
A Comprehensive Experimental Comparison of
Event Driven and Multi-Threaded Sensor Node

Operating Systems
Cormac Duffy1, Utz Roedig2, John Herbert1, Cormac Sreenan1

1Computer Science Department, University College Cork, Ireland

Email: {c.duffy,j.herbert,c.sreenan}@cs.ucc.ie
2InfoLab21, Lancaster University, UK

Email: u.roedig@lancaster.ac.uk

Abstract— The capabilities of a sensor network are
strongly influenced by the operating system used on the
sensor nodes. In general, two different sensor network oper-
ating system types are currently considered:event driven and
multi-threaded. It is commonly assumed that event driven
operating systems are more suited to sensor networks as
they use less memory and processing resources. However, if
factors other than resource usage are considered important,
a multi-threaded system might be preferred. This paper
compares the resource needs of multi-threaded and event
driven sensor network operating systems. The resources
considered are memory usage and power consumption.
Additionally, the event handling capabilities of event driven
and multi-threaded operating systems are analyzed and
compared. The results presented in this paper show that
for a number of application areas a thread-based sensor
network operating system is feasible and preferable.

Index Terms— Sensor Networks, Sensor Network Oper-
ating Systems, Performance Evaluation, TinyOS, MANTIS.

I. I NTRODUCTION

Wireless sensor networks consist of battery powered
sensor nodes used to gather information about a moni-
tored physical phenomenon. To ensure long periods of
unattended network operation, the energy consumption of
the sensor nodes must be very low. The operating system
used for the sensor nodes influences energy consumption
on two levels. First, the design of the operating system
defines the minimum resource requirements such as CPU
speed and memory capacity that the sensor hardware must
provide. Second, the operating system design influences
the usage pattern of the CPU and thus defines how often
energy-efficient sleep periods can be activated. As the
sensor node must provide a service, the operating system
design can not be focused solely on energy efficiency.
Sensor readings and incoming messages must be handled
promptly by the sensor node. The responsiveness of the
node must be sufficient to handle events and requests
according to their deadlines.

Application responsiveness is influenced by the oper-
ating system design in two ways. First, the responsive-
ness depends on the task scheduling capabilities of the
operating system. Second, the design of the operating

system influences the degree to which task scheduling is
performed by the system or by the systems programmer.
Obviously, the last point is subjective as it depends on the
quality and knowledge of the programmers. Nevertheless,
the issue has strong impact in real world application
designs.

Currently, operating systems for sensor nodes follow
either one of two different design concepts. Operating
systems following the first design approach are called
event driven. Each operating system process is triggered
in response to an event (e.g. a timer, an interrupt indicat-
ing new sensor readings or an incoming radio packet).
The tasks associated with the event are executed and
thereafter the node is sent to an energy-efficient sleep state
or the next event is processed. As events are processed
sequentially, expensive context switching between tasks is
not necessary. An example of such an operating system
is TinyOS [1]. The second approach follows the classic
multi-threadedoperating system design. The operating
system multiplexes execution time between the different
tasks, implemented as threads. While switching from one
thread to another, the current context has to be saved and
the new context must be restored. This consumes costly
resources in the constrained sensor node. An example of
such an operating system for sensor nodes is MANTIS
[2].

Currently it is assumed that an event driven operating
system is more suitable for sensor networks because less
resources are needed resulting in a more energy-efficient
system. However, the exact figures are unknown and
therefore determined and presented in this paper. On the
other hand it is claimed that a multi-threaded operating
system has superior event processing capabilities. Again,
an in depth analysis is currently missing and is there-
fore shown in the paper. For comparison purposes, the
event-based systemTinyOSand the multi-threaded system
MANTISexecuting the same sensor network applications
on theDSYS25[3] sensor platform are used. The contri-
butions of the paper can be summarized as follows:

1) Comparison of the memory requirements of the
event-based TinyOS and multi-threaded MANTIS
operating system.
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2) Comparison of the event processing capabilities of
the event-based TinyOS and multi-threaded MAN-
TIS operating system.

3) Comparison of the energy consumption of the
event-based TinyOS and multi-threaded MANTIS
operating system.

The results presented in the paper can be used to decide
which type of operating system should be used for a
specific sensor network application. The results also show
that for a number of application areas a thread-based
sensor network operating system is actually feasible and
even preferable.

The rest of the paper is organized as follows. The
next section describes related work in the research area
of operating systems for sensor networks. Section III
gives an overview of the operating systems TinyOS and
MANTIS. Section IV describes the sensor platform, appli-
cation scenarios and their implementation as used for the
comparative experiments. Sections V,VII and VI present
the experimental comparison of the operating systems.
Section VIII concludes the paper.

II. RELATED WORK

Historically, there has been much debate on whether
an event-based or multi-threaded architecture is more
efficient. To decide which operating system architecture
should be used, the specific application environment of
interest has to be considered as each application envi-
ronment dictates very specific constraints. Unfortunately,
results obtained for one application environment are nor-
mally not directly applicable to another environment.
Thus, a comprehensive study covering a multitude of
application scenarios is required.

Preliminary results of our research presented in this
paper were published in [4]. This paper describes the
performed experiments in much greater detail. In addi-
tion, the results and their implications are analyzed and
discussed.

Besides our preliminary work, no published research
exists that presents a comprehensive comparison of event-
based and multi-thread sensor network operating systems
taking event processing, energy consumption and memory
usage into account. The lack of such a study is the main
motivation for the work presented in this paper. Existing
work targets only a subset of aspects investigated in this
paper. For example papers analyzing or describing one
specific operating system (e.g. [5], [6], [7], [8], [9]), or
publications comparing only one aspect (e.g. memory
usage in [6]). As each single existing analysis is based
on different assumptions and experimental setups, it is
not possible to extract an objective comparison.

As previously mentioned, the choice of operating sys-
tem design has an impact on the way an application is
programmed. In [10] the event-based system CONTIKI[7]
uses a programming concept called “proto-threads” which
allows the programmer to develop a program using a
multi-threaded programming syntax. It is argued that
an event-based system is more power efficient but that

programming concurrent (sensor network) applications
with threads as opposed to event handlers is easier for
the programmer. The proto-threads in CONTIKI allow
a combination of both benefits. However, an objective
performance comparison of an event-based and multi-
threaded system is not provided.

In [11] it is argued that TinyOS, in contrast to MAN-
TIS, has a problem with multiplexing long running tasks
and short running tasks. However, an in-depth analysis
- an analytical evaluation or by measurement - of the
task handling problem is not given. It is argued that both
operating systems should be combined to overcome the
existing problems. As a solution, the complete TinyOS
operating system is executed as a thread in MANTIS. If
tasks in TinyOS need to be able to preempt other tasks,
they can be executed in a separate MANTIS thread. Very
similar earlier work [12] uses the AvrX [13] as a multi-
threaded extension of the TinyOS scheduler. In this work,
the event processing capabilities of the basic TinyOS and
the modified AvrX extended TinyOS are investigated (a
very similar experimental setup to the setup described in
Section IV is used for evaluation). However, an analysis of
other parameters such as power consumption and memory
usage is omitted. The differences of a generic thread-
based system are also not investigated. In summary, the
research focus of [11] and [12], is to integrate multi-
threaded features in TinyOS.

