# West of Ireland Coring Programme (WICPro)

# **RV Celtic Explorer**



Cork – Killybegs

# 6<sup>th</sup> March to 18<sup>th</sup> March 2014

Andy Wheeler, Aaron Lim, Jared Peters, Fabio Sacchetti, Marian McGrath, Margaret Browne, Akram El Kateb, Findabhair Ní Fhaoláin, Sabrina Renken, Kevin Schiele, Agostina Vertino, Officers & Crew of the RV Celtic Explorer





# Index

| 1 Executive summary                       | 3  |
|-------------------------------------------|----|
| 2 Background                              | 4  |
| 3 Survey rationale and objectives         | 8  |
| 4 Equipment                               | 9  |
| 5 Technical difficulties                  | 17 |
| 6 Survey narrative                        | 19 |
| 7 Summary of areas                        | 23 |
| 8 Weather Report                          | 27 |
| Appendices                                |    |
| Appendix I: Personnel                     | 30 |
| Appendix II: Area maps                    | 33 |
| Appendix III: Station lists               | 40 |
| Appendix IV: Box core descriptions        | 54 |
| Appendix V: Marine mammal observer report | 56 |

### 1 Executive Summary

This survey focussed on the provision of core material from several survey areas on the Irish western shelf and margin in support of differing research objectives. It represents a coming together of several Irish university research groups, and international collaborators, around a common purpose.

Despite some unfavourable weather at the start, the survey was a success with all objective met and valuable core material and supporting geophysical data acquired for all partners.

On-mound and off-mound cores were retrieved from the Moira Mounds in the eastern Porcupine Seabight. Cores were retrieved from the Porcupine Bank margin targeting glacial sequences down to 3000m water depth. Also on the Porcupine Bank, a small number of box cores and a gravity core were taken from the Porcupine Bank Canyons mounds (both on- and off-mound). Considerable effort was made to retrieve vibrocores from the western shelf to date the end of glaciations. These proved hard to get as they targeted reworked gravels and diamictons. However, successful cores and valuable site data were collected.

# 2 Background

This survey was undertaken to provide core material and data to support a broad range of ongoing scientific endeavours. These include:

- Studying environmental records from cold-water coral reefs
- Studying the history of glaciomarine deposition from the Porcupine Bank flank
- Studying ice limits and glacial processes on the western shelf

Three key target areas are identified where the retrieval of core material and seismic data was undertaken in pursuit of the above objectives. The background to these areas is outlined below.

#### Moira Mounds

The framework-building cold-water corals (CWC's) have a reef forming capacity generating positive topographic features on the seabed (reefs or carbonate mounds). These contain unique palaeoenvironmental archives (Thierens *et al.*, 2010; 2012). These CWC autogenic, mound-building biota (Correa *et al.*, 2012) form in areas with adequate hydrographic (temperature, surface productivity, pH, enhanced current speeds, salinity and food supply) and sedimentological attributes (substratum and sediment supply) (Dorschel *et al.*, 2007; Foubert *et al.*, 2011: Wheeler *et al.*, 2007: 2011; Fink *et al.*, 2012) in Ireland often found along continental margins at intermediate water depths (Dorschel *et al.*, 2007). Knowledge of these specific environmental conditions not only allows an understanding of their contemporary occurrence but it also allow to reconstruct marine environmental change through time (Roberts *et al.*, 2009).

Not only do CWC flourish in Irish waters today, but have done so for millions of years e.g. the Challenger Mound (Kano *et al.*, 2007; Thierens *et al.*, 2010). The continued favourable marine environmental conditions off the Irish continental margin has lead to successive reef development. Subsequently, Irish water is home to some of the largest and most dense coral carbonate mounds in the world (Roberts *et al.*, 2009).

Geologically, the subject of reef initiation has been relatively poorly documented and examined with only two papers directly addressing this: Squires (1964) and Wilson (1979a). Despite some work concerning reef initiation and development in more recent studies including Wheeler *et al.* (2011), Foubert *et al.* (2011), Dorschel *et al.* (2005) and Frank *et al.* (2005), these research are primarily concerned with the environment of reef initiation and development rather than the initiation process itself. Thus, with more advanced marine surveying techniques and data available, advance on both Wilson (1979a) and Squires' (1964) work are overdue. Proposed Moira Mound target cores are all based on on-going research and previously collected data:

TOBI Side Scan Sonar (NOC, Southampton) Box Cores (Uni. Fribourg, UCC, UniMiB) Video data (VENTuRE survey, UCC) Microbathymetry (UCC, AWI) Videomosaic data (UCC, IFREMER) CTD data (Uni. Fribourg, UCC, UniMiB)

Targets are selected in pairs; one targeting a specific mound build-up feature while the other targets its nearby off-mound counterpart. As shown by previous studies (i.e. Dorschel *et al.*, 2005; 2007, Lopez-Correa *et al.*, 2012, Douarin *et al.*, 2013a; 2013b), the use of an off-mound core can act, not only as a stratigraphic correlation, but as a control for mound growth rate, background sedimentation, and percentage carbonate. While considering time, bad weather, proximity of targets, no. of participants and 24 hour operations a total five core pairs (10 cores) are proposed.

Furthermore, targets chosen by direct video observation, were specifically prioritised based on feature size and stage of growth (i.e. thicket or reef) to ensure that penetration to the base of targets is possible. A further parameter for selecting targets is based on geographical distribution from south to north. Video observations show a distinct gradation in mound vitality, size and stage of growth from south to north. The proposed targets aim to include this geographic distribution, encapsulating this mound gradation.

#### Porcupine Bank

The Porcupine Bank is also the site of cold-water coral mounds. A brief study of the Porcupine Bank Canyon Mounds will be undertaken to complement the above. In additional a number of cores recording glacio-marine sedimentation will be taken from the flanks of the Bank.

The NE Atlantic Ocean is a climatically sensitive region with proven potential for furnishing palaeoceaonographic records of ice sheet and ocean circulation change (e.g. Peck *et al.*, 2007, 2008; Scourse *et al.*, 2009). The Rockall Trough sits at a critical gateway for the circulation of intermediate and deepwater currents that are integral to the meridional overturning circulation (New & Smythe-Wright, 2001). Sediment-based proxies for current velocity, coupled with isotopic and faunal data derived from foraminifera, can be used to elucidate variability in the vigour and configuration of past ocean circulation (e.g. Bianchi & McCave, 1999; Peck *et al.*, 2007; Siddall *et al.*, 2007; Gherardi *et al.*, 2009). The same sedimentary sequences also contain the "fingerprint" of ice sheet response from around the N Atlantic fringe in the form of 'ice rafted detritus' and so-called 'Heinrich layers' or BIIS IRE

event layers which have been linked to catastrophic ice sheet collapse (Heinrich, 1988; Broecker *et al.*, 1992; Bond & Lotti, 1995; Labeyrie et al., 2007).

