
An efficient resource management system

for a streaming media distribution network

1. INTRODUCTION

Digital video recorders (DVR) such as TiVo (Tivo,
2005) are changing the way TV is being viewed. The
ability to intelligently record content and provide
an easy use play-back facility has meant that no
longer is the viewer restricted to the TV
broadcaster's schedule, but can now watch the
program at anytime (after broadcast) with the
addition of commercial skipping features as well as
the typical VCR functionality to which most people
are accustomed.

The focus of this research is to extend the
abilities of DVRs by removing the necessity for
local storage, and replacing it with an always-
recording global storage. With such an approach,
users of the system would no longer need to be
sitting in front of their DVR to view a stored file,
but instead would retrieve the object from a local
video server over a high-speed Internet connection.

In doing this, globally broadcast TV content could
be available to users on-demand. There are a
number of challenges that need to be overcome
when designing a TV on-Demand (TVoD) system.
Issues such as (i) Latency; clients will not be
satisfied if the video does not begin streaming
almost immediately, (ii) Reliability; the quality of
the delivery stream should be consistently high,
jitter and quality degradation are undesirable, (iii)
Content Control; ensuring that Digital Rights
Management infringements cannot occur, (iv)
Resource Management; due to the size of these
high-quality video files, operating and deployment
costs for the system need to be monitored to ensure
the system is operating as efficiently as possible.
The primary focus of this research is the efficient
management of resources when providing TVoD
services. It is believed that resource management
will become an important aspect of video delivery in
the future, as the expected quality of video objects

Interactive Technology & Smart Education (2006) 1: 31-44
© 2006 Troubador Publishing Ltd.

Adrian J. Cahill and Cormac J. Sreenan

Mobile and Internet Systems Laboratory (MISL), Department of Computer Science, University College
Cork, Cork, Ireland

Email: {a.cahill,cjs}@cs.ucc.ie

This paper examines the design and evaluation of a TV on Demand (TVoD) system, consisting of a globally accessible
storage architecture where all TV content broadcast over a period of time is made available for streaming. The proposed
architecture consists of idle Internet Service Provider (ISP) servers that can be rented and released dynamically as the
client load dictates. This paper examines issues of resource management and content placement within this Video
Content Distribution Network (VCDN). The existing placement algorithm is computationally expensive and in some
cases, infeasible to execute within any reasonable length of time. This work proposes a number of new placement
heuristics each of which attempts intelligently to reduce the search space so that only the best proxies are considered
for replica placement. An extensive evaluation of these placement algorithms is carried out to identify a good placement
algorithm without being computationally expensive.

Keywords: Resource Management, Video On-Demand, Digital Video Recorder, Replica Placement Algorithms

VOL 3 NO 1 FEBRUARY 2006 31

is always increasing to match improvements in
client Internet connection speeds. This further
increases the load on the video servers. If a TVoD
system is to be deployed, then it should be capable
of efficiently serving content to a similar sized user
base as the existing terrestrial broadcasting model.

System resources such as server storage space,
disk and network I/O have always been an
important factor in determining the scalability of
multimedia distribution architectures. One of the
key differences with the distribution of web
documents (HTML pages and images) is the
relatively short time the server resources are
required in the delivery process, unlike streaming
large video objects which require server resources to
be tied-up for much larger periods of time.
Optimizing the resources required to serve a
number of clients involves optimizing (i) the
content placement and (ii) the number of replicas of
an object. But these parameters are influenced by
the client request patterns, which are constantly
changing; therefore it will be necessary to
frequently re-evaluate the resource usage.

In previous work by the authors (Cahill &
Sreenan, 2003; Cahill & Sreenan, 2005), Content
Distribution Networks (CDNs) and Peer-to-Peer
networks (P2P) were considered as possible
distribution architectures for a TVoD system. It
was found that P2P networks typically exhibit a lack
of content control and network reliability, whereas
CDNs exhibit strong control and reliability, but
lack the ability to dynamically grow with increased
client load. The authors proposed a new hybrid
CDN-P2P architecture, termed Video Content
Distribution Network (VCDN). VCDN is a
content distribution infrastructure over which
TVoD services can be provided. Unlike typical
CDNs such as Akamai (Akamai, 2005), VCDN
does not operate over a private network, but rather
over a shared network. Resources such as
distribution servers, storage space and bandwidth
are leased from suitable service providers when
client load increases, and when the load abates, the
resources can be released again. This new CDN
model removes the high start-up costs associated
with CDNs, while also being dynamic in both size
and resource usage. This is particularly important
when considering TV distribution, as the expected
user set, and hence resource requirements typically
vary diurnally (less users in the morning than
evening). Internet Service Providers (ISPs) and
Datacenters typically over-provision their networks
to allow for future expansion. As a result of this
over-provisioning, some of their servers and disk
space may be lying idle. These service providers can

advertise their willingness to partake in VCDN by
acting as peers, for which micro-payments will be
made according to resource usage. It is expected
that by agreeing to partake in the CDN, servers will
not leave the CDN without providing adequate
notice, thus allowing the system to find an
alternative source for the affected clients.

Currently, the VCDN architecture uses a
computationally expensive placement algorithm,
which does not scale very well. This work proposes
a number of new placement heuristics each of
which attempts to intelligently reduce the search
space so that only potentially optimal proxies are
considered for replica placement. In doing this the
required execution time can be greatly reduced,
while in some cases, suffering no loss of placement
optimality. As well as the new placement heuristics,
this work also extends VCDN with the
introduction of proxy hierarchy. The proxy
hierarchy can be used to aid content placement
decisions by initially deciding which region of the
network would best serve a client, and then only
considering the proxies within this region during
content placement decisions. This is described in
more detail in section 3.4.

