
Ahieving Real-Time Operation in TinyOSCorma Du�y, John HerbertComputer Siene Dept.University College Cork, Ireland{.du�y|j.herbert}�s.u.ieAbstrat Ahieving preditable operation is a omplex task in sensornetworks as appliations intrinsially rely on unstable network links totransmit unpreditable quantities of environmental data. A real-time de-velopment infrastruture is needed to provide a greater degree of per-formane ontrol while still adhering to the development onstraints in-herent in sensor networks. In this paper we disuss a popular sensornetwork operating system TinyOS, that has been suessful in providingan e�ient development environment, but never strived to provide hardreal-time operation. The lak of temporal spei�ation and onstraintsin TinyOS preludes real-time appliation development. In this paper wepropose a real-time model that provides a temporal infrastruture as afoundation for building and analysing real-time appliations.Wireless Sensor Networks, TinyOS, Real-Time.1 IntrodutionWireless sensor networks are tiny sensor aquisition systems wirelessly tetheredto provide ost e�ient �ne grained monitoring for environments. Often deployedin harsh environments, sensor networks frequently preipitate errati networkommuniation, as nodes an malfuntion, or radio ommuniation links an bedisrupted. Foreasting the behaviour of an appliation is therefore very di�ult.Developers an try to determine the response times of a system through extensivetesting but this is very ostly and does not guarantee timely operation. Thusperformane ontrol mehanisms are required in sensor networks to ensure timelyexeution of proesses.Performane ontrol is an ative researh topi in sensor networks that en-deavours to ahieve deterministi operation in eah layer of the sensor networkarhiteture. Calulable end-to-end message transmission times rely on a num-ber of real-time network layer tehnologies suh as a real-time MAC layer anda real-time routing protool. However oordinating suh tehnologies in a pre-ditable appliation fundamentally requires a real-time operating system, whihwill be the fous of this paper.Real-time systems are a ommon infrastruture within embedded arhite-tures, as suh, the term real-time has ome to have di�erent meanings in litera-ture. To resolve any semanti ambiguities we provide the following de�nitions:

� A real-time system is a system in whih the orret run-time behaviourdepends upon results being delivered within ertain temporal onstraints.� The goal of a real-time system is not to provide the fastest possible exeutiontime for all proesses, but to provide methodologies for alulating the worstase response time of a proess and allow developers to predit the maximumutilization of the system.In other words developers should be able to predit under what level of stress areal-time operating systems will fail, if failure is possible.We fous on developing real-time appliations for TinyOS[1℄, a tiny modu-lar operating system designed spei�ally for sensor network systems. Wirelesssensor networks have many unique onstraints that are ideally met by the light-weight response mehanisms in TinyOS and should ideally be adopted by areal-time sensor network OS. However many of the TinyOS mehanisms operateunpreditably and are at odds with real-time engineering. The TinyOS ompo-nent design, for example, provides funtional enapsulation at the expense ofhiding temporal behaviour. Proesses are distributed over a range of omponentevent-handlers, exeuting asynhronously in response to environment events. Ap-pliations an be onstruted to exeute e�iently and possibly meet real-timerequirements, but TinyOS does not provide any support for developers to de�ni-tively alulate onditions under whih an appliation will orretly behave.The ontributions of this paper an be summarised as follows,� We propose to extend TinyOS, with real-time omponents. By providingmore onise temporal spei�ations to omponent interfaes, we an faili-tate more alulable proess timings.� We also desribe how these onstraints an be used to alulate the exeutiontimes of proesses distributed over numerous event handlers, in order todetermine task shedulability.The rest of this paper is organised as follows, in setion 2, we provide a moredetailed analysis of the TinyOS operating systems and its proessing onstraints.In setion 3, we introdue the idea of implementing real-time omponents inTinyOS as a basis for onstraining proesses. In setion 4 we expand on thisidea and demonstrate how suh a system an be used to determine the temporalbehaviour of omponent operations. A brief overview of related work in bothreal-time omponent system and TinyOS is detailed in setion 5 and �nally weonlude in setion 6.2 A Sensor Network Operating SystemIn realising a real-time sensor network operating system, it is important to on-sider the onepts and onstraints of both arhitetures before a bipartite solu-tion an be found. In this setion we brie�y outline the TinyOS proess model.We disuss the arhitetural support for sensor network appliations and itsnegative impat on real-time appliations.