The location of the Porcupine Bank means that it not only receives exotic material from the large, northern ice sheets of Greenland and N. America, but also records local inputs from the adjacent British-Irish Ice sheet (BIIS). In this way, analysis can provide further chronological constraints on BIIS history and correlate these changes with wider oceanographic variability and response of other ice masses adjacent to the N. Atlantic (Scourse *et al.*, 2009; Hibbert *et al.*, 2010).

The investigation will comprise recovery of gravity cores from selected locations on the western Porcupine Bank which will be analysed for sedimentology and micropalaeontology. Chronology will be established based on the INTIMATE protocol (Austin & Hibbert, 2012), using a combination of radiocarbon dates, oxygen isotope data, planktonic foraminiferal (%Nps) synchronisation to NGRIP and, if possible, tephrostratigraphy. Further stable isotope (C) and elemental (e.g. Mg/Ca) analysis of benthic and planktonic foraminfera will build on the work of Owen (2010) and explore evidence for sea ice extent and ocean circulation change during the interval from MIS4-2.

Each seismic profile used in Toms (2010) thesis shows the RTa megasequence which consist of sediments from the Early Pliocene to Holocene. They are thickest on the upper slope (< 1000 m) with low slope angles (< $0.2^{\circ}$ ) and o the Rockall Trough floor. Along the mid and lower slope (1000 – 3000m water depth) the thickness is less and varies strongly. While the RTa sequence is more continuous in the south of the study area they are often interrupted by mounds or pock marks in the north. Also slumped contourite packages are detected. In summary the northern part seems more disturbed in case of the RTa sequence then the southern part.

However, cores of the Rockall Trough floor may also reveal great thicknesses of the past glacials and interglacials in both parts of the study area (north and south).

#### Western Shelf

Like modern ice-sheets, the former British-Irish Ice Sheet (BIIS), was a fundamental variable in the global climate system. Simultaneously, the BIIS affected and was affected by regional and global climate change through complex and interconnected global feedback mechanisms (Clark *et al.*, 2012a); its marine-terminating margins were potentially the most sensitive areas to climate changes during the Quaternary. It is now widely accepted that modern glaciers and ice sheets are perhaps the most sensitive gauges of short-term climate change. Similarly, data evidencing the behaviour of extinct ice sheets, reveal critical information on the global climate system over millennial time-scales (McCabe & Clark, 1998).

Recently analysed Irish National Seabed Survey (INSS) data (multibeam and backscatter) has revealed glacial landforms consistent with a grounded BIIS to the west and northwest of Ireland (Benetti *et al.*, 2010; Dunlop *et al.*, 2010; Ó Cofaigh *et al.*, 2012). This research has confirmed years of scientific speculation on ice sheet extent (e.g., Bowen *et al.*, 1986; 2002; Stoker & Holmes 1991; McCabe *et al.*, 2007). This minimum ice extent confirms the presence of large sections of marine-based ice and marine-terminating margins (Clark *et al.*, 2012b) and may be in agreement with a hypothesis of major ice-stream drainage (Greenwood & Clark 2009). An examination of the regional geomorphology has shown the presence of end/terminal moraines. This suggests ice drainage via several ice lobes (with terrestrial source ice in Ireland and Scotland) terminating at or near the shelf edge (Benetti *et al.*, 2010; Dunlop *et al.*, 2010; Ó Cofaigh *et al.*, 2012).

Despite this new data, and a century of research on the last BIIS, there is still critical need for continued study to clarify ice sheet dimensions and behaviour. The limitations of marine geoscience research (e.g. technical limitations, cost, reliance on good weather for sampling, and time required to gather data) have obscured offshore palaeoglaciological research in the past. However, it is only through palaeoglaciology that insight on ice sheet dynamism, timing and environmental interactions, from advance to collapse, can be revealed. Therefore offshore palaeoglaciological research must continue to be a priority.

# 3 Survey Rationale and Objectives

Different objectives attain to the different areas:

<u>Objective 1: Moira Mounds (MM)</u> - We aim to test hypotheses relating to cold-water coral reef initiation and development including the parameterisation of contemporary and palaeo- hydrographical and sedimentological dynamics in a zone of active coral growth in the eastern Porcupine Seabight. We will gravity core on mound and off-mound sites in an area of active patch reef growth. This adds a temporal dimension to existing extensive spatial data coverage in this area (Wheeler *et al.,* 2011).

<u>Objective 2: W. Porcupine Bank (WPB)</u> – To determine the effect of glaciation on the development of the outer western Porcupine Bank, to explore evidence for sea ice extent pro-glacial sediment supply and ocean circulation change during the interval from MIS4-2.

<u>Objective 3: Western Shelf (WS)</u> – To determine (sparker seismics) sites for coring on the BRITICE-CHRONO programme on the RSS James Cook. To collect Irish cores/sparker data a key sites to determine the nature of potential identified slope instability sites on the shelf edge and sample probable moraines for chronological and provenance studies.

# 4 Equipment

### Research vessel - RV Celtic Explorer

The Celtic Explorer is a 65.5 m multi-purpose research vessel. The vessel has wet, dry and chemical laboratories, which are permanently fitted with standard scientific equipment and can accommodate 20-22 scientists along with 13-15 crew who are highly skilled with the handling and deployment of scientific equipment. It has a maximum endurance of 35 days.

The Celtic Explorer is equipped with two Trimble 300-D GPS and has Dynamic Positioning.

On the aft deck is a 25 tonne A-frame with 4m outward and inward reach in addition to a 3m, 10 tonne starboard T-frame. The ship also comprises of a midship, forward and aft crane as well as a 6 tonne CTD winch.



Simrad EM 1002 Multibeam ecosounder

The Kongsberg Simrad EM 1002 multibeam echo sounder is designed for high resolution seabed mapping from the shoreline and down to a depth of approximately 1000 m. The EM 1002 has an accuracy surpassing the IHO standard, including the most stringent of the latest version, 4th edition.

The EM 1002 is a complete system with all necessary sensor interfaces, real-time compensation for vessel motion and ray bending, data displays for quality control including sensor calibration, and data logging included as standard.

The EM1002 system has a maximum ping rate of more than 10Hz, a large number of measurements per ping with 111 beams, 2.3 degrees beam width, and electronic roll stabilization. Mechanical pitch compensation is available with an optional hull unit. Across track coverage is up to about 1500 m in deeper waters, and in shallow waters up to 10 times depth beneath the transducer. The angular coverage is fully adjustable, and for surveying to the water surface along shorelines, river banks and man-made structures, the angular coverage to one or both sides maybe increased to 5 degrees above the horizontal.

The standard EM 1002 system has three different pulse lengths to maximize coverage in deeper waters. The system's nominal sonar frequency is 95 kHz. This frequency allows for small dimensions, good range capability and high tolerance to turbid waters. Integrated seabed acoustical imaging capability (side-scan) is included as standard. A combination of phase and amplitude detection is used, resulting in a measurement accuracy practically independent of beam pointing angle.

