(Poster Abstract) PerDB:

Performance Debugging

for Wireless Sensor Networks

Veljko Pejovic
University of California, Santa Barbara
Email: veljko@cs.ucsb.edu

Abstract—The characteristics of wireless sensor networks are
such that traditional approaches to network management and
monitoring are inappropriate. In this paper a system for per-
formance debugging in wireless sensor networks is presented. It
tracks two key metrics - the delay and reliability of message
delivery. Its principle of operation is to reactively isolate and
diagnose problems once they occur, rather than proactively probe
for data in order to provide real time monitoring - an approach
that would be less resource efficient and would interfere with
normal traffic flows. The system passively gathers information
from the existing application traffic and reacts upon signs of
problems, selectively probing misbehaving areas until the causes
are determined and reported. The paper gives an outline of our
performance debugging system PerDB along with preliminary
results.

I. INTRODUCTION

Debugging a wireless sensor network is not a straight-
forward process, and while there has been some work on
software debugging, network management and monitoring
(e.g. [2],[3],[1]) there has been little attention to performance
debugging of a WSN. Our goal is a performance-focused
debugging system for wireless sensor networks, emphasizing
the difference between problems that manifest in performance
failures as opposed to functional failures. Obviously the de-
termination as to whether a network is operating within or
outside acceptable performance bounds must be application-
specific. Our aim is not to design a system that will provide
a complete picture of the network state; rather, we strive
towards debugging - recognizing faulty situations, localizing
them, and finding out the true causes of the undesired events.
The contribution of this paper is to present a performance
debugging system that passively monitors a WSN in order to
detect when it is operating outside of the given thresholds
for message delivery latency and reliability, and then uses
selective probing to localize and identify the root causes.

II. APPROACH

The focus of measurement in the proposed system is
message delivery, which represents the fundamental service
provided by a WSN. While message delivery can be charac-
terized by several metrics, the key generic metrics of interest
to most applications are clearly the delivery latency and
delivery reliability, both observed from end-to-end. These two

Copyright (©2009 V. Pejovic, C.J.Sreenan

Cormac J. Sreenan
University College Cork, Ireland
Email: cjs@cs.ucc.ie

metrics encompass a wide range of applications that require
performance assurances for message delivery in a WSN.

Our basic approach to measurement is passive, and rec-
ognizes that with small modifications in place, the existing
traffic in a WSN can be used to piggyback information
useful for detecting and locating problems. In contrast to an
active, probing-based, approach, the use of a passive approach
has significant benefits for energy consumption and is less
intrusive. Yet, for the successful isolation of the problems the
use of probing cannot be avoided. When probing, we adopt
an approach in which nodes aim to maximize to use of space
to include as much debugging information in the replies as
possible, so that a minimal number of probes is sent and no
significant interference with the data traffic is introduced.

III. SYSTEM DESIGN

In PerDB each packet gathers key performance information
as it travels from source to sink. Delay information is added to
the cumulative delay field contained in the packet payload. In a
similar manner, aggregate packet retransmissions are counted
on each of the nodes, together with the total hop count a packet
takes to reach the sink. In our implementation for TinyOS we
use an additional fours-bytes for carrying this information.

Protocol: Although this approach results in relatively little
additional overhead, it is not always feasible to isolate errors
via analyzing the relevant information in just a few bytes of
each message. In that case the sink relies on a request-response
protocol to probe the network. It can probe a specific node in
the network, eliciting a response message that is used to gather
more detailed performance information about the path. The
node’s reply consists of information similar to that described
above; however, the fact that the entire message can be used
allows detailed information for each hop along the path to be
obtained. Information such as a node’s number of neighbors,
battery levels, sources of delay and others can be harvested
as well. The probing process consists of the following steps:
(a) A probe is sent from the sink towards a problematic node;
(b) Each node on the probe’s path is “told” what to measure,
and how long to wait for its child’s answer; a timeout value
is set from the moment a probe visits a node and is directly
proportional to the number of nodes yet to be visited by a
probe; (c) If it gets a probe reply from the child, a node
combines its own reply with it and sends to the sink; (d)
Otherwise if after the timeout the node does not receive the

answer from its child it generates its own answer and sends it
to the sink.

Algorithm: After the data arrives to the sink it is ana-
lyzed according to the application’s needs. Consider the basic
metrics: a network does not perform well if the amount of
delivered data is less than expected, or if the average traffic
delay is above a certain threshold.