In [14] TinyOS is compared with eCos, an embedded
multi-threaded operating system. eCos is not specifi-
cally a sensor network operating system as many of
the core operating features are designed for more com-
plex embedded processors. The paper does evaluate both
memory, processing performance and power efficiency.
For processing performance the number of clock cycles
required to process kernel functions are summed up, but
actual application performance is not investigated. The
power performance is compared theoretically based on
the memory requirements of each operating system, but
no investigation into operating system power-management
is analyzed in this paper.

To our knowledge, this is the first work that provides
specific data to determine the effectiveness of both an
event-based and a multi-threaded operating system in a
range of application scenarios.

III. SENSORNODE OPERATING SYSTEMS

Two different sensor network operating system types
are currently considered:event drivenandmulti-threaded.
To compare both operating system concepts, a well known
and widely used implementation of each was selected,
namelyTinyOSand MANTIS. The following paragraphs
describe the basic functionality of each operating system,
especially regarding power consumption and event pro-
cessing which are the parameters of interest in our study.
It has to be noted that the terms event, task and thread are
used differently within the literature describing TinyOS
and MANTIS. Thus, definitions are given below to avoid
confusion:
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• Event:An environmental occurrence.
• Interrupt: An interrupt triggered by an event.
• Event-Handler:A system function, invoked in re-

sponse to an interrupt.
• TinyOS Task:A deferred procedure, usually triggered

by an event-handler.
• MANTIS Thread:A portion of the MANTIS OS

that can run independently of, and concurrently
with, other portions of the OS, typically invoked in
response to an interrupt.

A. TinyOS

The TinyOS [1] operating system was one of the
first operating systems specifically designed for wireless
sensor networks. The inventors felt that an event driven
light-weight kernel was the best solution to handling a
“large number of concurrent flows and juggle numerous
out-standing events”.

The operating system and specialized applications are
written in the programming language nesC and are orga-
nized in self-contained components. A simplified view of
this component structure is shown in Fig. 1. Components
consist of interfaces in the form ofcommandand event
functions. Components are assembled together, connect-
ing interfaces used by components to interfaces provided
by others, forming a customized sensor application. The
resulting component architecture facilitates event-based
processing by implementing event-handlers and TinyOS
tasks. TinyOS tasks are deferred function calls and are
placed in a simple FIFO task-queue for execution (see
Fig. 1, line 8). TinyOS tasks are taken sequentially from
the queue and are run to completion. Once running,
the TinyOS task can not be interrupted (preempted) by
another TinyOS task. Event-handlers are triggered in
response to a hardware interrupt and are able to preempt
the execution of a currently running TinyOS task (see
Fig. 1, line 5). Event-handlers perform the minimum
amount of processing to service the event. Further non
time-critical processing is performed within a TinyOS
task that is created by the event handler. After all TinyOS
tasks in the task queue are executed, the TinyOS system
enters a sleep state to conserve energy (see Fig. 1, line 10).
The sleep state is terminated if an interrupt occurs.

Functionality in TinyOS is distributed among many
components. Each function (e.g. sensing or packet for-
warding) is normally segmented into a series of sub-
steps, (task, command and event hander functions). Thus,
functionality can execute concurrently by multiplexing
these atomic sub-steps. When used correctly, this ap-
proach leads to an efficient system structure. On the
other hand it is difficult for the programmer to achieve
a proper division of functionality. The programmer must
be familiar with the internal affairs of all low level
components in the system. Additionally, it can be difficult
for some programmers to handle functionality in such
sub-steps.

1: component_A
2: task do(){...}
3: command X(){...}
4: event Y(){...}

5: int_A
6: ...
7: post_task(A)

8: TOSH_run_task()
9: while(TOSH_run_next_task())

10: TOSH_sleep()

Fig. 1. TinyOS structure

B. MANTIS

The MANTIS operating system [2] is a light-weight
multi-threaded operating system capable of multi-tasking
processes on energy constrained distributed sensor net-
works. The system provides a classical multi threaded
system in the context of wireless sensor networks.

Each task the operating system must support can be
implemented - using standard C - as a separate MANTIS
thread. A simplified view of this thread structure is shown
in Fig. 2. A new thread is initialized and thread processing
is started (line 1). Processing might be halted using the
functionmos_semaphore_waitwhen a thread has to wait
for a resource to become available (line 3). An interrupt
handler (line 4) using the functionmos_semaphore_post
(line 5) is used to signal the waiting thread that the
resource is now available and thread processing is re-
sumed. While a thread is waiting on a resource to become
available, other threads might be activated or, if no other
processing is required, a power saving mode is entered.
Power saving is handled by a thread called idle-task
which is scheduled when no other threads are active.
Thread scheduling is performed within the kernel function
dispatch_threadshown in Fig. 2, line 6. This function
searches a data structure calledreadyQfor the highest pri-
oritized thread and activates it. When thedispatch_thread
function is called, the current active thread is suspended
calling PUSH_THREAD_STACK(line 7) which saves
CPU register information. The highest priority thread
is then selected from thereadyQ (line 8) and its reg-
ister values are restored by thePOP_THREAD_STACK
function (line 10). Before thedispatch_threadfunction
is called, thereadyQ structure is updated. Threads that
are currently sleeping or that are waiting on a semaphore
(resource) are excluded from thereadyQ. The scheduling
through thedispatch_threadfunction can be initiated by
two different means.Dispatch_threadis called when a
semaphore operation is called (e.g. to let the current
thread wait on a resource).Dispatch_threadis also called
periodically by a time slice timer to ensure processing of
all threads according to their priority.

Like all multi-threaded operating systems, MANTIS
was developed with a complement of built-in mem-
ory protection techniques such as binary and counting
semaphores to manage and coordinate threads. MANTIS
threads are implemented in the MANTIS kernel with
a static thread table, which stored priority and state
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1: thread_A
2: while(running)
3: ...;mos_semaphore_wait(A1);...

4: int_A
5: ...;mos_semaphore_post(A1);...

6:dispatch_thread()
7: PUSH_THREAD_STACK()
8: CURRENT_THREAD = readyQ.getThread()
9: CURRENT_THREAD.state=RUNNING

10: POP_THREAD_STACK()

Fig. 2. MANTIS structure

information for each MANTIS thread and a pointer to
the thread stack. Typically only 12 MANTIS threads can
be either queued or active at any one time and will
consume 120 bytes of SRAM [2]. The heap space of
each thread is managed by the kernel memory manager.
The memory manager assigns thread space according to a
best-fit policy. Thread heaps will, by default, be assigned
in the lowest possible memory address spaces, ensuring
that a thread heap space doesn’t collide with the processor
heap.