The remainder of this paper is organised as follows:
Section 2 examines the plethora of related work that
exists in this area. Section 3 gives an overview of the
VCDN architecture and its new proposed
extensions. Section 4 outlines the placement
heuristic algorithms and their parameters. Section 5
describes the simulation environment and provides
extensive evaluation of the proposed heuristic
placement algorithms. These algorithms are
evaluated to determine the most suitable algorithm
for the VCDN architecture; this involves analysis
both of the running time and placement efficiency of
each algorithm. Section 6 provides the reader with a
view of the future trends in TV viewing and
multimedia entertainment, and finally, Section 7
outlines the findings and conclusions of this work.

2. RELATED WORK

The decision over where content should be placed
within a network can be modelled as a variation of
the well-known Facility Location Problem
(Mirchandani & Francis, 1989; Arya, et al. 2001),
which has been described as an NP-hard problem.
The reason this problem is so difficult to solve is
due to its inability to scale, as the number of
possible outcomes to the problem is a function of
the number of facilities and objects located at these
facilities (proxies and replicas in the context of this

Cahill and Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION32

Cahill and Sreenan: An Efficient Resource Management System

paper). To overcome this issue a number of
alternative approaches and heuristics have been
proposed.

One proposed solution is to distribute the
content within the network such that the overall
distance between clients and their requested object
is minimized. In Kangasharju et al. (2001) the
authors proposed minimizing the number of
Autonomous Systems traversed when clients
request objects from the server. The authors
compared four replicating strategies, and concluded
that a single CDN server with knowledge of the
entire system was capable of making the best
decision as to the placement of proxies. They
propose using combinatorial analysis to locate the
optimal layout, which can be computationally
expensive in large-scale networks such as those
expected in the VCDN architecture. This problem
would be amplified by the need to constantly assess
the current replica placement to ensure the system
is always in a resource effective state.

Li et al. (1999) also carried out research in this
area, but the authors only considered a tree
topology network. By using a tree topology the
authors have limited the path between any two
nodes in the network, to a single path. The Internet
is not configured in this fashion, as there are a
number of routes to a given destination. The
authors also only deal with the instance where there
is one web server, which is cached at multiple
locations.

Qui et al. (2001), model the replica placement
problem as a K-median problem. In their work they
assume that each replica site should contain a
complete replica of the origin server. This is not
desirable for TV content, as some media objects are
expected to have higher request rate in certain areas
of the network than others, as would be the case
with news programs for example. Again the authors
use a combinatorial algorithm, which as previously
mentioned is not scalable.

Probably the most relevant related work is that
carried out by Nguyen et al. (2003). In their work
the authors also propose using a shared network
infrastructure as the basis for an overlay
distribution network suitable for the distribution of
large objects. The authors also propose a flexible
network provisioning approach where resources
such as storage and CPU can be leased as required.
The authors provision their network based on a cost
function and an expected client demand for a set of
objects. As a result of provisioning their network in
advance (based on this expected demand) the
authors run the risk of over/under provisioning their
network resulting in either resource starvation or

waste. This would not be suitable for a TV
distribution architecture as the variability in TV
viewers is expected to be quite large between
daytime hours and evening hours for an average
weekday (due to potential viewers being at
work/school). Therefore, particularly in a TV
distribution network, content placement should be
a frequently analysed to ensure the network is
operating in a cost effective manner. This could be
achieved by dynamically adapting content
placement with changing client loads.

More recent work in the area of video streaming
has been focused on the use of P2P networks as a
distribution architecture. P2P networks have gained
immensely in popularity over the past number of
years, due to their ability to share vast quantities of
content efficiently. Recently, researchers have
begun examining the potential of P2P networks for
large-scale video distribution. P2P networks such as
KaZaa (KaZaa, 2005) and Gnutella (Gnutella, 2005)
have been used to distribute large objects such as
feature length movies, but they typically perform
this transfer without real-time constraints such as
those that would be introduced when streaming
content over a P2P network. Other issues also arise
if P2P networks were to be considered as a suitable
means to deliver high-quality TV objects, such as
insufficient client uplink capacity, clients ability to
depart from the network at will and also a lack of
suitable digital rights management schemes. Also,
although P2P networks have shown to be able to
efficiently distribute popular objects, they may not
be suitable for the distribution of unpopular
content, as few requests will be made for the object
and as a result, few replicas will exist.

Some research exists which examines these issues
such as Padmanabhan et al. (2002) Choon-Hoon et
al. (2005), Guo et al. (2003), Courcoubetis &
Antoniadis (2002) and Tran et al. (2003), but in
general these problems still remain. In Hefeeda et
al. (2004), for example, the authors examine the
issue of network stability in a streaming P2P
network and propose dividing a video object into a
number of small segments and caching these on the
peer nodes. A requesting peer would first identify a
list of peers with the required segments and retrieve
the segments as required. In the event of a serving
peer departing the network, and initial buffering
period is designed to mask the switching time as a
peer selects a backup peer with the missing required
segment.

Xu et al. (2003) propose a novel distribution
architecture to overcome some of the limitations in
both CDN and P2P networks. A hybrid
architecture uses a CDN to initially serve content

VOL 3 NO 1 FEBRUARY 2006 33

to the requesting clients, with each participating
client then forming a peer node in a P2P network.
Over time the architecture changes from CDN-
only to CDN-P2P and finally purely P2P with the
CDN nodes being used for indexing purposes only.
In doing this, the CDN can quickly seed a P2P
network, and then remove the objects thus freeing
the CDN servers for new content. Although this
approach might work well for popular objects, less
popular objects may reside on the CDN for long
periods of time (as the P2P network will not be
sufficiently seeded), as a result of this the CDN
could become saturated with unpopular content
thus reducing resources for newer popular objects.
Also, the authors do not explain how content is
initially distributed among the CDN servers, which
would have a particularly large effect on resource
usage within a distribution network for large objects
such as high-quality video.

Finally, aside from P2P and CDNs, a number of
broadcasting approaches have been proposed as a
means of efficiently managing resources when
distributing video objects to a large client base
(Aggarwal et al., 1996b; Hua & Sheu, 1997;
Viswanathan & Imilelinski, 1995; Hu, 2001).
Broadcasting approaches typically suffer from a lack
of client control, as content is sent out over multicast
channels from a server and periodic intervals, as a
result of this, the delay between a client making a
request for an object and the time when delivery
begins may be quite high. Batching, patching and
other improvements have been proposed in the past
(Dan & Sitaram, 1996; Eager et al., 2000; Hue et al.,
1998; Griwodz, 2004), but these are all hindered by
the lack of suitable multicast support within the
Internet.