2.1 TinyOSThe TinyOS operating system implements an event-based arhiteture to faili-tate sensor network appliation requirements in an e�ient and responsive man-ner. All IO proesses are divided into split-phased operations, whih onsist of arequest operation, e.g. getData and a response operation suh as dataReady [1℄.In this way no proess has to poll an interrupt or delay exeution for any pendingproesses. Any lengthly operations an be sheduled as a TinyOS task to exe-ute atomially at a later time in order to ensure all pending events are quiklyproessed.Sensor network appliations require omplex onurrent mehanisms thatan responsively exeute onurrent events. Suh development is often ompli-ated by either rae-onditions, whih an be a ommon soure of annoyaneinherent in onurrent development, or by the memory onstraints of the targetsensor node platform. TinyOS employs a stati omponent design to failitaterae-ondition heks and perform dead ode elimination, allowing developers toeliminate potential bugs and redue appliation memory and ode size require-ments.2.2 Real-Time VulnerabilitiesThe TinyOS design priniples satisfy fundamental sensor network requirementsbut in turn inhibit traditional methods of performane ontrol. Traditional real-time systems implement a proedure-based arhiteture, whih provides meth-ods for realizing a proess as a ommon entity, a thread[2℄. However omponentbased arhitetures naturally de�ne a onrete boundary between omponent en-tities through whih neither data nor state are shared. The thread of exeutionis dispersed among a series of omponent event handlers, that trigger indeter-minately in response to interrupts, obsuring the ommon thread of exeution.While event-based proess �ows are designed to provide responsive exeution,they require an upper bound on the number of times they are triggered, to allowdevelopers to alulate the proessor utilization at any point in time.TinyOS omponents oneal the temporal behaviour of proesses. Compo-nents inherently enapsulate funtionality and provide oherent interfaes toensure unambiguous operation. However the omponent interfaes in TinyOS donot express the temporal requirements or properties that might failitate pre-ditable exeution. For example a message send interfae might express a radiotransmit operation with a sendMessage ommand and its ounterpart eventmes-sageSent. The interfae would adequately desribe the omponent operation butwould provide no support for preditable operation. Developers an try to deter-mine the worst ase exeution times of a system through extensive testing butthis is very ostly as a single hange in omponent arrangement an drastiallyhange system behaviour making preditable operation impossible.The TinyOS task sheduler allows developers to have a non-preemptive on-trol over task exeution. TinyOS tasks run atomially with respet to eah otherto avoid rae onditions [4℄, but there an be signi�ant lateny in sheduling

high-priority tasks if a lengthly low priority task has already begun exeution.This has a signi�ant impat on task shedulability as non-preemptive tasks anonly be e�etively sheduled if task exeution times are known in advane [3℄.However, as previously explained, the TinyOS omponent arhiteture onealssuh information.3 Real-Time Component Based Software EngineeringIn the previous setion we highlighted real-time analysis problems assoiatedwith omponent-based arhitetures suh as TinyOS. Determination of proessexeution times is ompliated by the fat that proesses are fragmented over anumber of di�erent omponents. In this setion we introdue real-time ompo-nent engineering onepts as a basis for providing a suitable model for predeter-mining proess exeution timings.3.1 The Real-Time ArhitetureWe propose to extend the TinyOS model to failitate real-time omponent on-�gurations. Enapsulating funtionality as a real-time omponent failitates in-tuitive ontrol over system operations. Real-time omponents provide interfaesthat express both temporal behaviour and operation ontrol. This enables de-velopers to enfore timing onstraints at disrete and important intersetions ofomponent funtionality.
Figure1. Real-Time ComponentReal-time omponent models failitate preditable systems, but their designis ompliated by the omplex temporal relationships omponents require tomeet their ollaborative deadlines. This assumption has been thoroughly re-searhed by Wegener & Mueller[3℄ who laim that the overhead in designing aomponent is not reovered until its �fth reuse.To redue the modeling omplexity of a real-time system, our model im-plements a hybrid approah to developing real-time omponent funtionality.Complex omponent relationships are deomposed into real-time blak-boxes, in