#### Geo-Source 400 sparker seismic system

The Geo-Source 400 sparker seismic system of the Marine Institute was used during the survey. This sparker seismic system consists of the Geo-Spark 6 kJ pulsed power supply which emits a pulse to the sparker source which is towed behind the vessel. The source comprises four electrode modules that are evenly spaced in a planar array. The return signal is picked up in Geo-Sense single channel hydrophone array. The system provides high resolution (<30cm) seismic profiles of the Shallow subbottom strata. The device achieves this level of accuracy due to its multi-tip array of sparker nodes, which are evenly spaced and set in-phase producing a very strong downward projection of acoustic energy. The system is designed to be towed on or just below the water-surface. High resolution seismic profiles of up to 300m depth can be imaged using the Geo-Spark 200 depending on the composition of the water column, sea conditions and the nature of the underlying geology.



#### Hull mounted ESE 5001S 3.5 kHz pinger system

The Sonar Equipment Services Ltd Probe 5001S 3.5 kHz sub-bottom profiler comprises of a surface processor and a sub-surface transceiver. The processor is set up for 16 transducers (4 X 4 array). The transducers are located in starboard mid sea water ballast tank.\_Output Power is up to 10KW at an <u>operating frequency of 3.5 to 9.0 kHz</u>. Maximum repetition rate is 10Hz The system is triggered from a CODA DA2000.

#### Gravity core

An OSIL 800kg gravity corer with an 7cm diameter bore which can be deployed with a 3m or a 6m mode, the 6m mode being two coupled 3 m barrels. The 3 m mode is pictured below, the additional 3m barrel and coupling (yellow) is behind. The gravity corer is fitted with a core catcher.



#### Double spade box corer

The Duncan Associates Double Spade Box Corer is designed for oceanographic deployment up to 5000m. It is manufactured in mild steel, galvanized finish with an internal 316 stainless steel box/cabinet and a stainless steel yoke in a stand with lead ballast ingot weights. The sampling area is 500mm x 500mm x 1.2m high box cabinet.



# Reineck box corer

A Reineck box-corer was used to take undisturbed sediment samples for biological assessment. It has a sampling box area of 10 cm x 17 cm with a maximum penetration depth of 26 cm.



#### Geo-Resources 6000 vibrocorer

A 6m vibrocore was used and deployed using the A-frame. The Celtic Explorer has Dynamic Positioning hence the corer wasn't necessarily restricted to times of slack water. The Geo Resources 6000 vibrocorer recovers cores of 6 metres depending on the sediment type, with best penetration in fine grained sediments. The vibrocorer consists of a six meter metal tube approximately 20cm in diameter, which contains an interior plastic pipe, or liner used to gather a core of sediment from the upper few metres of the sea bottom. The tube is set within a large support frame in order to keep it upright on the seabed. Once securely on the seafloor, the vibrocorer is driven down into the substrate by a pneumatic vibro-head. This heavy vibro-head uses a combination of gravity and low amplitude, high frequency pneumatic vibrations in order to penetrate the seafloor and gather undisturbed cores of marine sediment. The low amplitudes (a few millimetres) combined with the high frequencies (3,000 – 11,000 vibrations per minute) serve to mobilise a thin layer of material on either side of the plastic core liner, which causes the sediment to behave in an almost fluid manner and allows easy penetration of the seafloor by the vibrocorer.



#### SBE 911 CTD

The SBE 911 CTD with SBE 32 carousel includes the following equipment: Temperature and conductivity sensors, altimeter (for bottom detection), transmissometer, fluorometer, 24 position water samplers. The Sea-Bird 911*plus* CTD system consists of the SBE 9*plus* Underwater Unit and the SBE 11*plus* Deck Unit (for real-time readout using conductive wire). When a deck unit is employed, underwater unit power is supplied down the same single conductor armored wire used to carry data up to the surface. The deck unit decodes the serial data and passes it to a computer for display and logging to disk.

The Sea-Bird underwater hardware consists of a main pressure housing comprising power supplies, acquisition electronics, telemetry circuitry, and a suite of modular sensors all mounted within a stainless steel guard cage. Surface hardware includes the SBE 11plus Deck Unit and a computer. The temperature sensor (model SBE 3plus) is a compact module containing a pressure-protected high speed thermistor and 'Wein bridge oscillator' interface electronics. The thermistor is the variable element in the Wein-bridge, while a precision Vishay resistor and two ultra-stable capacitors form the fixed components. The conductivity sensor (model SBE 4C) is similar in operation and configuration to the temperature sensor, except that the Wein-bridge variable element is the cell resistance. The Digiquartz<sup>®</sup> pressure sensor also provides a variable frequency output. The sensor frequencies are measured using high-speed parallel counters and the resulting digital data in the form of count totals are transmitted serially to the SBE 11*plus* deck unit. The deck unit reconverts the count totals to numeric representations of the original frequencies.



#### Valeport SVX2 combined SVP/CTD

The Valeport SVX2 is fitted with a digital time of flight sound velocity sensor, high stability conductivity sensor, a high accuracy temperature compensated piezo-resistant pressure transducer and a fast response PRT temperature sensor. The instrument is depth rates to 6000m, weights 11.5 kg in its titanium housing.

#### Sonadyne Ranger 2USBL Positioning Beacon

Ranger 2 is a high performance acoustic position reference system designed for tracking underwater targets and positioning dynamically positioned (DP) vessels. The system (commonly referred to as a HPR system) uses the Ultra-Short Base Line (USBL) positioning method to calculate the position of a subsea target, by measuring the range and bearing from a vessel-mounted transceiver to an acoustic transponder fitted to the target. Multiple subsea targets over a wide area and range of water depths can be simultaneously and precisely positioned. In standard configuration, Ranger 2 allows up to 10 subsea targets to be simultaneously tracked from a surface vessel. Operating ranges of greater than 6,000 metres are achievable and the system supports all industry standard survey and DP output telegrams. One second position updates are achievable in any water depth.



# 5 Technical Difficulties

# 6<sup>th</sup> March 2014: Windy with a moderate sea. Visibility poor

Sea-state precludes any of the proposed work and shelter taken in Bantry Bay. Downtime effectively used by shaking down coring and seismic systems.

# 7<sup>th</sup> March 2014: Sunny, westerlies 5-6 becoming 7-8 tonight.

The new gravity corer was test in calm water (Bantry Bay) in muds. Performance was poor with the first deployment (**CE14004\_01GC**) showing the barrel buried itself 3.2m into the seabed (apparent penetration) but only recovered 0.36m (11% recovery!). A modification to the valve was made at the top to let more water escape for the barrel and we manage to bury the barrel into the seabed to 3.2 m again apparent penetration (**CE14004\_02GC**) and recovered 0.9m (28% recovery). Third attempt produced a better recovery with a slower deployment and a modified value to let the water flow out: 2.61m apparent penetration (**CE14004\_03GC**) with a recovery of 1.83m (70% recovery). Conclusion is that the modified valve is an improvement but the narrow gauge of the gravity core is a problem.