3. ARCHITECTURE DETAILS

This section provides the reader with an overview
of the VCDN architecture and its core
components. In designing a suitable architecture
for TV distribution a number of issues needed to be
considered. TV viewing patterns change diurnally,
i.e. typically a higher percentage of the population
view TV in the evening time than in the morning
time. This can be attributed to users being in school
or work. Previous work (Cahill & Sreenan, 2005) has
examined the suitability of both CDNs and P2P
networks to TV distribution. They were both found
to be lacking in a number of areas, such as lack of
content control and reliability or dynamic
expansion and running expense. To overcome these
issues, the authors propose a new hybrid CDN-P2P

architecture, termed VCDN. This architecture
consists of leased service provider resources, such as
storage space, CPU power and bandwidth. With
such a design, this network does not incur a large
setup cost, and can dynamically alter its size and
resource requirements according to current system
load. In doing this, the following goals can be
achieved:
• Eliminate the necessity for client side storage.
• Access previously broadcast content from any

location where a high speed Internet connection
is available.

• Remove the barrier of broadcast range that
exists in terrestrial broadcasting.

• Eliminate high setup costs associated with CDNs.
• Efficiently manage system resources such as

storage and bandwidth.

3.1 VCDN Components

Figure 1 shows a high level depiction of the VCDN
components. Within the VCDN architecture, a
number of VCDN-owned proxies would be
deployed with TV record facilities. These proxies
record live TV, digitize it and store the object along
with suitable metadata. This content is now
available for retrieval by system users. Clients can
request objects using the search servers in either
query or browse mode. Once a TV object is
selected, the client is directed to the most suitable
proxy, which contains a replica.

The following is a detailed list of the VCDN
components and their role within the network.

Proxies
A proxy can exist in any of two forms, Idle and

Cahill and Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION34

Figure 1 VCDN Component Layout

Cahill and Sreenan: An Efficient Resource Management System

Active. An Idle proxy is a proxy that can be leased
from a service provider such as ISP or a Datacenter.
When Idle, a proxy cannot directly partake in the
distribution of objects. Under times of increased
client activity, the Management Server may decide
to dynamically lease one or more of these Idle
proxies for use in distributing content, at which
point the proxy will change state to Active.

Clients
A client consists of any set-top box or PC that is
used to retrieve content from a proxy within the
network.

Cluster
A cluster is described as a group of clients that view
the same content and are located in close proximity
within the network. There have been a number of
research papers (Hefeeda et al., 2004; Amini, 2004),
which examine the topic of client/request clustering
ranging from simplistic techniques (grouping by
Autonomous Systems) to more complex techniques
such as spatial partitioning. Clustering is performed
to reduce the complexity of content placement
decisions, by assigning clients into clusters that are
topologically close together we can infer that an
optimal placement for the cluster is likely to be
optimal for all the clients within the cluster (for a
reasonably sized cluster).

Information Repository
The information repository maintains the state of
the network, such as the location of all objects
within the network, the list of active proxies, and all
metadata that is associated with a video object. This
metadata will be used to facilitate client searching
and browsing of archived material.

Management Server
The management server is used to monitor the
overall network. The tasks of the management
server include gathering both statistical and
accounting details and performing content
control. In the event of a Pay-Per-View scheme,
this server would be used to grant or revoke access
to content.

Search Server
The search servers are used as an interface to the
network for clients. These servers can be queried or
browsed depending on the users requirements.
Information from the Information Repository is
cached on the search servers to aid in load
distribution and to prevent the Information
Repository becoming a bottleneck.

3.2 System Resources

As mentioned in the related work section, a number
of techniques exist for distributing objects, though
not all are concerned with resource management.
Current CDNs such as that provided by Akamai
primarily focus on reducing the distance between a
client and the requested object. This is achieved by
replicating the requested object to a CDN server
located in proximity to the client. CDN providers
generally are not concerned with link costs and
storage costs, as they own all the required hardware.
The approach outlined in this work assumes that
the CDN operator does not own the resources such
as the servers, disk space and high capacity links,
but rather that these resources can be leased on
demand (for which a fee would be negotiated
earlier). Therefore, when deciding on a number or
replicas of an object to make, and where these
replicas will be stored, in-depth analysis of the
expected resource usage is required. This decision is
made even more important by the large size of high-
quality video files.

This work captures the key resources involved in
video distribution though the cost model could be
extended to account for other resources quite
easily. Future work may involve expanding this cost
model to include aspects such as link quality and
available capacity; this information could be used to
replicate content on the opposite side of a
congested link for example.

Streamed Network Cost αp,c: A cost associated
with streaming video content from a video proxy ‘p’
to a cluster ‘c’. For the purposes of the cost
function, this will be considered a cost per byte/per
hop.

Bulk Transfer Network Cost βsp: A cost
associated with the inter-proxy transfer of a video
object between proxy ‘s’ and proxy ‘p’, as occurs
when a new replica is being created. For the purpose
of this work, it will be considered a cost per
byte/per hop. This is considered separately to
streamed network cost as this provides a fine-
grained cost model that facilitates a different
pricing depending on the network requirements of
the connection, for example QoS requirements.

Storage Cost εp: A cost associated with storing
content on a proxy ‘p’. This is considered to be a
cost per byte/per unit time.

Each cost outlined above could be set for each
individual proxy, thereby allowing a placement

VOL 3 NO 1 FEBRUARY 2006 35

algorithm to take advantage of a fine-grained cost
model. This would allow certain proxies to be
considered more valuable than others, for example a
proxy in a large city could have a larger storage cost
than that of a proxy in a rural area. In doing this, a
competitive market could be formed, where ISPs
lower their resource costs in a bid to entice more
usage of their otherwise idle resources. The costs
outlined above are all stored in a information
repository and the content is pushed out to the
proxies periodically. The repository can also be
queried on-demand, in the event of a new proxy
joining the CDN.