By defining processes as threads, algorithms can be
represented in a more intuitive sequential fashion as
processes don’t need to be segmented into specific states
when waiting for a system event to occur. Compared to
TinyOS, functionality is multiplexed by the OS, not by the
programmer. Thus, MANTIS has the potential of being
easier for programmers to use.

IV. EVALUATION SETUP

For the evaluation of event processing capabilities,
power consumption patterns and memory usage of
TinyOS and MANTIS, both operating systems were
ported to the same sensor platform, the DSYS25 [3].
Additionally, measurement facilities are integrated in both
operating systems which allow us to observe the required
parameters without altering the system behavior. To ac-
tually perform the comparative evaluation, an abstract
application scenario is defined and implemented on the
sensor nodes. This abstract application scenario corre-
sponds to a broad spectrum of real-world sensor network
deployments.

In the following paragraphs, the selected abstract ap-
plication scenario is motivated and described. Thereafter,
the DSYS25 sensor-node platform, the ported operating
systems and the measurement hooks are explained. This
evaluation setup is used for the experiments described in
the remaining sections of the paper.

A. Application Scenarios

To evaluate operating system performance, an applica-
tion context must be defined. Subsequently, the operating
system performance of a sensor node supporting the given
scenario can be investigated. Obviously, to obtain useful
results, it is important that the investigated application
scenario corresponds to real-world deployment and usage
scenarios of wireless sensor networks.

In many cases, a sensor network is used to collect
periodically obtained measurement data at a central point
(sink or base-station) for further analysis. The sensor
nodes in such a network perform two major tasks. Sensor
nodes perform the sensing task and they are used to
forward the gathered data to the sink. If the sink is not
in direct radio range of a node, other nodes closer to
the sink are used to forward data. The execution time
of the sensing task will depend on the nature of the
physical phenomenon monitored and the complexity of
the algorithm used to analyze it. Therefore, the position
of the node in such a network and the complexity of
the sensing task define the operating system load of the
sensor node. The complexity of the sensing task is varied
in the experiments and hence the application scenario is
considered abstract, as it can be compared with many
different real-world deployment scenarios.

The complexity of the sensing operation depends on
the phenomenon monitored, the sensor device used and
the data pre-processing required. As a result, the operating
system can be stressed very differently. If, for example, an
ATMEGA128 CPU with a processing speed of4Mhz is
considered (a currently popular choice for sensor nodes),
a simple temperature sensing task (processed through the
Analogue to Digital Converter) can be performed in less
than 1ms [15]1. In this case only a16bit value has to
be transferred from the sensing device to the CPU. If
the same device is used in conjunction with a camera,
image processing might take some time before a decision
is made. Depending on camera resolution and image
processing performed, a sensing task can easily take more
than100ms [16]. Other application examples documented
in the literature are situated in between these values. For
example if a sensor value needs to be cryptographically
secured before transmission, the sensing task is prolonged
by 5ms [17]. Thus, combined with a simple sensor, a
sensing task can be around10ms. Note that a long sensing
task can be split-up into several sub-tasks. However, in
practice this is often not possible due to two factors.
First, many data-processing algorithms are difficult or
impossible to be split into separate tasks. For example
some image processing algorithms cannot be divided, as
explained in [16]. Second, it is difficult from a program-
ming (or programmers) perspective to handle and manage
such divided entities. The experimental evaluation spans
the task sizes described (1ms...100ms). Thus, the abstract
application scenario corresponds to a wide range of real
world application scenarios.

The following paragraphs give an exact specification of
the abstract application scenario used, which is defined
by its topology, traffic pattern and sensing pattern. The
application scenario is then implemented on the DSYS25
sensor platform for evaluation.

1This calculation is based on the amount of processing time necessary
to process an analog sensor reading taken from the Atmega ADC. The
ADC is typically used to process signals from analog sensorssuch as a
temperature sensor.
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n=3

n=1

n=2

Fig. 3. Binary Tree

Topology: The sensor network is used to forward
sensor data towards a single base-station in the network. It
is assumed that a tree topology is formed in the network.
To simplify the evaluation process, a binary tree shown
in Fig. 3 is assumed. Depending on the positionn in the
tree, a sensor nodesi might process varying amounts of
packets. Leaf nodes put less demand on the processor.
Nodes closer to the root are more involved in packet
forwarding and these nodes have to multiplex packet
forwarding operations with their sensing operations. The
position in the tree has therefore - besides other param-
eters - a significant impact on the event processing and
energy consumption properties of the node.

Sensing Pattern:A homogeneous activity in the sensor
field is assumed for the abstract application scenario.
Each sensor gathers data with a fixed frequencyfs. Thus,
every ts = 1/fs a sensing task of the durationls has to
be processed. As mentioned, the durationls is variable
between ls = 4000 and ls = 400000 clock cycles
depending on the type of sensing task under consideration
(Which corresponds to1ms/100ms on a4MHz CPU).

Traffic Pattern: Depending on the positionn of a node
si in the tree, varying amounts of forwarding tasks have to
be performed. It is assumed that no time synchronization
among the sensors in the network exist. Thus, even if
each sensor produces data with a fixed frequency, data
forwarding tasks are not created at fixed points in time.
The arrival rateλn of packets at a node at tree-leveln is
modeled as a Poisson process. As the packet forwarding
activity is related to the sensing activity in the field,λn

is given by:

λn = (2n
− 1) · fs (1)

This equation is a simplification; queuing effects and
losses are neglected, but nevertheless provides an accurate
method to scale the processing performance requirements
of a sensor network application. It is assumed that the
duration (complexity)lp of the packet forwarding task, is
lp = 4000 clock cycles. This is the effort necessary to
read a packet from the transceiver, perform routing and
re-send the packet over the transceiver. This is a common
processing time and was obtained analyzing the DSYS25
sensor nodes using the Nordic radio [18].

Summary: The abstract scenario described above is
used in Section V, Section VI and Section VII to compare
event processing capabilities, energy consumption and
memory usage of the two operating systems. For the
evaluation, a single DSYS25 sensor node is fitted with
the operating systems under investigation and the packet
forwarding tasks and sensing tasks are generated such
that the nodes activity corresponds to a place in the tree
topology. The parameters defining the abstract application

TABLE I

EVALUATION SETUP

Task Duration Clock cycles Frequency

Forwarding Fixed:

1ms

Fixed:

lp = 4000

Variable, Poisson:

λn = (2n
−1) ·f

n ∈ 1, ..., 8
Sensing Variable:

100ms,
75ms,
50ms,
10ms,
5ms,
1ms

Variable:

ls = 400000,
ls = 300000,
ls = 200000,
ls = 40000

ls = 20000,
ls = 4000

Fixed, Periodic:

fs = 1 1

s

Fig. 4. DSYS25 Sensor Hardware

are set for all following experiments according to the
values or ranges listed in Table I (Set for the4MHz
CPU used in the DSYS25 platform).