# <u>8<sup>th</sup> March 2014</sub>: Visibility poor, southerly Force 8</u>

Resumed testing the gravity corer, first in 6m mode (**CE14004\_04GC**): apparent penetration of barrel 0.75 cm and recovery 1.30m. Clearly the core didn't go in right and the apparent penetration is also false. Second attempt (**CE14004\_05GC**) was fast hauled to the seabed 10m of the bottom and gave an optimum result with 5.9m apparent penetration and 1.5m recovery (25% recovery). The same deployment protocol was used (10m off bottom and full speed into the seabed) with a 3m barrel but with no valve at the top (**CE14004\_06GC**): apparent penetration 3.28 m, recovery 1.94 m (59% recovery). This seems to be the most optimal.

We tested both the MI and GSI streamers. They were both about the same in quality. We will therefore proceed with the MI streamer.

# 10<sup>th</sup> March 2014: Low to moderate swell, Force 2-3

Gravity core **CE14004\_07GC** failed to work on soft mud. A core was eventually retrieved by slowly easing into the seabed. This technique proved most successful. We also had some core failures due to the presence of corals blocking the corer. Pushing hard did not improve penetration except on the last try.

# <u>11<sup>th</sup> March 2014</u>: Low swell

A box core (**CE14004\_18**) was taken in the Porcupine Bank Canyon area but seastate was deemed hazardous for deployment. The box corer is heavy and has to be lifted over the gunwale. This can only be safely done in calm seas. This operation was abandoned in the hope that the sea would calm later on. During recovery the box-core was hit against the side and a bar was bent.

# <u>12<sup>th</sup> March 2014</u>: Force 6, moderate swell and chop, poor visibility

In an attempt to straighten the box core bar, it broke off. The sea state was also considered too rough to deploy despite a slight sea. The much smaller Reineck was used as an alternative.

<u>14<sup>th</sup> March 2014</u>: *Slight sea. Force 3-5.* Coarse gravels inhibited vibrocoring.

<u>16<sup>th</sup> March 2014</u>: *Moderate seas, force 6-7 falling to 3.* Vibrocore not deployed in Force 4 as too rough

# 17<sup>th</sup> March 2014:

Vibrocore stopped working. Blue light came on and the motor failed to activate. Test of the aft showed this to be the case. It was identified that the magnetic switch which informs the deck box that it has received maximum penetration malfunctioned "on". This then caused the motor to automatically shut down. The magnetic relay was bypassed and vibrocoring could continue. The vibrocore was out of action from 07.50 until 16.45.

### 6 Survey Narrative

<u>6th March 2014</u>: Windy with a moderate sea. Visibility poor

Started mobilisation at 09.00 and left Cork Harbour at 11.00 into moderate seas. Transitted to the Moira Mounds study area heading into the swell, progress 8 kts dropping to 6 kts. Weather forecast deteriorated and decision was made at 18.00 to seek shelter behind Bere Island as predicted sea-state was to rough (5 m swell) to deploy the gravity corer on arrival at any of the proposed sites and deteriorating from thereon in.

<u>7th March 2014</u>: Sunny, westerlies 5-6 becoming 7-8 tonight.

On DP sheltering behind Bere Island, Bantry Bay. 13.20 heading out to the middle of Bantry Bay to run a test sparker line. Commence MMO survey 13.40. Sparker and Pinger lines **CE14004\_SL1** & **PL1** commenced at 15.42 and finished at 17.03. Three gravity cores were taken in the same place to test the 3m gravity core (**CE14004\_01GC** to **CE14004\_03GC**) commencing at 17.46. On optimum seabed, the corer performed poorly (see technical difficulties). Coring stopped at 20.29 and we recovered to shelter behind Bere Island

<u>8th March 2014</u>: *Visibility poor,* southerly Force 8

On station, the same as yesterday, to trial the 6m gravity corer at 09.00 (CE14004\_04GC). Two cores were taken with poor success (CE14004\_04GC & CE14004\_05GC). 3m core was also taken (CE14004\_06GC). Coring operations ceased at 11.02. MMO starts at 11.30. Sparker and Pinger lines CE14004\_SL2 & PL2 run to test different streamers commencing 12.45 and ending 15.20. All systems tested, heading for shelter behind Bere Island. In shelter behind Bere Island by 16.20.

<u>9th March 2014</u>: *Moderate swell, good visibility* 

Left safe haven behind Bere Island at 14.00. Transit to Moira Mounds site.

<u>10th March 2014</u>: *Low to moderate swell, Force 2-3*  Arrive at the Moira Mounds 00.10. Start coring operations 00.17. **CE14004\_07GC** & **CE14004\_08G**, 2 attempts same site (10m slow fall on soft mud). **CE14004\_09GC** same protocol as above. **CE14004\_10GC** & **CE14004\_11G**, 2 attempts on same site both with recovery. **CE14004\_12A-E GC**, no recovery although **CE14004\_12FGC** worked. **CE14004\_13-15 GC**, all good cores with **CE14004\_16GC** collecting only a few coral fragments. **CE14004\_17 A&B GC** not recovery with **CE14004\_17C GC** working. Finished coring at 23.12 and commenced transit to the Porcupine Bank Canyon Mounds.

11th March 2014:

Low swell

Arrive on station at the Porcupine Bank Canyon Mounds at 13.19. Box core (**CE14004\_18B**) taken at 14.06 but sea state determine too poor to continue. Transited to Porcupine Bank sites arriving on station at 17.15. Began coring at 17.44. Initial core was short and sandy (**CE14004\_19G**), next three sites were relocated further up slope where more muddy sediment was encountered (**CE14004\_20G - CE14004\_24G**). Finished coring up to **CE14004\_21G** by 23.08.

12th March 2014:

Force 6, moderate swell and chop, poor visibility

Continued coring upslope transect finished coring **CE14004\_24G** by 02.44. Started deeper sites at c. 3000m at 05.50 finishing at 15.40 (**CE14004\_25G - CE14004\_29G**). Made two attempts to take a final gravity coring near to existing core site ENAM97\_04 at 836m water depth at 19.04 and 19.48 respectively (**CE14004\_30G** & (**CE14004\_31G**). Commenced transit back the Porcupine Bank Canyon Mounds at 20.00.

<u>13th March 2014</u>: Low to moderate seas

Arrive at Porcupine Bank Canyon Mounds at 00.00. Collected two attempts were made to collect a Reineck box core on top of a second cold-water coral mound (**CE14004\_32B** - **CE14004\_33B**) between 00.23 and 01.02. The first hit hard ground with limited recovery and the second was successful. At CTD was then taken on the first cold-water coral mounds (site of **CE14004\_18B**) (**CE14004\_01CTD**) at 01.57 followed by a gravity core (**CE14004\_34G**) at 02.53. Off mound Reineck box core was taken at 03.32 (**CE14004\_35B**). An attempt to take a final CTD in the Canyon head failed. Finished operations at 04.50 and commenced transit to the western shelf site running multibeam on the way. Multibeam will run continuously from now on. On site for first vibrocore at 21.45 (**CE14004\_36V**).