3.3 Assumptions

Currently, on-line storage businesses provide
storage facilities by renting disk space in bulk. Our
research looks at a different pricing model, where
storage can be purchasing storage in this fine-
grained model we could provide a more cost
effective solution for video distribution. Future
work will examine the effects of removing this
assumption, and acquiring resources in bulk as is
currently the case, for example renting server space
from a Datacenter whereby they provide disk space
in tens or hundred of gigabyte chunks.

3.4 Hierarchical VCDN Architecture

In previous work (Cahill & Sreenan, 2005), the
VCDN architecture was proposed and some initial
approaches to content placement were investigated.
This work proposes a number of heuristic
placement algorithms, one of which exploits a
hierarchical proxy layout to determine which
regions of the network are most likely to be cost
effective at serving a given cluster. For example, a
cluster in Ireland is unlikely to choose a proxy
located in America due to the large differential in
number of network hops. VCDN is divided into a
number of layers as shown in Figure 2. Since the
focus of this work is resource management and
content placement, the Management and Cluster
layers are not be covered in great detail.

The management layer is responsible for
maintaining information regarding the current state
of the network, the metadata associated with stored
content, and all accounting and statistical
information associated with each user and file.

The cluster layer comprises of clusters, where a
cluster is defined as a group of clients located in
close proximity which are all viewing the same

content. By grouping clients that are close together
in the network into a single cluster, it can be
inferred that all clients within the cluster should
experience similar network constraints. As a result
of this, locating the optimal proxy to serve this
cluster (single entity), should infer that it is the
optimal proxy for all clients within the cluster.

The root server layer comprises root servers that
are used to segment the network into domains.
Each proxy is assigned to the domain of its closest
root server. When a proxy invokes the content
placement algorithm, the proxy initially determines
which domain to use to serve the cluster set, and
then determines which proxy within the domain.
This algorithm will be described in more detail in
section 4.

The original VCDN algorithm assumed global
knowledge of the network, including what replicas
were available on each proxy. This information is
expected to change frequently and therefore would
result in a lot of control messages being shared
among active proxies. With the advent of a proxy
hierarchy, this state information could be
maintained by the root servers, thereby reducing
overall network traffic and system complexity. In
the event that a proxy required this information, it
could query the root server on-demand.

3.5 Resource Management

Storage space and link bandwidth are the resources
that are believed to most influence high-quality
video distribution over a shared infrastructure. Due

Cahill & Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION36

Figure 2 VCDN Component Hierarchy

Cahill & Sreenan: An Efficient Resource Management System

to the large nature of high-quality video files, their
placement within the network can have immense
impact on the required resources to deliver the
objects. To this end, a cost function was proposed
which calculates the resource requirements for
delivering content from any proxy to any cluster.
This cost function can then be used to quantify the
relationship between two or more content
placement layouts. This cost function and its
parameters are described below.

The cost of delivering an object from a proxy to a
cluster is comprised of three costs: (i) Replication
Cost RCs,p,m is the cost required to replicate movie
m from Ps to Pp, and is given in Eqn. (1), (ii) Storage
Cost SCpm is the cost of storing movie m on Pp and
is a function of the length of time storage is
required for, as shown in Eqn. (2) and (iii) Delivery
Cost DCp,C is the cost of streaming content from Pp
to all C clusters, shown in Eqn. (3). The total cost of
serving all C clusters from Pp is given in Eqn. (4),
where the replication cost is only included if movie
m is not already available on Pp.

The cost of using proxy (Pp) to serve N clients, all
viewing movie m is given by the following equations:

RCs,p,m = βs,p ·δs,p · S(m) (1)

SCp,m,c = εp· S(m) · TC (2)

DCp,C = ∑ (αp,c · δp,c · BC) (3)
c=1

Costs,p,m,C = [RCs,p,m] + SCp,m,c + DCp,C (4)

where Bc are the total bytes remaining to be served
to cluster c.

4. PLACEMENT ALGORITHMS

The previous section gave the reader a brief
overview of how to quantify the resource usage
associated with serving a group of clusters from a
given proxy. The goal of the placement
algorithms outlined in this paper is to determine
the resource requirements of serving a set of
clusters from a set of proxies and choosing the
arrangement yielding the lowest resource
requirements. The placement algorithm is
executed on each proxy autonomously whenever
some requirement is met, such as a new client has
joined this proxy. The placement algorithm
selects all clusters ‘C’ viewing the requested movie
‘m’ and calculates the resource requirements to
delivery the requested movie to each of these
clusters from each proxy within the set of proxies
‘P’. In the event that a placement is found that
results in less resource costs than the current
placement, a placement re-shuffle occurs. To
prevent oscillation occurring, where content is
redirected back and forth between a set of proxies,
the placement algorithm only changes placement is
the resource cost associated with the new
placement (taking all aspects of the current load
into account) is less than the resource cost of the
current placement. As a result of this, the
placement algorithm can only improve placements
and therefore oscillation cannot occur.

This section outlines four placement algorithms
that vary in algorithm complexity and information
required. These algorithms will be evaluated in
section 5 to compare aspects such as overall
resource usage and their execution time.

4.1 Problem Statement

As previously mentioned, the placement algorithm
currently in use by the VCDN architecture does
not scale well, and will be shown to require an
exponential (PC) running time, where P is the total
number of proxies in the network and C is the
number of clusters involved in the placement
evaluation. The goal of this work is to develop a
placement algorithm that can efficiently manage
system resources, while also executing within
acceptable bounds.

VOL 3 NO 1 FEBRUARY 2006 37

Symbol Definition

Pp Proxy ‘p’

S(m) File size of movie m (bytes)

Bc Bytes remaining to be served in cluster c

αsrc, dst Bulk Delivery Cost: The cost associated with
the bulk delivery of 1 byte per hop on the link
between Psrc and Pdst

βsrc, dst Stream Delivery Cost: The cost associated with the
streaming of 1 byte per hop on the link between
Psrc and Pdst

εp Storage Cost: Cost of storing 1 byte on Proxy
Pp (per unit time)

Tc The largest time remaining in the delivery of a
stream to cluster C, i.e. time when the last client
within the set of clusters will reach the end of
the video stream.