B. Evaluation Platform

The DSYS25 [3] is a sensor platform developed as
part of the D-Systems project at University College Cork
and the Tyndall Institute. The hardware platform is an
ATMega128L micro-controller based Lego-like 25mm x
25mm stackable system. Its modular nature lends itself to
the development of numerous layers for use in different
application scenarios. Layers can be combined in an inno-
vative plug and play fashion and include communication,
processing, sensing and power. The sensor hardware is
depicted in Fig. 4.

The chosen Nordic nRF2401 transceiver performs com-
munication tasks such as address and CRC computation,
freeing the micro-controller from these activities. Thus the
micro-controller can be either used for processing other
tasks or can be sent to an energy saving sleep mode.

C. OS Ports and Measurement Facilities

The goal of the study is a comparison of operating
system concepts. To provide a fair comparison our exper-
iment hinges on a number of important setup/experimental
parameters.

Firstly, conceptual differences rather than functional
differences between the two operating systems must be
measured. For example the networking stack used in
TinyOS and MANTIS provide different functionality (e.g
MAC protocols, duty cycles ....). Thus, a direct com-
parison of the operating systems might be caused by
functionality unrelated to the operating system. To avoid
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this problem, the operating systems are reduced to their
bare minimum and simple components emulating the
behavior of the aforementioned abstract application are
implemented.

Secondly, in measuring the performance of each appli-
cation it is imperative that the performance of the abstract
application is not hindered. The experiment revolves
around a setup in which tasks are dispatched up until
the end time of the experiment. Performance is evaluated
as to how timely each task is completed with respect
to this clock. However in measuring clock cycles we
take away processing resources from the tasks and would
therefore provide imprecise measurements. This overhead
is carefully calculated with an additional hardware timer
and subtracted from the results.

TinyOS: In case of TinyOS, the abstract application is
implemented using nesC, the programming language used
in TinyOS. The packet processing task and the sensing
tasks are initiated by an interrupt. For the experiment,
the interrupt is not generated by the transceiver or sensor
hardware, instead, the interrupt is generated by a timer.
The timer intervals are configured by the parameters
given for the abstract application (λn, fs, see Table I) .
Within the interrupt routine for the transceiver, a TinyOS
task for packet forwarding is created and queued in
the task list. The size of the packet forwarding tasklp
is set to 4000 clock cycles (implemented as assembler
NOOP operations, to ensure cycle accurate timings). In
the interrupt routine of the sensor, the sensing task is
created. The sensing task has the size (complexity)ls
defined by the application scenario.

The TinyOS is modified such that essential parameters
can be measured during the experiment. The task creation
time in the interrupt routine is recorded. When a task
finishes, the task duration from creation to completion is
known. Additionally, idle times of the CPU are recorded.
The time from the completion of the last task to the
occurrence of a new event is measured. The records of
these two parameters - task execution time and system
idle time - enables us to analyze event processing and
power consumption capabilities of the operating system.

MANTIS: The thread-based architecture of the MAN-
TIS operating system requires a syntactically different
implementation of the abstract application. The sensing
task and the packet forwarding task are implemented as
MANTIS threads. Again, the interrupts initiating packet
processing and sensing are generated by a timer, not
the hardware. The timer intervals are configured by the
parameters given for the abstract application (λn, fs, see
Table I). Following an interrupt, the appropriate interrupt
routine is called. Within the interrupt routine, the neces-
sary thread for processing is activated. MANTIS allows
for a prioritization of threads. The packet processing
thread is configured to have a higher priority than the
sensing thread. The size of the packet forwarding thread
lp is set to 4000 clock cycles The sensing thread has the
size (complexity)ls defined by the application scenario.
When a thread completes execution, it is set to sleep and

TABLE II

MEMORY USAGE

Operating System Programmable Flash
Memory (kB)

Required RAM (B)

TinyOS 9 283
MANTIS 13.1 287

waits to be woken again by the appropriate interrupt.
The time from waking a thread until its completion is

measured during the experiments. Thus, an analysis of the
event-processing capabilities of MANTIS is possible. If
no thread is active, MANTIS activates an idle thread. The
idle thread is used to implement the power management
capabilities of the operating system. The idle thread de-
cides which power saving mode has to be activated. Power
saving is terminated when an interrupt occurs. The time
from activating the idle thread until an interrupt occurs
is measured. Thus, the power management capabilities of
MANTIS can be investigated.

The following Sections V, VI, VII detail how each
performance result was measured and the findings and
relevance of these results.

V. M EMORY USAGE

The memory footprint of the operating system has to be
as small as possible. Additional memory increases the cost
of the sensor nodes and the more memory is integrated in
the hardware, the more energy is consumed by the system.
In practice, not each reduction of memory requirements
leads to a cheaper and more energy-efficient system. A
sensor built out of standard components normally uses a
chip combining CPU and memory. Whether the system
uses the available memory or not has little impact on the
power consumption of the chip. Thus, improvement can
only be expected if memory (and CPU) requirements can
be reduced to a point where a simpler CPU/memory chip
is available.

A. Measuring memory

In order to determine operating system memory usage,
we use the GNU project binary utility avr-size [19]. Avr-
size is a flash image reader that outputs the program size,
and the initialized and uninitialized memory size.

B. TinyOS

The TinyOS operating system core consists of an ab-
solute minimum of functionality. Simple algorithms such
as the FIFO queuing algorithm are used to implement
core TinyOS features such as the task scheduler, in order
to maintain compatibility with very limited processors. A
structure is provided to multiplex many timed events with
a single hardware timer (see Section III). All additional
functionality is provided by the application code in the
form of a component-based architecture. The TinyOS core
elements alone do not form a useful system. Thus, it is
necessary to analyze the memory usage of the TinyOS
operation system combined with specific application code.
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Operating system and application code are compiled into
a single binary file which is executed on the sensor
node. Depending on the application used, the executable
requires an extremely small memory space. The abstract
application scenario presented in Section IV is used for
the evaluation.

Memory requirements of the OS/Application are fur-
ther reduced by a specialized custom compiler (nesC)
provided with the TinyOS framework. The nesC compiler
exploits the component-based architecture to include only
components required by the application’s wiring schema
in the compiled program image. The nesC compiler
can further deduce and remove any unused component
functions within the application configuration [20]. A
TinyOS program image therefore contains no program
code unrelated to the target application.

The necessary memory space for TinyOS providing the
abstract application functionality is shown in Table II. The
programmable flash memory, represents the amount of
space to store the application code. The RAM field repre-
sents the amount of statically compiled memory/variables
required by the application at runtime. Both applications
will require more RAM to assign memory space for local
variables which are dynamically allocated at run-time2.