<u>14th March 2014</u>: Slight sea. Force 3-5.

Continued vibrocoring until 05.10 (CE14004\_36V to CE14004\_41V) in the western shelf area. Took an SVP at 00.59 (CE14004\_1SV) before commencing transit, with the multibeam and pinger running, for the Western Shelf area. On site for vibrocoring at 09.01 (CE14004\_42V). Continued vibrocoring Western Shelf site (CE14004\_42V to CE14004\_46V) until 12.18. MMO started observations at 11.15. Soft start complete, Pinger and Sparker data acquisition begins at 13.33 (CE14004\_SL5/PL5) as well as multibeam. MMO finished at 14.10. Acquisition of pinger and sparker lines continues for the rest of the day (CE14004\_SL5/PL5 to CE14004\_SL16/PL16).

<u>15th March 2014</u>: *Moderate sea Force 3-6.* 

Acquisition of pinger and sparker lines continues until 11.50 (**CE14004\_SL17/PL17** to **CE14004\_SL31/PL31**). Vibrocores (**CE14004\_47V** to **CE14004\_51V**) taken from 13.47 to 19.01. Transit made to Killary area with multibeam.

<u>16th March 2014</u>: *Moderate seas, force 6-7 falling to 3.* 

Vibrocoring abandoned at Killary area due to unfavourable seas (**CE14004\_52V**). MMO started at first light and started sparker and pinger lines at 00.36 (**CE14004\_SL32/PL32**) in the western shelf area. Finished sparker and pinger at 19.50 (**CE14004\_SL43/PL43**). Proceeded in transit to the start of the Killary site. Started vibrocoring in favourable seas at 19.58 (**CE14004\_53V**).

<u>17th March 2014</u>: Slight to moderate seas.

Continued vibrocoring until 07.30 (**CE14004\_60V**). Vibrocore stopped working at 07.50. MMO started observations at 9:30. Soft start began at 10:20. MMO observations completed at 11:10. Sparker and pinger data collection began at 11:20 (**CE14004\_SL45/PL45**) continuing until 16.30 (**CE14004\_SL51/PL51**). Two vibrocores were then taken at the north of the area (**CE14004\_61V & CE14004\_62V**) before doing a final sparker and pinger (**CE14004\_SL52/PL52**). Transit to Killybegs commenced at 21.10.

<u>18th March 2014</u>: In Shelter Arrive at Killybegs ay 08.00. End of survey.

# 7 Summary of Areas

#### **Bantry Bay**

Tested gravity corer and sparker in shelter during bad weather. Seabed muddy with a rise in bedrock identified.

| -       |        |       |       |          |           |          |             |
|---------|--------|-------|-------|----------|-----------|----------|-------------|
|         |        |       | Water |          |           | Sample   |             |
| Station | Core   | Time  | depth | Latitude | Longitude | recovery | Comments    |
| 11      | 07GC   | 00:45 | 1066m | 51.43972 | -11.8224  | 0.61m    |             |
| 12      | 08GC   | 02:02 | 1068m | 51.43959 | -11.8224  | 2.06m    |             |
| 13      | 09GC   | 03:32 | 1066m | 51.43812 | -11.8228  |          |             |
| 14      | 10GC   | 05:08 | 1065m | 51.43856 | -11.8235  | 2.79m    |             |
| 15      | 11GC   | 06:24 | 1061m | 51.43857 | -11.8232  | 2.71m    |             |
| 17      | 12GC f | 13:47 | 976m  | 51.48971 | -11.8161  | 1.86m    |             |
| 18      | 13GC   | 14:55 | 977m  | 51.4894  | -11.8156  | 2.71m    |             |
| 19      | 14GC   | 16:24 | 975m  | 51.48943 | -11.8155  | 0.25m    |             |
| 20      | 15GC   | 17:30 | 976m  | 51.48975 | -11.816   | 2.75m    |             |
| 21      | 16GC   | 19:11 | 965m  | 51.49455 | -11.8192  | 0        | 2 coral     |
|         |        |       |       |          |           |          | fragments   |
| 23      | 17GC b | 21:03 | 966m  | 51.49466 | -11.819   | 0        | Loose coral |
|         |        |       |       |          |           |          | fragments   |
| 25      | 17GC c | 23.12 | 1030m | 51.43883 | -11.8226  | 2.09m    |             |

#### **Moira Mounds**

Core locations and sample recovery at the Moira Mounds target area.

The Moira Mounds are cold water coral reefs (~10m in height) located on lower slope of the eastern part of the Porcupine Seabight in the Belgica Mound Province. Located ~1000m below sea level, the western chain of the Moira Mounds are relatively abundant and increase in size from south to north. These have been groundtruthed by video data during previous surveys.

The basis for coring these Moira-type mounds in the north-west Belgica Mound Province is built on previously collected data; TOBI 30 kHz side scan sonar, box cores, CTD's, microbathymetry and ROV video. On-going research reveals coral patchiness on-reef as well as variation in mound size along the lesser-studied western chain of Moira Mounds. Ten specific gravity core locations were planned (5 on-mound and 5 off-mound). 18 attempts were made to retrieve these 10 targets although only 12 of the 18 attempts retrieved core. Furthermore, only 6 of these cores exceeded 2m. Fortunately, we retrieved enough sample to enhance our data set (on-mound core and off-mound core).

Gravity core targets can be divided into two specific zones: the southern area and the northern area. Previously collected box cores and video data reveal that the southern area is relatively muddy. Hence, this area was targeted first (CE14004\_06GC, 07GC, 08GC, 09GC, 17GCC, 10GC, 11GC). The length of core recovered in this area was variable (see table). Cores between stations 21 and 23 recovered no sediment sample. However, at these stations, fragments of hard coral and sponges found in the core catcher suggested the substrate was too hard to penetrate with the gravity corer.

In the northern area, 6 targets recovered core (CE14004\_17GCb, 16GC, 12GCf, 15GC, 13GC, 14GC). Cores CE14004\_17GC and CE14004\_16GC targeted the 'Piddington Mound'. However, as seen by video observations, this mound is particularly patchy with targets approx. 1m in size. Due to the shelly-surface layer on this mound, both cores only retrieved some small coral fragments while other attempts on this mound did not recover sample (i.e. CE14004\_17GCa). Gravity cores in the northern area are relatively shorter as the substrate is sandy and contains more bioclastic material.

Additionally, the area between the north and southern areas were targeted using TOBI 30 kHz backscatter. Specifically, an anomalous backscatter zone interpreted from the TOBI was targeted. Several attempts to retrieve sample from this area failed (CE14004\_12GCa, 12GCb, 12GCc, 12GCd, 12GCe).