Table 1 Parameters to Cost Function

4.2 VCDN Placement Algorithm

The VCDN placement algorithm considers all
proxy-cluster combinations to determine optimal
placement, where the number of clusters involved
in the calculation is a function of the number of
clusters viewing a given movie on the proxy
performing the placement evaluation. Therefore
the number of calculations ‘n’ performed during a
placement evaluation is: n = PC

Where P is the total number of proxies (active
and idle) within VCDN, and C is the number
clusters viewing the requested movie on the current
proxy. As previously mentioned, this does not scale
very well as values for both P and C could be quite
large. The following are a number of heuristics that
have been proposed to reduce the number of
calculations required while also maintaining close to
optimal resource management.

4.3 Best_X Algorithm

This algorithm is similar to the original VCDN
algorithm described above, but performs placement
evaluations on a reduced number of proxies. This
algorithm takes a parameter ‘X’ which equates to
the number of proxies that will be considered for
each cluster, i.e. if X = 1, then only 1 proxy will be
considered for each cluster. Periodically, an ordered
table is generated outlining the best proxies to use
when delivering content to each cluster. Where
best is determined using the cost function defined
in Eqn. (4). If the value of X = 1, then only the 1st
best proxy will be considered, with X = 2 the best 2
proxies will be considered, therefore the number of
calculations ‘n’ performed during a placement
evaluation is: n = XC

4.4 Hierarchical CDN Algorithm

Again, this algorithm builds from the initial VCDN
algorithm, but once again attempts to reduce the size
of the evaluated proxy set. This is achieved by
introducing a hierarchical structure to the proxy layer
as shown in Figure 2. Under this scheme, when the
placement algorithm is invoked, the algorithm
initially determines which root server would best
serve each cluster. Once determined, the algorithm
only considers the proxies within the domain of this
root server. In doing this, it is hoped that the initial
step will determine which region of the network is
likely to contain the most suitable proxy, and when
that is determined, only the proxies in that region are

considered. This results in the following average
number of calculations ‘n’ required for placement
evaluation:

cP –Best Case: n = RC + R (–– – 1) R (5)R

cP Worst Case: n = RC + R (–– – 1) (6)
R

where R is the number of root servers in the
network, P is the total number of proxies (active
and idle) and C is the number of clusters involved in
the evaluation. The placement algorithm consists of
two separate tests. The initial test to determine
which RootServer is likely to contain a suitable
proxy requires RC calculations. Whereas the second
test to determine the most suitable proxy within
the domain requires on average:

cP –R (–– – 1) R
R

calculations, but could require as much:

P CR (–– – 1)
R

if all clusters reside in the same domain.

4.5 Closest Proxy Algorithm

The closest proxy algorithm performs no resource
calculations ‘n’ when making decisions, other than
when a client joins the network it determines its
closest (in terms of network hops) proxy, and all
objects requested must first be replicated onto this
proxy, and then delivered to the clients. In this
regard, there are no placement calculations
performed. This algorithm was chosen to compare
with the VCDN and proposed heuristic algorithms,
to determine the level of resource optimization that
can be gained by using intelligent placement
algorithms, n=0.

5. EVALUATION

This section summarises the extensive evaluation
performed on the placement algorithms described
in the previous section. A number of experiments
were carried out to determine: (i) the optimal
number of RootServers to use in a hierarchical
proxy system, (ii) a suitable number of proxies to
evaluate when using the BestX placement heuristic
and finally (iii) the most suitable placement

Cahill and Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION38

Cahill and Sreenan: An Efficient Resource Management System

algorithm for the VCDN architecture. To
determine the answers to the above, both the
execution time and the overall resource usage were
considered, as determining the most suitable
placement algorithm will involve a trade-off
between a possible increase in overall resource
usage in order to reduce the execution time of the
placement algorithm.

5.1 Simulation Environment

To determine the performance of the proposed
placement algorithms, a number of experiments
were carried out. Initial tests were carried out with
the ns-2 simulator, but due to its unnecessary
packet-level detail, ns-2 was too inefficient and
cumbersome for the required experiments. Instead,
a discrete event-driven simulator was developed in
C++. The simulator is supplied with a number of
parameter files such as a topology layout and a
client workload configuration.

Experiments are carried out using various sized
Internet-like topologies generated using the
BRITE topology generator (Brite, 2005). The
topologies created comprised of 20, 60 and 100
proxy networks. A small set of TV objects, each 30
minutes in length were used, with the distribution
of client requests among these objects following a
Zipf distribution with parameter φ = 0.271 as
proposed by (Aggarwal et al., 1996a).

Multiple client workload files were generated,
each containing the interactions for 1000 clients.
These workload files were generated using the
multimedia synthetic workload generator MediSyn
(Tang et al., 2003), with client arrival rates modelled
as a Poisson distribution with arrival rate λ of
0.01(100 clients per minute) as proposed by Wang
et al., 2004). The simulations carried out in this
work use multiple workloads, each created using the
same MediSyn configuration. The resultant
workloads, though containing the same number of
clients, will vary in requested object, location within
the network and arrival time. This will be useful to
examine the variability that can occur as client
locations change within the network. Previous work
by the authors examined the effects of varying many
aspects of the client workload file including
modelling users desire to channel hop (watch a TV
program for a number of seconds and then change
the channel in search of something more appealing).
This experiment was not repeated as channel
hopping is not expected to be as frequent in a
TVoD system, as clients can request any object to
view, and therefore is expected to request a TV

program he/she will like. For a more detailed
discussion regarding the effects of client workloads,
and approaches to counteract the potential
channel-hopping problem, the reader is directed to
(Cahill & Sreenan, 2005).