whih a real-time omponent enapsulates generi omponents and bounds theirinputs and outputs at the real-time omponent interfae.Eah real-time interfae is onstrained by a real-time port whih validatesinoming events based on a minimum period onstraint de�ned in the real-time interfae. Any subsequent event that ours within the minimum periodof invoation is rejeted by the real-time port. This onstraint-based modularengineering style failitates a more user-friendly real-time model allowing real-time appliations to be realized in TinyOS without introduing overly elaborateonepts or multiple hanges to the existing TinyOS Arhiteture (See Figure1).4 De�ning a Real-Time InterfaeIn this setion we de�ne a hybrid real-time omponent model that exploits on�g-urative information to provide more transparent task exeution times. We startby de�ning a real-time omponent as simply a wiring on�guration of generiomponents that are arranged in a way that they an meet the onstraints im-posed by the real-time spei�ation. Eah real-time omponent will support andpossibly require a set of time onstrained split-phase operations. Eah split-phaseinterfae operation Ti is bounded by ei, ri, xi, in whih ei and ri are the par-tial worst-ase exeution and partial response times of Ti respetively and xiis the minimum period of invoation and deadline of Ti. The interfae responsetime inludes the time to exeute a task and the task delay in waiting for ahardware devie to respond. Both times do not take into aount delay resultingfrom onurrent proesses and do not inlude exeution time of sub-omponentfuntionality.We also introdue some onstraints and assumptions about the exeution ofthe real-time model in order to ensure that real-time analysis is both orret andfeasible:First, it is assumed that the developer will design a real-time omponentwith generi TinyOS omponents that adhere to the real-time onstraints of theomponent. Seond, a real-time split-phase interfae may only be invoked oneper event ourrene. Enapsulated omponents annot be wired to omponentsenapsulated in a di�erent real-time omponent. All real-time omponents willexeute atomially with respet to eah other (this rule is enfored by the real-time port desribed earlier). Finally, all task periods are equal to their deadlines.In TinyOS the workload of task τ , is distributed over a hierarhy of interfaefuntions as per Figure 2. As suh, if task τ invokes the interfae funtion T1,then its worst ase exeution time Eτ , must inlude the worst-ase exeutiontime of T1, E1. However T1 subsequently invokes T2 and T3 whih in turn invokeother interfae funtions. Therefore to alulate Eτ , we must �rst alulate Eiwhere Iτ is the set of interfae funtions that are diretly invoked by τ and
Ti ∈ Iτ . If eah interfae is only invoked one per event, we an alulate theworst ause exeution time of τ , Eτ and the worst ase response time Rτ withthe following:

T3

T1

T2

T5 T4 T6 T7

T8

T9 Figure2. Task GraphDe�nition 1. Eτ =
∑

j∈Iτ
Ej ,Rτ =

∑

j∈Iτ
RjSubsequently, Ei,Ri will depend on the partial exeution and response times

ei,ri and the worst ase exeution and response times Ej , Rj suh that Tj ∈ Ii.We an therefore alulate Ei and Ri with the following:De�nition 2. ∀Ti
, Ei = ei +

∑

j∈Ii
Ej , Ri = ri +

∑

j∈Ii
RjHaving provided a means for determining an interfae funtion exeution time,we now turn our attention to the minimum period of interfae Ti, xi. In pratisethis value will rarely be equal to the minimum period of invoation required bythe system Pi, however the onstraint is neessary to provide an upper boundon the number of interfae invoations. Calulating the required period Pi isompliated by the variable ardinality a omponent relationship an failitate.If an interfae Ti is used by a number of omponents, than the interfae must beat least able to handle the ombined number of invoations of all the onnetedomponents. We de�ne Qi as the set of real-time interfae funtions that relyon Ti, and endeavour to determine Pi suh that we an determine the requiredperiod of sub-omponents Ii and determine if the relationship an be supported,in other words if xi ≤ Pi.De�nition 3. ∀i,Pi=

{

min{pj |Tj∈Qi}
|Qi|

if Qi 6= ∅

pi if Qi = ∅4.1 Example use of modelWe provide a simple on�guration of real-time omponents, in order to demon-strate how our model ould be applied to a real-time appliation. Figure 3 showsa simple outline of two tasks using a set of real time omponents for a sensingappliation.We determine Ei and Ri from De�nition 2 above. The task period times Piare alulated using De�nition 3 and we present the results in Table 1. In orderto determine if eah interfae is overloaded, we hek if the assigned Pi in Table

Figure3. Senario of Real-Time Components1 is greater then the port period onstraint in Figure 3. From the table it isevident that the relation T2 −→ T4 is feasible, but (T2, T1) −→ T3 is not as
x3 � P3.In this setion we have provided a means for developers to hek the fea-sibility of a omponent relationship and a means to determine exeution time,deadline and period requirements neessary for onventional task shedulabilityalgorithms (suh as a non-preemptive EDF algorithm [5℄). However due to spaeonstraints we an not show detailed results of this model in this paper.