Our current research examines spatial variability over the mound chain with an emphasis on one specific Moira-type mound (the 'Piddington Mound') in the north of the chain. This newly acquired gravity core data set embellishes the spatial component of our data set and allows for examination of temporal patterns and variability through time. These are the first relatively long cores through the lesser-studied western chain of Moira Mounds. In addition, targeting these mounds using a USBL-guided gravity core allows to test the accuracy of our georeferenced maps and sample locations.

The Piddington Mound, the largest of the western chain Moira Mounds and the focus of previous surveys, is respectfully named here for the first time after the late Ray Piddington who sadly passed away at the start of this survey.

#### **Porcupine Bank Canyon Mounds**

The Porcupine Bank Canyon Mounds are c 50m high cold-water coral carbonate mounds existing at water depths c. 650m clustered around the head of the Porcupine Bank Canyon, the largest of the Porcupine Bank canyons. The area has been previously surveyed as part of the CARBONATE programme (RV Pelagia).

Two box cores and a gravity core targeted the summits of 2 mounds. These revealed main coral rubble and hardgrounds on the summits with limited live fauna. An off-mound core showed the surrounding seabed was sandy. A CTD on the mound showed limited water mass variation at the seabed although the signal of the Mediterranean Outflow Water (?) was a noted mid-water column. Echosound data showed a distinct inferred nephaloid layer at the seabed wafting into the canyon head, water samples were taken from this.

#### Western Porcupine Bank

Previous work on the Western Porcupine Bank slope has shown for the last glacial period evidence of Heinrich layers (Ovrebo, 2005; Owen, 2010 and Toms, 2010). Very thick layers are found on the base of the slope (Rockall Trough) and at the top of the slope (water depth <1200m). These areas are of interest for further coring, as previous coring programmes focused mainly on the slope itself.

8 sites are planned, 4 in shallow water and 4 in deep water. The positions were chosen in the hope that optimal thickness and undisturbed layers of the last glacial can (hopefully) be recovered. To gain least disturbed cores, positions near canyon systems were avoided, especially at the deep sites.

On the 11<sup>th</sup> of March at 17:44pm, the first core (CE14004\_19GC) was taken on the southernmost shallow water site (Site 1) at around 1300m water depth. The recovery was 54cm mainly containing sand. The gravity corer was not able to go through too much sand. As mud was expected following a thin sandy layer, a second attempt (CE14004\_20GCa) was undertaken a few hundred meters up-slope, resulting in no recovery at all.

As a consequence, all shallow water sites were moved further up-slope along the 1000m isobath line. The second site (CE14004\_20GCb) confirmed this decision, with a total recovery of 1.84m. The top if the core was again sandy, but most of the core was mud as expected. The same sequence was found on site 3 (CE14004\_21GC), although the recovery was less than 1.50m. A second attempt (CE14004\_22GC) did not increase the recovery for site 3. Site 4 showed an inverse sequence with mud on top followed by sand. Again, the gravity core was unable to recover long cores (2 attempts: CE14004\_23GC = 1.01m and CE14004\_24GC = 0.54m).

On the 12<sup>th</sup> of March, the first deep water site was targeted and we started coring around 5am (on the bottom at 5:50am). Recovery of over 2m were reported from previous studies of these deep water sites, therefore the first attempt during this survey (CE14004\_25GC) was unsuccessful with less than 1.50m. The second core (CE14004\_26GC) was more successful with 2.10m. The next three deep water sites (CE14004\_27GC, CE14004\_28G and CE14004\_29GC) showed the same trend, with a maximum length of 2.60m at site 8. Drift of the gravity core from the deployment position was up to 200m, but this did not have a significant impact on the targets for this research.

As Site 1 was unsuccessful, on the way to the next survey site, a further attempt was undertaken. To guarantee recovery, the site was shifted towards a well-known position of mainly mud in around 800m water depth. The first attempt was a miss (CE14004\_30GC), but the second core (CE14004\_31GC) retrieved a 1.50m long core.

In total we made 14 coring attempts, resulting in 12 sediment cores. The cores ranges from 0.54m to 2.60m, whereby 9 out of 12 were >1m and 4 out of 12 were >2m. Overall, the gravity coring programme at this site was a success.

#### **References:**

Ovrebo, L.K., Haughton, P.D.W. and Shannon, P.M., 2006. A record of fluctuating bottom currents on the slopes west of the Porcupine Bank, offshore Irelandimplications for Late Quaternary climate forcing. Marine Geology, 225, 279-309. Owen, N. (2010). A multi-proxy palaeoceanographic investigation of slope deposits on the Porcupine Bank, NE Atlantic. PhD thesis, Trinity College Dublin, Dublin, Ireland.

Toms, L. (2010). Stratigraphy, sedimentation and facies distribution on the Porcupine Bank and links to Late Quaternary climate variability. PhD thesis, University College Dublin, Dublin, Ireland.

#### Western Shelf: Western shelf site

In total five vibrocores were retrieved from the southern area of the western shelf site. Core recovery was poor and exceeded the length 1m only once (CE14004\_44VC, 0-1.025 cmbsf). This is due to a gravel and stiff diamicton layer that is close to the bottom of the seafloor. However, the succession of Holocene sandy deposits on the top of core CE14004\_42VC and the stiff diamicton at its bottom may represent glacial retreat at this site that could give dates post the Last Glacial Maximum. Multibeam data shows a high backscatter surface indicating an acoustically hard seafloor which concurs with the poor vibrocore recovery. Pinger data reveals a chaotic reflector in between the seafloor and a second unit of a horizontal reflector at about 5 mbsf. It is suspected that this chaotic reflector

correlates to layers of gravel and outwashed sediments that are preserved at the bottom of the retrieved sediment cores.

Sparker and pinger data along a transect between the southern and northern areas of the western shelf site was undertaken to better correlate seismic stratigraphies. Another 3 sites for vibrocoring were picked along this transect. At these locations, a layer of diamicton was expected to be penetrated by the vibrocorer between the first and second metre below seafloor. Sparker data shows one major strong reflector between 10 and 20 mbsf. Pinger data shows a good resolution (0.2 cm) which allowed identification of horizontal and chaotic reflectors of the uppermost 10 mbsf. Three vibrocores were taken, the southernmost penetrated 2.33 m but did not penetrate diamicton (sand overlying moderately sorted gravel), the northernmost contained diamicton in the core catcher underlying medium sands.

Sparker and pinger data from the northern area (east-west transect) reveals a hard substrate with limited acoustic penetration with some reflectors coming in the eastern part of the transect. The westernmost core penetrated 1.50m and sampled diamicton at the base, other cores gave poor penetration only sampling Holocene gravels or sands.

#### Western Shelf: Killary site and Clew Bay sites

The original sites for vibrocoring were amended according to the sparker, pinger and multibeam data with sites chosen where teh seabed was coreable. Hydroacoustic and seismic data clearly show a morainic ridge that is basically ran north-south through both the Killary and Clew areas. These findings are underpinned by the lithology of sediment cores. The lithology of core CE14004\_59VC shows diamicton at its base which might allow for dating the ice sheet extend at this site to a certain period in the past. The top of the morainic system and the core locations beyond the ridge are characterized by gravelly outwash sedimentation at the bottom of the recovered vibrocores (CE14004\_54VC, CE14004\_61VC).