Since the system assumes a simple tree topology it may be
able to localize clusters of nodes that are experiencing high
delay, in that case the probes are sent towards the clusters’
heads since all delayed traffic must go via these common-
parent nodes. On the other hand, the paths experiencing the
delay may not be under a shared parent node, but we can still
try to find some overlapping of the delayed paths along the
way; in that case the probes are sent to the overlapped parts
first. If there is no overlap then every single node is probed.

In comparing paths, the system uses information derived
from “healthy” traffic, i.e. traffic delivered without severe de-
lay and without per-hop retransmissions. Overlapping between
a path that a packet which was not delayed and the one
which was delayed took can tell us where to look for errors,
so that probes are not sent to explore links that belong to
the overlapped problematic paths. However, if "healthy” data
traffic cannot be utilized then every node whose packets are
delayed may need to be probed. This is optimized by probing
nodes on the most important paths - the ones whose links
are used by the largest number of nodes in the network. It
is more likely that fixing errors along these lines will allow
enough nodes to function properly.

PerDB deals with the problem of low traffic or an absence
of it by probing clusters that are furthest from the sink.

IV. EXPERIMENTAL EVALUATION

In order to conduct a preliminary evaluation of PerDB
we modified TOSSIM source code to enable the necessary
features our system uses. On top, a debugging layer was built
above which a stub application is running. We focused on four
aspects: (1) time to debug as a function of number of nodes,
(2) benefit of using probing in terms of correctly identifying
probematic links, (3) impact of number of probe packets on
correctness and (4) time to debug relationship with average
node degree in topology. Due to space restrictions we only
show the proof-of-concept results in this paper.

We argue that even three bytes reserved for debugging pur-
poses in each of the data messages can substantially improve
the search for problems, pointing out to problematic areas;
otherwise the probes are sent randomly to different parts of
the network, in a greedy manner, trying to cover as many
nodes as possible. In the experiments the number of nodes
is incrementally increased, while keeping the same ratio of
errors (lossy links, congested areas) versus well performing
links. A comparison is made between the time needed for a
system with and without piggybacked debug data to isolate and
correctly determine the types of errors. As shown in figure 1,
greedy probing does not scale - once the network size gets
larger, it becomes much faster to probe the problematic areas

Appended debug data used ——
08 Appended debug data ignored -—-x-—

Normalized time

8 10 12 14 16 18 20
Number of nodes in a topology

Fig. 1: Normalized debugging time as a function of number of nodes

100 4 m O 0O 8 B B &8 5 8 B
= " . =R o WE
2 s w-e RO S SN I S
£ A ;A/' e S e m XA
] ‘oY N X %
2 X N X
@ 60 X X X «%
=] X
g X X A
> 40 -

3 No probing: Lossy links +
= No probing: Good links X
Q 20 Probing: Lossy links &
o Probing: Good links 0
No probing: Average correctnes --@--
Probing: Average correctness -~

0 .
0 2 4 6 8 10 12 14
Topology number

Fig. 2: Percentage of correctly evaluated links for the two approaches

only. It is worth noting that the additional negative effects of
probing such as interference with the regular traffic were not
considered. However, the probing is still necessary in a number
of cases as the piggybacked debug information is insufficient
for successful problem isolation. We examined a set of dif-
ferent (in size, ordering of nodes and placement of erroneous
links) topologies and compared the correctness of reporting
from the system that does not probe and the one that probes
if application specific performance thresholds are exceeded.
More precise diagnosis is observed when probing is in place
(Figure 2). Without probing it is hard to conclude about the
source and location of problems. Naturally a tradeoff exists
regarding the speed and accuracy of diagnosing performance
violations versus the energy required for probing.

V. CONCLUSION

We have presented a concise summary of PerDB, a per-
formance debugging protocol for wireless sensor networks.
PerDB uses a passive approach to gather information about
network performance, together with probing when necessary.
Ongoing work is to extend PerDB with a more sophisticated
approach to inferring sources of performance violations and
to deploy on our sensor node network management testbed.

REFERENCES

[1] W. L. Lee, A. Datta, and R. Cardell-Oliver. Handbook on Mobile Ad
Hoc and Pervasive Communications, chapter Network Management in
Wireless Sensor Networks. American Scientific Publishers, 2007.

[2] Nithya Ramanathan, Eddie Kohler, and Deborah Estrin. Towards a De-
bugging System for Sensor Networks. International Journal of Network
Management, 15(4):223-234, July 2005.

[3] M. Ringwald and K. Romer. SNIF: A Comprehensive Tool for Passive
Inspection of Sensor Networks. In GI/ITG KuVS Fachgesprach Sensor-
netze, Aachen, Germany, July 2007.