Ti Qi Ii Ei Ri Pi

T1 ∅ {T3} 5 + 1 5 + 3 20

T2 ∅ {T3, T4} 10 + 6 + 1 10 + 6 + 3 40

T3 {T1, T2} ∅ 1 3 10

T4 {T2} ∅ 6 6 40Table1. Real-Time Interfae Calulations
5 Related WorkImproving preditability and real-time performane has been lightly researhedby the sensor network ommunity. AmbientRT was one of the �rst real-timeoperating systems designed spei�ally for sensor networks, using a preemptivetask based EDF sheduler [6℄. Regehr et al. tried to resolve the sheduling latenyissues with TinyOS by failitating task preemption with a multi-threaded taskqueue as part of a hierarhial onurreny analysis researh [7℄.Many studies in real-time omponent systems have been arried out to in-vestigate the problem of onstraining omponents suh that they an be inde-pendently developed and operate preditably in a omponent system. Wang etal. proposed a system of omponent ontrats in whih eah omponent inter-fae would speify the maximum number of operations it would support andprovide a worst-ase response time, depending on interfae utilization [8℄. Shin

provided a omponent spei�ation that failitated a omposition frameworkanalysis of omponents [9℄. There has been su�ient interest in both real-timesensor networks and real-time omponent systems to provide a solid foundationfor researh into real-time omponent operation in TinyOS.6 ConlusionIn this paper we have highlighted the problems with implementing a real-timeappliation in TinyOS. Component interfaes do not speify temporal require-ments, while event-handlers exeute in an unonstrained manner. While TinyOSis uniquely developed for sensor networks, its omponents an be supplementedwith real-time omponents proposed in this paper, to ensure a more strit andtransparent omponent behaviour. Further more we have shown how a systemof omponent funtions an be realized by a ommon task with de�ned exe-ution times, in order to determine task shedulability and ensure preditableoperation.Referenes1. J. Hill, R. Szewzyk, A. Woo, S. Hollar, D. Culler, K. Pister. System ArhitetureDiretions for Networked Sensors, ASPLOS 2000, Cambridge, Nov 2000.2. H. C. Lauer, R. M. Needham. On the Duality of Operating System Strutures. InPro. Seond Inter-Operating Systems Review, 13, 2, April 1979, pp. 3-19.3. J. Wegener and F. Mueller. A omparison of stati analysis and evolutionary testingfor the veri�ation of timing onstraints. Real-Time Systems, 21, 3, Nov 2001, pp.241-268.4. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler. The nesC Lan-guage: A Holisti Approah to Networked Embedded Systems. Proeedings of Pro-gramming Language Design and Implementation (PLDI) 2003, Jun 2003.5. K. Je�ay, D. F. Stanat, U. Martel. On Non-Preemptive Sheduling of Periodi andSporadi Tasks. In Pro. Twelfth IEEE Real-Time Systems Symposium, SanAnto-nio, Texas, De 1991, IEEE Computer Soiety Press, pp. 129-139.6. T. J. Hofmeijer, S. O. Dulman, P.G. Jansen, P. J. M. Havinga. AmbientRT - realtime system software support fordata entri sensor networks. 2nd Int. Conf. on In-telligent Sensors, Sensor Networks and Information Proessing (ISSNIP), publishedby IEEE Computer Soiety Press, Los Alamitos, California, held in Melbourne,Australia, De 2004, pp 61-66.7. J. Regehr, A. Reid, K. Webb, M. Parker, J. Lepreau. Evolving real-time systemsusing hierarhial sheduling and onurreny analysis. In Pro. of the 24th IEEEReal-Time Systems Symposium (RTSS2003), Canun, Mexio, De 2003, pp 25-36.8. S. Wang, S. Rho, R. Bettati, W. Zhao, Real-Time Component-based Systems. InPro. IEEE Real-Time and Embedded Tehnology and Appliations Symposium(RTAS), Mar 2005.9. I. Shin and I. Lee, Component-based Design for Real-Time Embedded Systems.Teh. Report, Dept. of Computer and Information Siene, University of Pennsyl-vania, 2005.