# 8 Weather Report

6<sup>th</sup> March 2014 – Cork to Bantry Bay

16.00: Wind SSW/5, low sea, mod-poor visibility 20.10: Wind 200°; pressure 22 kBar, mod-rough sea; visibility poor

7<sup>th</sup> March 2014 – in shelter Bere Island

08.00: Calm in sheltered waters, wind W'ly, pressure 20kBar, Fine + Clear. 1020 HPa 16.00: Wind It airs, good visibility, calm seas

8<sup>th</sup> March 2014 – in shelter Bere Island
04.00: Wind S'ly/3-4, sheltered waters
08.00: Wind S'ly, calm sea, sheltered waters, visibility mod in rain
20.00: Wind 190°(T) 20 kts, calm sea in sheltered waters

9<sup>th</sup> March 2014 – in shelter Bere Island
04.00: Wind S'ly/4, sheltered waters, W/good visibility
08.00: Wind light /variable, calm sea, sheltered water, visibility <3miles</li>
17.00: Wind NW'ly/5, low sea mod swell, good visibility

20.00: Wind 300° (T) 10 kts, low swell, good visibility

10<sup>th</sup> March 2014 – Porcupine Seabight 04.00: Wind NNW'ly /2-3, low sea, mod swell, good visibility

11<sup>th</sup> March 2014 – Porcupine Bank
04.00: Wind S'ly/4, calm sea, good visibility
08.00: Slight sea, wind SW 16 Kts
16.00: Low sea swell, good visibility, wind slight / Force 4
20.00: Slight to moderate sea, visibility good, wind slight 18 kts

# 12<sup>th</sup> March 2014 – Porcupine Bank

04.00: Low to moderate sea, good visibility, wind slight / Force 4 08.00: Moderate sea swell, visibility moderate, wind slight 20 kts 20.00: Wind 18 kts, moderate sea and swell

13<sup>th</sup> March 2014 – Porcupine Bank and transit to western shelf 08.00: Wind slight 8 kts, calm sea / slight swell, visibility good. 16.00: Wind S'ly/2, calm sea and swell, good visibility, overcast 20.00: Winds light, good visibility, overcast

# 14<sup>th</sup> March 2014 – Western shelf

04.00: Wind SW/3, low sea and swell, good visibility, overcast 08.00: Wind  $250^{\circ}$  /20 kts, slight sea and swell, good visibility

16.00: Wind W'ly/4-5, low sea and swell westerly, good visibility, overcast 20.00: Wind  $290^{\circ}/13$  kts, good visibility

# 15<sup>th</sup> March 2014 – western shelf

04.00: Wind W'ly/4, low sea and swell, good visibility, overcast 08.00: Wind 270°/20 kts, slight sea and swell 16.00: Wind W'ly/4-5, low sea and swell, good visibility, overcast 20.00: Wind W'ly/20 kts, slight sea and moderate swell, good visibility, poor in fog 24.00: Wind W'ly/5-6, moderate sea and low swell, overcast

16<sup>th</sup> March 2014 – Killary area

04.00: Wind W'ly/6-7, moderate sea and low swell, moderate to good visibility, overcast

08.00: Wind W'ly/25 kts, moderate sea and swell, good visibility 1600: Wind W'ly/5, low sea and swell, overcast, good visibility

17<sup>th</sup> March 2014
04.00: Wind W'ly/4-5, low sea and swell.
08.00: Wind SW'ly/20 kts
16.00: Wind SW'ly/5, low sea and moderate swell, good visibility

# Appendices

# Appendix I

# Personnel

| Ship's crew                    | Scientific Party                      |
|--------------------------------|---------------------------------------|
| Antony Hobin                   | Prof. Andy Wheeler                    |
| Master                         | Chief Scientist (UCC)                 |
| Damien McCallig                | Aaron Lim                             |
| Chief Engineer                 | PhD student/Day watchleader (UCC)     |
| Kenny Downing                  | Jared Peters                          |
| Chief Officer                  | PhD student / Night watchleader (UUC) |
| Dave Stack                     | Dr. Fabio Sacchetti                   |
| 2 <sup>nd</sup> Engineer       | Marine Geophysist (MI)                |
| Barry Hooper                   | Marian McGrath                        |
| 2 <sup>nd</sup> Officer        | PhD student/MMO/Geophysics (UCC)      |
| Francis McGrail                | Akram El Kateb                        |
| Extra 2 <sup>nd</sup> Officer  | PhD student (Uni. Fribourg)           |
| Daniel Rose                    | Findabhair Foalan                     |
| Extra 2 <sup>nd</sup> Engineer | MSc student (UCC)                     |
| Gerry Carty                    | Sabrina Renken                        |
| Bosun                          | PhD Student (TCD)                     |
| Ken O' Neil                    | Kevin Schiele                         |
| Bosun's Mate                   | PhD student (UUC)                     |
| Dave Stewart                   | Dr. Agostina Vertino                  |
| E.T.O                          | Researcher (Uni. Milano-Bicocca)      |
| Paddy Kenny                    | Margaret Browne                       |
| AB 1                           | SMART TTRS/PhD student (MIC)          |
| Philip Gunnip                  |                                       |
| AB 2                           |                                       |
| Tim O'Brien                    |                                       |
| AB 3                           |                                       |
| Jimmy Burke                    |                                       |
| AB 4                           |                                       |
| Brian Sharkey                  |                                       |
| Technician                     |                                       |
| Tony Reck                      |                                       |
| Chief Cook                     |                                       |
| Mickey Deagan                  |                                       |
| Assistant Cook                 |                                       |
| Declan Horan                   |                                       |
| AB 5                           |                                       |



St. Patrick's Day Scientists

L-R back row: Andy Wheeler, Jarod Peters, Sabrina Renken, Agostina Vertino, Margaret Brown, Marian McGrath, Kevin Schiele