5.2 HCDN Evaluation

The HCDN placement heuristic was evaluated to
determine both its resource management ability
shown in Figure 3 and its execution time shown in
Figure 4. Since the execution time of an algorithm
can vary depending on the hardware on which the
algorithm is being executed, it was decided to
express the execution time using the number of
calculations performed by the algorithms.

As can be seen in Figure 3, all instances of the
HCDN algorithm yield similar resource usage for a
given workload file. The minor fluctuations
occurring between instances of the HCDN
placement heuristic are due to potentially good
placement locations becoming unavailable as the
potential proxy for a replica is currently acting as a
RootServer (which do not partake in object
distribution). Since RootServers are selected on the
grounds of segmenting the network into equal sized
domains, the RootServers in use when, for example
R = 4 may not be the same as when R = 5. This
accounts for the occurrences when potentially good
placements are unavailable when R = 3 but become
available again when R = 4.

The overall number of calculations required
during these placement evaluations is shown in
Figure 4. The variation in the number of
calculations performed in workload 4 is an artifact
of the client workload and can be attributed to the
resultant change in number of clusters involved in

VOL 3 NO 1 FEBRUARY 2006 39

Figure 3 Resource Usage for HCDN Heuristic

content placement decisions, variable ‘C’ in Eqns. 5
and 6. For example, the average number of clusters
involved in a placement evaluation is less when
using R = 3 than when R = 4 for the given workload.
As the number of RootServers ‘R’ increases, the
number of calculations required drops, this occurs

P C
as R (–– – 1) R is the dominant factor in determining

R
the number of calculations. As R increases, a point
will be reached when RC becomes the dominant
factor in determining the number of calculations
required, this can be seen quite clearly in Figure 4.
The values when ‘R’ was less than 3 and greater than
5 were not shown in the graphs, as they offered no
extra information.

5.3 BestX Evaluation

The BestX heuristic takes a parameter ‘X’, which is
the number of proxies to consider as potential
placements for each cluster. By increasing the value
for ‘X’ and hence increasing the number of proxies
considered, the execution time for the algorithm
increases also. This can be seen from the graphs in
Figure 6, the number of calculations required when
X = 1 is approximately equal to the number of
clients (as the placement algorithm is executed at
least once when each client joins), but as the value
of ‘X’ increases, the number of calculations and
hence execution time, rises immensely. Therefore
to reduce the execution time of a placement
algorithm, its essential to reduce the number of
proxies or the number of clusters which are to be
considered. It was found that varying the number of
proxies considered did not have any major impact
on the resource management of this algorithm, as
shown in Figure 5. This indicates that only
considering the best proxy for each cluster is

sufficient in most cases, and in some cases can
actually yield better resource management than
considering multiple proxies, as there is a reduced
likelihood of choosing a sub optimal proxy.

It was also found that when using a small
topology, there are many opportunities where the
same proxy can serve multiple clusters. In such
circumstances, the algorithm can identify instances
when a single proxy can serve multiple clusters,
thereby resulting in savings in storage cost and
replication cost. Unfortunately, the number of
calculations required also increases the number of
clusters involved in any particular placement
evaluation. As the topology size grows, the average
number of clusters involved in a placement
evaluation decreases, this can be attributed to the
increased number of possibilities for a clusters
placement, hence the likelihood of clusters being
served by the same proxy is greatly reduced. This
can be seen in Figure 7.

Figure 6 shows the difference in execution time
as the number of examined proxies increase. It can
be seen that the execution times linearly increase,

Cahill & Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION40

Figure 4 Required Calculation for HCDN Heuristic Figure 5 Resource Usage for BestX Heuristic

Figure 6 Required Calculations for BestX Heuristic

and that the number of calculations is independent
to the number of proxies in the topology. Given,
that these placement algorithms are expected to be
executed frequently, it is vital that their running
time be minimized.

5.4 Resource Management

This section looks at the overall resource
management abilities of the proposed placement
heuristics. It was not possible to evaluate the
VCDN placement algorithm under any of the
proposed topologies, as the execution time required
was too large. Figure 7 shows the overall resource
usage when placing replicas using the BestX,
Closest Proxy and HCDN algorithms. As can be
seen, using the BestX algorithms yields minimal
resource usage in most cases. The increase in
resource usage for the BestX placement algorithm
is attributed to the fact that the algorithm only
considers one proxy as a possible placement, and in
the event of this proxy reaching its capacity of
clients, then the cluster(s) will remain being served
by the currently more costly server. This did not
occur in any of the larger topology networks, as the
clusters were spread out over a greater number of
proxies.

As expected, the Closest Proxy algorithm
performed poorest, as it always selected the proxy
closest to the clients to serve the content, regardless
of whether they are more expensive than further
away proxies. Similar results are shown for larger
topologies as shown in Figure 7.

As shown in Figure 7, for any reasonably sized
topology (60 proxies and 100 proxies), both
placement heuristics yielded almost identical
resource usage, but the number of calculations
required while using the HCDN algorithm was

significantly more than that required by the BestX
algorithm. Also, although it is not very apparent
from the graphs, the number of calculations
required by the HCDN heuristic is more than six
times larger than that required by the same
workload using a smaller topology, as shown in
Figure 8. Again, this was expected, as the number of
proxies within each domain has increased
significantly. For this reason, even though HCDN
can significantly reduce the number of evaluated
proxies during a placement evaluation, it still
requires too many evaluations (the number of
calculations required exponentially grows with
topology size) to be considered useful. The current
implementation of the HCDN algorithm assumes a
single level of hierarchy.

By increasing this to a multi-level hierarchy, it
would be possible to reduce the number of
calculations further, but it is unlikely to perform as
good as the BestX algorithm which in its current
state with X = 1, has the minimum possible
execution time. Also, the BestX algorithm has
yielded better placements on almost all occasions
when compared with the HCDN heuristic,
therefore no advantage could be gained by using
such an approach.