C. MANTIS

MANTIS OS provides more core functionality. The op-
erating system core must provide functionality to handle
multiple threads. Furthermore, preemption and context
switching must be implemented within the operating
system core. This includes semaphores, timer structures
and memory management. Semaphores must be imple-
mented to ensure that critical sections of code cannot be
used by multiple threads at the same time. A memory
manager must be set up to dynamically assign S-RAM
address space during thread initialization. Three different
hardware timers are required to implement time-slicing,
general purpose timers and a sleep timer. As such the
complexity of the MANTIS kernel requires considerable
overhead in code size, memory requirements and proces-
sor complexity. An application is implemented as a set of
MANTIS threads. Kernel and application are compiled
into one binary file executed on the CPU. To be able to
compare the memory footprint of MANTIS with TinyOS,
the abstract application scenario is used for evaluation.

The MANTIS OS framework does not provide any
tools to optimize memory size at compile time. Thus, it is
left to the programmer to decide which operating system
elements should be included in the binary. In practice, it is
very difficult to determine which elements are necessary
and a tool - comparable to nesC in TinyOS - would be
very useful.

The necessary memory space for MANTIS to provide
the abstract application functionality is shown in Table II.

2By dynamic memory, we refer to memory assigned by a stack, not
the more common term of heap memory allocation.

D. Discussion and Findings

The initial build of each operating system highlights
the huge memory savings gained by using TinyOS in
combination with the nesC compiler. By compiling only
the necessary functionality the nesC compiler can build
extremely optimized binary images. A direct memory
comparison between the operating systems is not fair if no
optimization is performed for MANTIS. Thus, the MAN-
TIS operating system was optimized manually for the
experiment by removing all non-essential functionality.
The results are shown in Table II. With this optimiza-
tion, the MANTIS operating system takes nearly a third
extra programmable memory space the TinyOS operating
system. Both operating systems statically allocate almost
equal amounts of RAM, however both applications will
require more memory to cater for the stack (local/non
static memory). Furthermore the MANTIS scheduler dy-
namically allocates a memory pool to store the stack and
processor registers for each thread. If there is insufficient
memory to store both the threads and stack, then during
the course of execution, memory will be corrupted and
the application will fail.

The experimental results show that an optimization
method, comparable to the nesC features in TinyOS,
would be desirable for the MANTIS operating system.
If a standard Atmel 128 processor is used to realize such
a system, the applications realized with either operating
system can be accommodated easily in the memory3. If
a more constrained platform is selected, such as the PIC
16 micro processor [21], a TinyOS implementation might
be the only option to realize such a system.

VI. EVENT PROCESSING

Many monitoring tasks in sensor networks require a
responsive network reaction as sensing data has to be
reported in a timely fashion. If the operating system
of a sensor node is not capable of quickly responding
to events, such time-critical applications are difficult to
build. Furthermore, it is desirable to have sensor nodes
that react to events in a deterministic and constant way.
Sensor nodes with a predictable and constant performance
can be used as building blocks for sensor network appli-
cations that require more deterministic network behavior.

This section investigates the event processing capabili-
ties of the TinyOS and MANTIS operating system while
supporting the abstract application scenario (see Section
IV-A). The average processing time required to handle the
packet forwarding task in the abstract application scenario
is investigated. Additionally, the standard deviation of this
processing time is investigated to determine the stability
of processing times.

A. TinyOS

The simple TinyOS scheduler schedules tasks to run
atomically with a FIFO queuing algorithm. Tasks will

3The Atmega 128 is capable of supporting 128kB of programmable
flash memory, and 4096B of Static Random Access Memory(SRAM)
[15].
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execute atomically with respect to one another, and can
only be preempted by an asynchronous event (an event
spawned from a hardware interrupt). The scheduling al-
gorithm is very simple, and it can therefore schedule tasks
with a minimum processing overhead. By scheduling
tasks to run atomically, TinyOS precludes any potential
deadlock errors or any potential inter-task race conditions,
greatly simplifying the task of programming the appli-
cation. However, atomic/non-preemptive task schedules
can result in non-ideal situations. A long TinyOS task
(e.g. a sensing task) is occupying the CPU. Periodic
interrupts occur that signal the arrival of packets. The
packets are read from the radio in the interrupt routine
(interrupting the long TinyOS task) and a TinyOS task
for the packet processing is created to be processed after
the long TinyOS task. Packet processing is deferred in
a non-predictable way and deadlines regarding packet
processing can be missed. Thus, if an application requires
more precise control of the task execution schedule, the
existing TinyOS scheduler is not suitable.

The task-blocking problem can be tackled with a num-
ber of different solutions. The functionality of the high-
priority tasks can always be programmed into an interrupt
handler. However code executed in an interrupt handler
will block all other activity and should therefore be used
sparingly. A more viable solution would be to segment
the long sensing task into a series of sub-tasks, such that
higher priority TinyOS tasks will not be blocked for the
full duration of the long task execution time. However, as
described in Section IV-A the segmentation of processing
functions is often not possible or simply not done by the
programmer.

B. MANTIS

In the multi-threaded MANTIS operating system, all
processes are defined as individual MANTIS threads
which can be preempted at any time during the course
of execution. MANTIS thread preemption provides a
significant scheduling advantage, as all higher priority
tasks can be executed on demand. Thus, it is easier
to ensure that deadlines of high priority tasks are met.
However, MANTIS thread preemption facilitates extra
processing cost, as the MANTIS scheduler must swap
active/idle threads in addition to managing a memory
pool to store the state of inactive threads. These extra
costs add to the overall processing time needed to realize
the task functionality. In the MANTIS operating system
the processor will consume approximately 1200 clock
cycles from the time the interrupt occurs until the time the
tasks starts executing. The significance of this overhead
depends on the length of each process and the number of
context switches.

A long sensing task, implemented as low priority
MANTIS thread can be interrupted for packet process-
ing. Packets arrive at the radio triggering interrupts. An
interrupt causes a high priority MANTIS thread to be
activated for packet forwarding. As context switch time

and packet forwarding have deterministic time bounds,
deadlines regarding packet processing can be met.

C. Measuring Event Processing Capabilities

To ascertain the operating system responsiveness, ex-
periments with the network model and experiment setup
shown in Section IV-A are carried out. Two tasks, a
sensing task and a packet processing task are executed
concurrently on the same processor. In this model, the
(lengthily) sensing task and the packet-processing task
compete for CPU resources on the sensor node. It is
assumed that the packet-processing task within the nodes
has priority so that deadlines regarding packet forwarding
can be met. Thus, in the MANTIS implementation, the
packet processing task has a higher priority than the sens-
ing task. In the TinyOS implementation, no prioritization
is implemented as this feature is not provided by the
operating system.

Task Execution Time:To characterize processing per-
formance of the operating system, the average task execu-
tion time Et of the packet forwarding task, is measured.
During the experiment,J number of packet processing
timesej are recorded. To do so, the task start timeestart

and the task completion timeestop are measured and the
packet processing time is recorded ase = estop − estart.
In case TinyOS is used,estop is the time when the packet
processing task is completed and is removed from the task
queue. When MANTIS is used,estop is the time when the
packet processing thread finishes and is sent into the wait
state. In both cases, the start timeestart is recorded in the
interrupt routine when the packet processing is initiated.
The average task execution timeEt is calculated at the
end of the experiment as:

Et =

∑

ej

J
(2)

In order to investigate how deterministic the packet
processing time is, the standard deviation of the average
execution time is also calculated.

