation: low latency/high power usage software trials (left), and
high latency/low power operational use (right).

6.7 Feedback

Feedback is propagated for free by piggy-backing data (Table 3) on the beacons.
An example, using a sparse network, is shown in Figures 10 and 11 over two
runs. The figures show that the actual number of hops (hmax-actual) is reported
more accurately to the management station (hmax) as the burst size increases,
and that the actual number of duplicates (dmin-actual) is also reported more
accurately (dmin) with the burst size.

The burst size is modified until maximum hops (hmax) value stabilizes, and
then the minimum duplicates value (dmin) used to refine the burst size. Actual
values as well as reported values are shown for comparison. Minimum duplicates
between 5 and 10 works well for the wide range of network densities simulated.

7 Conclusions and Future Work

In this paper we present a software update safety net that reduces the risk of
WSN loss during software updates, and we demonstrate its effectiveness through



18 Stephen Brown and Cormac J. Sreenan

Fig. 10. Maximum Hops vs Burst Size

Fig. 11. Minimum Duplicates vs Burst Size



Software Update Recovery for WSNs 19

simulation. We show a new result: that an optimised flooding approach provides
better efficiency and responsiveness than a spanning-tree for very high reliability
polycasting. Our results show the energy costs of using the software update
and recovery mechanism, and evaluate the energy/latency tradeoff. Using the
same mechanism for both propagating update commands, and also measuring
management connectivity, is shown to be effective. The protocol provides the
update recovery mechanism that we have argued is an essential part of real-
world wireless sensor networks.

The two phases of operation of a software update, Trial and Operational,
allow the conflicting requirements for a quick, network-wide recovery in the one
case, and a low-energy, node-specific recovery in the other case, to be resolved.
This allows for quick recovery of the network when a software update fails soon
after its deployment, at the cost of higher energy use. And for better continua-
tion of operation of the set of working nodes, while still guaranteeing eventual
recovery, with lower energy use in normal operational use of the sensor network.

Future work includes simulation and real-world assessment on a range of
network densities and topologies, and integration with existing software up-
date mechanisms. This recovery might also be used for communication nodes
in a hierarchical networks, with a simplified version for the sensing nodes (e.g.
IEEE802.15.4 full and reduced function devices).

In summary, by providing for fail-safe software update recovery, which signif-
icantly reduces the risk of losing nodes due to faulty updates, this work provides
the basis for high confidence in using over-the-air software updates. This is an
important element of real-world deployment, and will make WSNs more flexible
and supportable in practice.

References

1. C.-C. Han, R. Kumar, S. R., and M. Srivastavam. Sensor network software update
management: a survey. Intl. Journal of Network Management, 15, pp. 283–294 (2005)

2. Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless sensor networks: chal-
lenges and approaches. IEEE Network, 20(3), pp. 48–55 (2006)

3. S. Brown and C. Sreenan. A new model for updating software in wireless sensor
networks. IEEE Network, 20(6), pp. 42–47 (2006)

4. P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K. Hart. Glacial environ-
ment monitoring using sensor networks. In Proc. RealWSN’05, pp. 10–14 (2005)

5. N. Kothari, K. Nagaraja, V. Raghunathan, F. Sultan, and S. Chakradhar. Her-
mes: A software architecture for visibility and control in wireless sensor network
deployments. in Proc. IPSN’08, pp. 395–406 (2008)

6. T. Liu, C. Sadler, and M. Zhang, P. Martonosi. Implementing software on resource-
constrained mobile sensors: Experiences with impala and zebranet. In Proc. Mo-
biSys’04, pp. 256–269, ACM (2004)

7. Z. Xiao and B. Sarikaya. Code dissemination in sensor networks with mdeluge. In
Proc. SECON’06 (2), pp. 661–666, IEEE (2006)

8. L. Evers, P. Havinga, and J. Kuper. Flexible sensor network reprogramming for
logistics. In Proc. MASS 2007, pp. 1–4. IEEE (2007)



20 Stephen Brown and Cormac J. Sreenan

9. G. Tolle and D. Culler. Design of an application-cooperative management system
for wireless sensor networks. In Proc. EWSN’05, pp. 121–132. IEEE (2005)

10. P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse,
and D. Culler. Trio: enabling sustainable and scalable outdoor wireless sensor net-
work deployments. In Proc. IPSN 2006, pp. 407–415, IEEE (2006)

11. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In MobiHoc ’02, pp. 194–205, ACM (2002)

12. C.-K. Liang, Y.-J. Huang, and J.-D. Lin. An energy efficient routing scheme in
wireless sensor networks. In Proc. AINAW 2008, pp. 916–921 (2008)

13. N. Rahnavard, B. Vellambi, and F. Fekri. Distributed protocols for finding low-
cost broadcast and multicast trees in wireless networks. In Proc. SECON’08, pp.
551–559, IEEE (2008)

14. J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In Proc. INFOCOM
2000 (2), pp. 585–594, IEEE (2000)

15. P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation
of entire tinyos applications. In Proc. SenSys ’03, pp. 126–137, ACM (2003)

16. M. Zuniga and B. Krishnamachari. Analyzing the transitional region in low power
wireless links. in Proc. SECON’04, pp. 517–526, IEEE(2004)

17. T. Dang, N. Bulusu, W. Feng, and S. Park. DHV: A Code Consistency Maintenance
Protocol for Multi-hop Wireless Sensor Networks. in Proc. EWSN 2009, pp. 327–
342, Springer-Verlag (2009)

18. H.O. Tan and I Korpeoglu. Power Efficient Data Gathering and Aggregation in
Wireless Sensor Networks. SIGMOD Record, Vol. 32, No. 4, Dec., pp. 66–71, ACM
(2003)