6. FUTURE TRENDS

It is believed that due to the immense financial
investment required to setup a CDN, using shared
infrastructure and resources will become a more
common approach to content distribution, for
example, the IETF Content Distribution
Internetworking (CDI) Working Group is
examining the possibility of CDNs working
together to serve clients at times of high loads. In
such an environment, suitable middleware will be

Cahill and Sreenan: An Efficient Resource Management System

VOL 3 NO 1 FEBRUARY 2006 41

Figure 8 Required Calculations for HeuristicsFigure 7 Resource Usage of Heuristics

required to control the infrastructure, providing
features such as the ability to securely add and
remove content dynamically from leased servers,
and also resource monitoring for all servers
partaking in the network.

As mentioned earlier, the costs for each resource
can be set individually, this facilitates a bidding
nature when assigning a value to a resource. If the
value is too high, then the VCDN placement
algorithm will select a cheaper resource, and the
expensive resources will remain idle and not earning
any money for the service provider. Issues
pertaining to the payment of the service providers,
either in the form of micro-payments or some other
suitable approach needs to be examined. These
would be very interesting research areas, which need
to be examined before any content distribution
architecture could be deployed over a shared
infrastructure.

The future of conventional broadcast TV is
believed to be currently lying in the balance. More
and more users are choosing to view their TV
programs with DVRs such as TiVo, where they can
view the program at a time that suits them and
without the annoyances of advertisements. Content
creators, may soon decide to skip the TV
broadcaster and distribute their content directly to
the users, thereby earning more profits by cutting
out the middleman. In such an environment,
distribution systems such as VCDN will be
required.

Finally, though the work presented in this paper
focuses on TV content, with some minor alterations
the proposed architecture could be used for the
efficient distribution of any type of objects. One
proposed extension is the provision of a complete
home entertainment system to the user. In such an
environment, a set-top box located in the home
could be used to access a globally networked music
collection, or use the set-top box to play games
online, where the source code required for the next
level is downloaded directly to the set-top box on
demand.

7. CONCLUSIONS

Content distribution has become very important in
the past number of years, with increasing last-hop
connection speeds, creating greater demand for large
objects such as high-quality video. This work
extends the previously proposed Video Content
Distribution Network (VCDN). VCDN was
designed to be an efficient distribution network,
suitable for the delivery of high-quality video objects

such as TV content. The scalability of the VCDN
architecture was limited by the length of time
required to perform content placement evaluations.

This work proposes two new placement
heuristics suitable for the VCDN system. The
heuristics attempt to reduce the examined set of
proxies, intelligently removing proxies that are
unlikely to be able to efficiently deliver content to a
set of clients. In doing this, the number of
calculations performed and hence execution time
for the algorithm decreases. The HCDN placement
heuristic arranges the set of proxies into a hierarchy.
The placement algorithm then performs two tasks,
initially it determines which region of the network
is likely to contain a good proxy placement, and
then determine the best proxy within that region.
The BestX placement heuristic on the other-hand,
proposes that an ordered list of good proxy
locations is kept for each cluster. A parameter, ‘X’ is
passed to the algorithm that determines how many
proxies it should consider during placement
evaluations.

Finally, an extensive evaluation of these placement
heuristics was performed, outlining their resource
management ability and execution time. It was
shown that a direct correlation exists between the
algorithm execution time and the number of proxies
it considers during placement evaluation. The
evaluation stage initially determined the optimal
configuration parameters for both placement
heuristics, in terms of the HCDN algorithm; this
was to determine the optimal number of regions to
divide the network into, and in terms of the BestX
algorithms, it was to determine the best number of
proxies to consider for each cluster during
placement evaluation. Once determined, these two
algorithms were compared, to identify which, if any,
would be suitable for use in the VCDN. It was
shown that for any reasonably sized topology, both
placement heuristics yielded almost identical
resource usage, but that the number of calculations
required when using the HCDN algorithm was
significantly more than that required by the BestX
algorithm.

In summary, a placement algorithm which uses a
cost model to determine the best proxy for each
cluster, and then only considers that proxy as a
potential location for replicas requested by the
cluster, yields very good resource usage and
evaluates in minimal time. Future work will
examine the effect of using a coarse grained cost
model, where resources cannot be purchased on a
per byte scale, but rather in predefined chunks as is
currently the granularity that service providers
operate in.

Cahill and Sreenan: An Efficient Resource Management System

INTERACTIVE TECHNOLOGY & SMART EDUCATION42

Cahill and Sreenan: An Efficient Resource Management System

ACKNOWLEDGMENTS

The authors wish to thank AT&T Labs Research
(USA) for part-sponsoring this project. In addition,
support from the EU FP6 E-NEXT Network of
Excellence contributed greatly to this work, by
enabling close interaction with other E-NEXT
partners working on related research.

REFERENCES

Aggarwal, C.C., Wolf, J.L. and Yu, P.S. (1996a) On optimal
batching policies for video-on-demand storage server.
In Proc. from the International Conference on Multimedia
Computing and Systems, Hiroshima, Japan, pp 253–258

Aggarwal, C.C., Wolf, J.L. and Yu, P.S. (1996b) A
permutation-based pyramid broadcasting scheme for
video-on-demand systems. Proc. from IEEE
International Conference on Multimedia Computing and
Systems ‘96, Hiroshima, Japan.

Akamai (2005) http://www.akamai.com.
Amini, L. (2004) Models and Algorithms for Resource

Management in Distributed Computing Cooperatives.
PhD thesis, Columbia University.

Arya, V., Garg, N., Khanderekar, R., Munagala, K. and
Pandit, V. (2001) Local search heuristic for k-median and
facility location problems. Proc. from ACM Symposium on
Theory of Computing, Crete, Greece, pp 21–29.

BRITE: Boston university Representative Internet
Topology gEnerator (2005) http://www.cs.bu.edu/brite/.

Cahill, A.J. and Sreenan, C.J. (2003) VCDN: A content
distribution network for high quality video
distribution. Proc. from Information Technology &
Telecommunications, Letterkenny, Ireland.

Cahill, A.J. and Sreenan, C.J. (2005) An efficient cdn
placement algorithm for high-quality TV content.
Proc. from Internet and Multimedia Systems and
Applications - EuroIMSA, Grindelwald, Switzerland.