D. Evaluation

In the experiment, the average task execution timeEt

is determined for TinyOS and MANTIS supporting the
abstract application scenario. The average task execution
time Et is shown in Fig. 5.

Where MANTIS is used, it can be observed that the
average packet processing time is independent of the
sensing task execution time. Furthermore,Et is also
very independent from the positionn of the node in
the tree. Only under heavy load, the average processing
time slightly increases. This is due to the fact that under
heavy load packet forwarding tasks have to be queued
(see Fig. 5 a)).

Where TinyOS is used, the average processing time
for the packet forwarding taskEt depends on the length
of the sensingls of the sensing task. In addition, under
heavy load the queuing effects of the packet forwarding
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Fig. 5. Average packet processing timeEt , scheduled with a sensing task of execution timels.

tasks also contribute somewhat to the average processing
time (see Fig. 5 b)).

The thread prioritization capability of MANTIS is
clearly visible in the experiment results. Packet processing
times are independent of the concurrently executed and
lower priority sensing task. In TinyOS, sensing and packet
forwarding task delays are coupled, and the influence of
the sensing activity on the packet forwarding activity is
clearly visible.

In the case of small sensing tasks withls ≤ 5ms,
TinyOS outperforms MANTIS. MANTIS has to perform
a context switch (either from the idle task or a running
sensing task) and this overhead adds to the average
execution timeEt.

Fig. 6 shows the standard deviation of the packet
forwarding task execution timeEt for a sensing task of
lengthls = 75ms. In the case where MANTIS is used, the
standard deviation in the task processing time is very low.
The standard deviation is noticed only for a high system
load. This is caused by packets queuing and waiting to
be processed. If TinyOS is used, a huge variation in
the processing times is observed. This variation increases
considerably with the size of the sensing task. This is due
to the fact that a packet processing task in TinyOS has
to wait for a sensing task to finish. However, for small
sensing tasks, as shown in Fig. 6, the standard deviation
of Et is very small.

E. Discussion and Findings

It is evident that MANTIS provides better stability
and predictability of packet processing time than TinyOS.
Additionally, MANTIS decouples the packet processing
time from the sensing time delay.

However, if small sensing tasks are used, TinyOS is
able to provide a similar stability in the packet processing
times. In fact, in the case of small processing times,
TinyOS is capable of processing incoming traffic faster
as there is no operating system overhead in the form of
context switches.

If a sensor network with a controlled and predictable
network performance has to be implemented, a deter-
ministic packet forwarding behavior of sensor nodes is

required. For such an application, the MANTIS operating
system would generally be more suitable, especially if
processing intensive sensing tasks have to be supported
concurrently. However, in the particular case of small
sensing tasks, TinyOS is the better choice. The same
stability in packet processing time can be achieved while
packet processing requires less time. Thus, a higher
throughput can be achieved.

Our findings regarding event processing of event-based
and multi-threaded sensor network operating systems can
be summarized as follows:

• A multi-threaded system is preferred if long (sens-
ing) tasks have to be supported concurrently with the
packet forwarding tasks.

• An event-based system is preferred if short (sensing)
tasks have to be supported concurrently with the
packet forwarding tasks.

While these conclusions are not surprising, they neverthe-
less provide quantitative results on which to support the
choice of operating system.

VII. E NERGY CONSUMPTION

The lifetime of a sensor network is related to the
energy consumption of the sensor nodes. Therefore, the
task of reducing a sensor node’s power consumption is of
paramount importance. Operating systems for sensor net-
works achieve low power consumption rates by exploiting
processor idle times. Available idle time can be used to
put the CPU in an energy-efficient power saving mode.
Depending on the processor used, different power saving
modes might be available. The different power saving
modes vary in the time and energy necessary to enter
and leave the mode and the power spent in the particular
mode. Thus, to determine the energy efficiency of sensor
network operating systems, it is necessary to investigate
the available idle times during system operation.

This Section investigates the available idle time in
TinyOS and MANTIS while supporting the abstract appli-
cation scenario (see Section IV-A). First, the ratio between
idle and active time is determined as this number dictates
how much energy can possibly be saved. Second, the
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Fig. 6. Standard deviation of packet processing timeEt, scheduled with a sensing task of execution timels = 1ms and ls = 75ms.

distribution of idle time periods is analyzed as the length
and variation of available idle periods determines which
power saving mode can be used by the processor.

A. TinyOS

TinyOS executes all pending tasks sequentially (See
Section III). A processing task is only interrupted by
hardware interrupts which in turn process interrupt ser-
vice routines. Thus, the TinyOS operating system spends
almost all processing activity in the execution of the
application functionality. Little processing effort is spent
on operating system related functionality.

As soon as the task queue is emptied and no events
have to be processed, the TOSH_sleep() routine is called.
In this routine it can be decided how the CPU should
spend the available idle time. More specifically, it can
be decided which power saving mode will be used. Here
it is theoretically possible to use an algorithm to predict
how long the idle period will be and to select the power
saving mode accordingly. Such an algorithm might take
application layer knowledge into consideration. However,
the current implementation of TinyOS only considers the
simplest available power saving mode and optimization
options are not exploited.

B. MANTIS

The drawback of a multi-threaded operating system,
is that a considerable part of the CPU processing time is
needed for the organization of the system itself. A context
switch between different threads requires the operating
system to save the context information. This operating
system overhead can not be spent for power efficient
sleep times. The question is how much overhead has to
be allocated for the operating system itself.

If no MANTIS threads are scheduled for execution
and no events have to be processed, the system ex-
ecutes a so-called idle-task. The function of the idle-
task is to determine which power saving mode should
be activated. For this decision, the idle-task uses thread
state information. If all threads are waiting for a service
to respond, i.e the radio to return an acknowledgment
message, then it is in a THREAD_STATE_IDLE and the
idle-task will activate a CPU idle mode as soon as all
threads finish processing. If however, all threads are in
a THREAD_STATE_SLEEP then there are no threads
waiting on a service to complete, and the CPU will enter
a sleep mode once all threads finish processing. This
simple policy is used as it is assumed that a thread in

THREAD_STATE_IDLE will become active very soon
and no long idle period can be expected. The idle mode
can be activated without a transition phase but is not
very energy-efficient. The sleep mode has a transition
phase before the actual power saving starts. This simple
policy helps to optimize power consumption and depends
very much on the type and specification of the CPU
used. However, a better policy might be available if, for
example, application layer knowledge is used to predict
idle times.

C. Measuring Power Efficiency

To measure the power efficiency of each operating
system, we use the abstract application scenario in Section
IV-A, to evaluate each operating system under varying
degrees of duress. Both operating system applications
must process a sensing task and a number of packet
forwarding tasks. The frequency of packet forwarding
tasks increases progressively as the position of the sensor
node reaches the root of the network topology, i.e. the
number of child nodes increase.