Choon-Hoong, D., Nutanong, S. and Buyya, R. (2005)
Peer-to-Peer Networks for Content Sharing. In: Peer-
to-Peer Computing: Evolution of a Disruptive Technology,
pp 28–65. Idea Group Publisher, Hershey, PA.

Courcoubetis, C. and Antoniadis, P. (2002) Market
models for p2p content distribution. International
Workshop on Agents and Peer-to-Peer Computing, AP2PC
2002, Bologna, Italy, July, 2002.

Dan, A. and Sitaram, D. (1996) A generalized interval
caching policy for mixed interactive and long video
environments. Proc. from IS & T SPIE Multimedia
Computing and Networking Conference, San Jose, CA.

Eager, D., Vernon, M. and Zahorjan, J. (2000) Bandwidth
skimming: A technique for cost-effective video-on-
demand. Proc. IS&T/SPIE Conf. on Multimedia
Computing and Networking, San Jose, CA, USA.

Gnutella: P2P Application (2005) http://www.gnutella.com.
Griwodz, C. (2004) The use of stream merging

mechanisms in a hierarchical cdn. Proc. from
IS&TSPIE Multimedia Computing and Networking
(MMCN), Santa Clara, California.

Guo, Y., Suh, K., Kurose, J. and Towsley, D. (2003)
P2cast: Peer-to-peer patching scheme for vod service.
Proc. of 12th International World Wide Web Conference
(WWW 2003), Budapest, Hungary.

Hefeeda, M.M., Bhargava, B.K. and Yau, D.K.Y. (2004) A
hybrid architecture for cost-effective on-demand media
streaming. Computer Networks, 44(3): 353–382.

Hu, A. (2001) Video-on-demand broadcasting protocols: a
comprehensive study. Proc. INFOCOM, pages 508–517.

Hua, K.A. and Sheu, S. (1997) Skyscraper broadcasting: A
new broadcasting scheme for metropolitan video-on-
demand systems. Proc. from ACM SIGCOMM, pages
89–100, Cannes, France.

Hue, K., Cai, Y. and Sheu, S. (1998) Patching: A multicast
technique for true video-on-demand services. Proc. of
6th ACM International Multimedia Conference, Bristol,
UK. ACM Multimedia '98.

Kangasharju, J., Roberts, J., and Ross, K. (2001) Object
replication strategies in content distribution
networks. Proc. of WCW’01: Web Caching and Content
Distribution Workshop, Boston, MA, USA.

KaZaa: P2P Application (2005). http://www.kazaa.com.
Li, B., Golin, M., Italiano, F., Deng, X. and Sohraby, K.

(1999) On the optimal placement of web proxies in the
internet. Proc. of INFOCOM, New York, NY, USA.

Mirchandani, P.B. and Francis, R.L. (1989) Discrete
Location Theory. In: The Uncapacitated Facility
Location Problem, pp. 120–168. John Wiley, New York.

Nguyen, T.V., Chou, C.T. and Boustead, P. (2003)
Provisioning content distribution networks over
shared infrastructure. Proc. from 11th IEEE Internation
Conference On Networks (ICON), Sydney, Australia.

Padmanabhan, V., Wang, H., Chou, P. and
Sripanidkulchai, K. (2002) Distributing streaming
media content using cooperative networking. Proc. of
Workshop on Network and Operating System Support for
Digital Audio and Video, Miami, FL, USA. NOSSDAV.

Qiu, L., Padmanabhan, V. N. and Voelker, G. M. (2001)
On the placement of web server replicas. Proc. from
IEEE INFOCOM, pages 1587–1596, Anchorage, Alaska.

Tang, W., Fu, Y., Cherkasova, L. and Vahdat, A. (2003)
Medisyn: A synthetic streaming media service
workload generator. In Proc. of Workshop on Network
and Operating System Support for Digital Audio and
Video, Monterey, California, USA. NOSSDAV.

Tivo (2005). http://www.tivo.com/.
Tran, D. A., Hua, K. A. and Do, T. (2003) Zigzag: An

efficient peer-to-peer scheme for media streaming.
Proc. of the 22nd IEEE INFOCOM, San Francisco, CA.

Viswanathan, S. and Imilelinski, T. (1995) Pyramid
broadcasting for video on demand service. Proc. from
SPIE Multimedia Computing and Networking, pp. 66–77,
San Jose, CA.

Wang, B., Sen, S., Adler, M. and Towsley, D. (2004)
Optimal proxy cache allocation for efficient
streaming media distribution. IEEE Transaction on
Multimedia, Special Issue on Streaming Media, 6.

Xu, D., Chai, H.-K., Rosenberg, C. and Kulkarni, S.
(2003) Analysis of a hybrid architecture for cost-
effective streaming media distribution. Proceedings of
SPIE/ACM Conference on Multimedia Computing and
Networking (MMCN 2003), Santa Clara, CA.

VOL 3 NO 1 FEBRUARY 2006 43

Adrian J. Cahill received his BSc degree in Computer Science at the University College Cork Ireland in 2001 at which point he begun
his PhD Studies. Adrian is part of the Mobile and Internet Systems Laboratory (MISL) at the University. His research interests include
multimedia networking, content distribution, and distributed systems. Further details at: http://www.cs.ucc.ie/misl

Cormac J. Sreenan is Professor of Computer Science at University College Cork in Ireland. Previously he was a researcher at AT&T
Labs Research, and at Bell Labs Research in Murray Hill, NJ, USA. He holds a PhD in Computer Science from the University of
Cambridge. His research interests include mobile and multimedia networking. He is currently on the editorial board for ACM/Springer
Multimedia Systems Journal and has recently served as guest editor for IEEE Journals and Magazines. He is a Fellow of the British
Computer Society. Further details at: http://www.cs.ucc.ie/~cjs

INTERACTIVE TECHNOLOGY & SMART EDUCATION44

Cahill and Sreenan: An Efficient Resource Management System

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