In evaluating power efficiency, the aforementioned op-
erating system specific power management policies are
ignored (In fact, only MANTIS currently implements
such a policy). This study investigates the available idle
times for power management purposes, not the different
power management policies available. An efficient power
management policy must be tailored to the particular
CPU used and can take application layer information into
account. However, the results presented can be used to
design appropriate power management strategies.

Idle time: The first parameter measured is the per-
centage idle time. The percentage idle time indicates
how power efficient the system can be. The longer the
idle time the more energy-efficient the system. In the
experiment, the abstract application scenario is executed
by the sensor node running TinyOS or MANTIS. The
duration of the experimentT and the durationik of k
idle time periods during the experiment is recorded.i is
defined asi = istop − istart . In case of TinyOS,istart

is the point in time when to TOSH_sleep() is called. In
case of MANTIS,istart is defined as the point in time
when the idle-task begins execution.istop is for TinyOS
and MANTIS the point in time when the system resumes
operation by processing an interrupt. All idle periodsik
are summarized and the percentage idle time,It, the
percent of experiment time, in which the processor is idle,
which is calculated as follows:
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It =

∑

ik
T

· 100 (3)

The percentage idle time is compared with the the-
oretical maximal percentage idle time,Imax

k . Imax
k is

calculated by taking only application processing of the
abstract application scenario into account. Thus,Imax

k

represents the percent of running time the processor would
be idle for an ideal operating system which would have no
operating system processing overhead.Imax

k depends on
the task sizesls and lp of sensing and packet forwarding
task, the frequency of the sensing taskfs, the CPU speed
scpu and the positionn of the node in the abstract appli-
cation scenario.Imax

k is calculated using Equation (1):

Imax
k =

(

1 −
fs

scpu

· (ls + lp · (2
n
− 1))

)

· 100 (4)

The operating system overheadIo
k is calculated using

Equation (3) and Equation (4):

Io
k = Imax

k − It (5)

Idle Periods: The second parameter of interest is the
average length of the idle periodsIp. This parameter
shows which sleep modes a CPU could use. Long contin-
uous idle periods allow for deep sleep modes. Again, it
is necessary to record the durationik of all K idle time
periods during the experiment. The average length of the
idle periodIp is calculated as:

Ip =

∑

ik
k

(6)

The standard deviation of the idle period length is also
calculated to determine the stability of the idle period
lengths.

D. Evaluation

In the first experiment, the percentage idle timeIt

is determined for TinyOS and MANTIS supporting the
abstract application scenario. The idle timeIt is shown
in Fig. 7.

The time spent in idle mode drops for both operating
systems exponentially with the increasing node position
in the tree described by the parametern. This behavior
is expected as the number of packet tasks increases
accordingly (See Equation (1)). Less obvious is the fact
that the available idle time drops faster in MANTIS than
in TinyOS. The fast drop in idle time is caused by the
context switches in the MANTIS operating system. The
more packet forwarding tasks are created, the more likely
it is that a sensing task is currently running when a packet
interrupt occurs. Subsequently, a context switch to the
higher prioritized forwarding task is needed.

When MANTIS is used, the length of the sensing task
has a significant impact on the idle time. If TinyOS is
used, the length of the sensing task does not influence
idle time that strongly. Again, the difference is down to
the necessary context switches in MANTIS. The longer

the sensing task, the more likely it is that a sensing task
is running when a packet arrives.

As expected, MANTIS proves to be less energy-
efficient than TinyOS. However, in the case of low system
activity both systems have roughly the same energy
efficiency. For example for a leaf node withn = 1 and
a sensing task with the size ofls = 1ms TinyOS is only
0.09% more energy-efficient than MANTIS. In the worst
case, for a node at positionn = 8 and a sensing task
with the size ofls = 1ms TinyOS is 7.6% more energy-
efficient.

If TinyOS is used, the length of the sensing task has
little impact on the idle time measured. This is due to the
low operating system overhead introduced by TinyOS. As
previously mentioned, TinyOS spends nearly all available
CPU time for application processing, not for operating
system related tasks.

The theoretical maximum available idle timeImax
k and

the measured idle time for TinyOS and MANTIS with a
long sensing task ofls = 75ms is shown in Fig. 8 a).
In Fig. 8 b), the resulting operating system overheadIo

k

is shown. As we can see, MANTIS has an increasing
overhead with the increasing activity of the system. The
TinyOS operating system overhead on the other hand is
not very dependent on the load of the system.

Fig. 8 shows the average length of the idle periodsIp

and the standard deviation ofIp for a short sensing task
with the lengthls = 1ms. MANTIS has slightly shorter
idle periods as it has a higher operating system overhead.
Despite this difference, both operating systems achieve
very similar sleeping periods. Also, the standard deviation
in the idle period length is not very different. Thus, both
operating systems can make use of available power modes
in the same way. As shown, the thread-based MANTIS
operating system does not fragment unnecessarily the
available idle times. This effect however might be present
in other thread-based operating system where a periodic
context switch to a kernel-thread is performed.

E. Discussion and Findings

It can be confirmed that the multi-threaded MANTIS
is not as power efficient as the event-based TinyOS
operating system. However, the difference between both
operating systems under specific conditions is not very
big. If the system is not loaded (leaf node withn = 1
and a sensing task with the size ofls = 1ms) a difference
of only 0.09% in idle time is measured. Still, even if the
system is in a heavy load situation (leaf node withn = 8
and a sensing task with the size ofls = 75ms) only a
7.05% difference in the idle time is encountered. Thus, if
an application is implemented where sensors are inactive
for long periods and suddenly an event is detected that
leads to an activity increase in the sensor field MANTIS is
comparable to TinyOS in power efficiency. Additionally,
as detailed in Section VI, MANTIS would be able to
handle such bursty activity in a more deterministic way.

The experiments also show that the idle-times are not
more fragmented in MANTIS than in TinyOS. Thus, the
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Fig. 7. Percentage idle timeIk for both operating systems.
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common argument that a multi-threaded operating system
leads to high fragmentation of sleep times is proven
wrong in the case of the MANTIS operating system. Both
operating system types are able to exploit the same energy
saving modes provided by the hardware.

Our findings regarding power efficiency of event-based
and multi-threaded sensor network operating systems can
be summarized as follows:

• The processing overhead resulting from a more com-
plex threaded scheduler reduces the amount of time
that a sensor node can sleep. The reduction depends
heavily on the system activity.

• A multi-threaded scheduler has little impact on how
fragmented a sleep schedule is. All energy saving
modes provided by hardware can be accessed.

VIII. C ONCLUSION

Most sensor network application scenarios used today
are built using event-driven operating systems. The vast
majority of these deployments use the event driven (and
well established) operating system TinyOS. However,
alternative operating system concepts such as the clas-
sical thread-based system exist. A well known example
of a multi-threaded operating system is MANTIS. We
believe a study, as presented in this paper, is needed to
decide objectively which operating system type should
be used for a particular application scenario. This de-
cision is currently made on mainly subjective grounds
for event driven systems and TinyOS. We believe this
paper presents the first objective comparison between
both main operating system concepts, taking the important

performance parameters memory usage, event processing
and energy usage into account. Based on the presented
study we conclude that an event driven operating system
is often, but certainly not always the best choice. Classic
thread-based operating systems are of use for many sensor
network application scenarios.

A. Results

Memory Usage:If memory efficiency is a primary goal
of the target application then TinyOS would be the better
operating system. In the experiment, the application sce-
nario was compiled to a binary image 4kB less in TinyOS
than MANTIS. While these memory requirements will
have no impact on processors such as the Atmega 128, if
the application is to be compiled for a more cost effective
but less capable processor such as the PIC16 [22] then
only TinyOS could be used. While both operating systems
run a very light-weight scheduler, the TinyOS scheduler
is smaller in code size as it does not provide a thread
switching capability.

Event Processing:The processing time of packet for-
warding tasks in the abstract application scenario depends
mainly on the complexity of the sensing task, not on
network activity. This dependency can be summarized as:

• If the sensing task is small (e.g.ls = 1ms, n = 1),
MANTIS has an17.15% longer average packet for-
warding task execution time than TinyOS. MANTIS
and TinyOS have variation in the task execution time
in the same order (Variation MANTIS0µs, Variation
TinyOS 454µs).

68 JOURNAL OF NETWORKS, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



• If the sensing task is large (e.g.ls = 75ms, n = 1)
TinyOS has an204% longer average packet forward-
ing task execution time than MANTIS. TinyOS has a
much higher variation in the task execution time than
TinyOS (Variation MANTIS34µs, Variation TinyOS
58ms).

As a consequence, TinyOS is the preferred operating
system in the case where no long sensing task has to be
supported (Or in case the sensing task can be divided in
small sub-tasks). In case long sensing tasks are executed,
MANTIS would be the preferred system to achieve a
deterministic and fast packet processing. Ultimately, the
application requirements for the message forwarding per-
formance of the network dictate which operating system
can be used.

TinyOS has a high variation in the packet forwarding
times as a pending packet task has to wait for a sensing
task to finish. Especially when long sensing tasks are
present, this delay is visible in the variation of the
forwarding times.

Energy Usage:The energy usage of nodes in the ab-
stract application scenario depends mainly on the network
activity, not on the complexity of the sensing task. This
dependency can be summarized as:

• If there is low network activity (n = 1, lS =
1ms), TinyOS has an0.09% longer idle time than
MANTIS. Thus, TinyOS is more power efficient.
The fragment size of idle periods is of the same
order for both operating systems (Idle Time Length
for TinyOS is499ms and Idle time for MANTIS is
490ms).

• If there is low network activity (n = 8, ls = 1ms),
TinyOS has an7% longer idle time than MANTIS.
Thus, TinyOS is more power efficient. The fragment
size of idle periods is in the same order for both
operating systems (Idle Time Length for TinyOS is
3.8ms and Idle Time for MANTIS is3.9ms).

As a consequence, TinyOS is the preferred in all operating
conditions as it is more power efficient. The MANTIS
operating system is not far behind in terms of power
efficiency, especially if a low network activity is present.
The more responsive MANTIS is not as power efficient
as the necessary context switches reduce the available idle
time. Especially when a large amount of network traffic
is present, the context-switch overhead is prominent.

Summary: The difference in memory usage of the
two operating systems is a (nearly) static parameter and
does not depend on the particular application scenario
supported. In most cases, this small difference would
not be the deciding factor in choosing one of the op-
erating systems. If a deterministic behavior regarding
packet forwarding times is required, AND a complicated
sensing task is carried out at the same time, MANTIS
would be the better choice. This has to be paid with
an additional energy consumption, but in some cases a
deterministic network behavior would be preferred over a
low energy consumption. If a TinyOS application requires
a long sensing task, the poor packet processing times

resulting from the non-preemptive scheduler, could lead
to a congested network. This in turn would consume
probably more energy retransmitting lost packets.

B. Application Scenarios

It was shown in Sections V, VI, VII that neither operat-
ing system would be optimal for all application scenarios
as both operating systems target different performance
objectives. In TinyOS for example, a key design metric is
focused on compiling small application images, however
the light-weight multi-threaded kernel in MANTIS is
designed to provide predictable performance for more
processing intensive applications.

To measure the operating system performance for a
range of applications scenarios, the experiment evaluation
used a range of sensing tasks sizes. These tasks times
were chosen to model a spectrum of sensor network
applications. Examples of such task times can be found
in literature, for example encryption algorithms such as
TinySec can take up to1ms to encrypt a byte of data
[17]. A structural monitoring application presented in [23]
uses a wavelet decomposition algorithm that takes12ms
to compress vibration data readings, before transmitting
data over the network. It can be concluded from our
experiment that TinyOS would provide a more efficient
scheduler for processing these applications. Such small
task times achieve a better average response time and also
more predictable response time in TinyOS due to the low
processing overhead of the scheduler.

Image processing algorithms used in target tracking
applications would be represented by the larger sensing
tasks in the application scenario. Image processing al-
gorithms are very processing intensive and difficult to
realize on a sensor network. In [16] an object detection
algorithm is used that can take up to240ms on a 128x128
px image,60.8ms on a 64 x 46 image and16ms on
a 32 x 32 pixel image. Scheduling a processing task
of this magnitude in a non-preemptive scheduler such
as in TinyOS can provide very ineffective schedules.
We see from Section VI-D that high priority tasks such
as a packet forwarding task can take a further5ms to
process when scheduled with a75ms Sensing task. An
obvious solution is to try and segment the sensing task,
so that the high-priority task does not get delayed by
the full duration of the sensing task. However in [16],
the authors maintain that “Image processing operations
are typically long-running and not suitable for sequen-
tial decomposition”. In that paper, the authors realized
their application on the TinyOS operating system with a
dedicated ASP (application specific processor). The ASP
processed all image algorithms to alleviate the CPU of
all long sensing tasks and facilitate responsive processing
of high-priority tasks. Adding an extra processor for all
image processing sensor networks, considerably increases
the cost of the sensor node platform. It might therefore
have been more feasible to implement such algorithms
with a multi-threaded operating system such as MANTIS.
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C. Further Study

Both operating systems leave room for further study.
Our work described in [24] shows how preemptive

scheduling capabilities can be added to TinyOS in order to
tackle the performance problems described in Section VI.
The established event driven processing concepts can
be retained while adding preemption through context
switching. Established TinyOS programming conventions
can be used which ensures that existing application code
can be re-used. Preemption features can be integrated
seamlessly in existing TinyOS infrastructures.

Our work described in [25] shows how overheads
due to context switching can be significantly reduced
within the MANTIS operating system. Thus, the problems
described Section VII can be diminished. The overhead
can be reduced to such an extent that in usual sensor
network application scenarios the modified MANTIS has
a similar overall performance to TinyOS.
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