L-R front row: Fabio Sacchetti, Aaron Lim, Akram El Kateb, Findabhair Foalan

# **Appendix II**

# Area maps

### Bantry Bay



### Moira Mounds



### Porcupine Bank Canyon Mounds



#### Western Porcupine Bank



# Western Shelf



# Killary & Clew Bay areas



# Multibeam lines



# Appendix III

# Station Lists Cores

| Station<br>number | Code   | Date   | Time<br>(UTC) | Water<br>depth<br>(m) | r USBL (on bottom)<br>Lat Long |            | Sample<br>recovery (m) | Comments           | General locality |
|-------------------|--------|--------|---------------|-----------------------|--------------------------------|------------|------------------------|--------------------|------------------|
|                   |        |        |               |                       |                                |            |                        | UTM=USBL,          |                  |
| 2                 | 01GC   | 07/03/ | 18:00         | 42                    | 51 38.0250                     | 9 42.8157  | 0.36                   | LAT/LONG=SHIPS     | Bantry Bay       |
| 3                 | 02GC   | 07/03/ | 20:01         | -                     | 51 38.008                      | 9 42.839   | 0.9                    | ALL SHIP POSITIONS | Bantry Bay       |
| 4                 | 03GC   | 07/03/ | 20:29         | -                     | 51 38.0262                     | 9 42.8336  | 1.83                   |                    | Bantry Bay       |
| 5                 | 04GC   | 08/03/ | 09:03         | 48.9                  | 51 38.0133                     | 9 42.8354  | 1.22                   |                    | Bantry Bay       |
| 6                 | 05GC   | 08/03/ | 09:31         | 56.9                  | 51 38.0111                     | 9 42.8274  | 1.5                    |                    | Bantry Bay       |
| 7                 | 06GC   | 08/03/ | 11:02         | 86.5                  | 51 38.0021                     | 9 42.8169  | 1.94                   |                    | Bantry Bay       |
| 11                | 07GC   | 10/03/ | 0:45          | 1066.3                | 51 26.3830                     | 11 49.341  | 0.61                   |                    | Moira Mounds     |
| 12                | 08GC   | 10/03/ | 2:02          | 1068                  | 51 26.3751                     | 11 49.3441 | 2.06                   |                    | Moira Mounds     |
| 13                | 09GC   | 10/03/ | 3:32          | 1066.5                | 51 26.2873                     | 11 49.3658 | 223.5                  |                    | Moira Mounds     |
| 14                | 10GC   | 10/03/ | 5:08          | 1065.3                | 51 26.3136                     | 11 49.4126 | 2.79                   |                    | Moira Mounds     |
| 15                | 11GC   | 10/03/ | 6:24          | 1061.3                | 51 26.3141                     | 11 49.3905 | 2.71                   |                    | Moira Mounds     |
| 16                | 12GC a | 10/03/ | 8:08          | 1046                  | 51 27.2425                     | 11 49.5171 | 0                      | No core recovery   | Moira Mounds     |
| 16                | 12GC b | 10/03/ | 9:08          | 1046                  | 51 27.2446                     | 11 49.5139 | 0                      | No core recovery   | Moira Mounds     |
| 17                | 12GC c | 10/03/ | 10:35         | 1040                  | 51 27.7769                     | 11 49.0232 | 0                      | No core recovery   | Moira Mounds     |
| 17                | 12GC d | 10/03/ | 11:05         | 1031                  | 51 27.7804                     | 11 49.0339 | 0                      | No core recovery   | Moira Mounds     |
| 17                | 12GC e | 10/03/ | 12:07         | 1033                  | 51 27.7725                     | 11 49.0208 | 0                      | No core recovery   | Moira Mounds     |
| 17                | 12GC f | 10/03/ | 13:47         | 976                   | 51 29.3827                     | 11 48.9650 | 1.86                   |                    | Moira Mounds     |
| 18                | 13GC   | 10/03/ | 14:55         | 977                   | 51 29.3638                     | 11 48.9359 | 2.71                   |                    | Moira Mounds     |
| 19                | 14GC   | 10/03/ | 16:24         | 975                   | 51 29.3656                     | 11 48.9327 | 0.25                   |                    | Moira Mounds     |
| 20                | 15GC   | 10/03/ | 17:30         | 976                   | 51 29.3849                     | 11 48.9590 | 2.75                   |                    | Moira Mounds     |
| 21                | 16GC   | 10/03/ | 19:11         | 965                   | 51 29.6729                     | 11 49.1494 | 0                      | 2 coral fragments  | Moira Mounds     |

| Station | Code   | Date   | Time  | Water  | USBL (on bot | tom)       | Sample       | Comments                      | General locality |
|---------|--------|--------|-------|--------|--------------|------------|--------------|-------------------------------|------------------|
| number  |        |        | (UTC) | depth  | Lat Lo       | ong        | recovery (m) |                               |                  |
|         |        |        |       | (m)    |              | 1          |              |                               |                  |
| 22      | 17GC a | 10/03/ | 20:00 | 967    | 51 29.6670   | 11 49.1289 | 0            | No core recovery              | Moira Mounds     |
| 23      | 17GC b | 10/03/ | 21:03 | 965.9  | 51 29.6796   | 11 49.1429 | 0            | Loose coral fragments         | Moira Mounds     |
| 25      | 17GC c | 10/03/ | 23.12 | 1030   | 51 26.3300   | 11 49.3559 | 2.09         |                               | Moira Mounds     |
|         |        |        |       |        |              |            |              |                               | Porc. Bank       |
| 26      | 18BC   | 11/03/ | 14.06 | 641    | 52 01.1651   | 14 57.6149 |              |                               | Canyon Mounds    |
| 27      | 19GC   | 11/03/ | 17.44 | 1309.6 | 52 21.7661   | 15 13.7442 | 0.54         |                               | Porc. Bank       |
| 28      | 20GC a | 11/03/ | 18.45 | 1304   | 52 22.5901   | 15 13.1782 | 0            | No core recovery              | Porc. Bank       |
| 29      | 20GC b | 11/03/ | 21.18 | 992.5  | 52 27.4580   | 15 05.0223 | 1.82         |                               | Porc. Bank       |
| 30      | 21GC   | 11/03/ | 23.08 | 992.3  | 52 32.2792   | 15 04.1607 | 1.47         | Repeat                        | Porc. Bank       |
| 31      | 22GC   | 12/03/ | 00.02 | 998    | 52 32.2777   | 15 04.1603 | 1.13         | 2nd try for longer core       | Porc. Bank       |
| 32      | 23GC   | 12/03/ | 01.50 | 985    | 52 37.9891   | 15 02.5700 | 1.01         | Repeat                        | Porc. Bank       |
| 33      | 24GC   | 12/03/ | 02.44 | 986.5  | 52 37.9889   | 15 02.5695 |              | try again faster              | Porc. Bank       |
| 34      | 25GC   | 12/03/ | 05.50 | 2901.1 | 52 44.1148   | 15 23.6290 | 1.47         | Repeat                        | Porc. Bank       |
| 35      | 26GC   | 12/03/ | 07.41 | 2901.3 | 52 44.0936   | 15 23.6345 | 2.1          |                               | Porc. Bank       |
| 36      | 27GC   | 12/03/ | 10.37 | 2960   | 52 33.9712   | 15 28.7518 | 2.47         |                               | Porc. Bank       |
| 37      | 28GC   | 12/03/ | 12.33 | 2918   | 52 25.9442   | 15 28.5703 | 2            |                               | Porc. Bank       |
| 38      | 29GC   | 12/03/ | 15.40 | 2920   | 52 20.7222   | 15 30.9421 | 2.6          |                               | Porc. Bank       |
| 39      | 30GC   | 12/03/ | 19.04 | 836    | 52 24.6320   | 14 56.3980 | 0            | 0-20.5cm in core catcher      | Porc. Bank       |
| 40      | 31GC   | 12/03/ | 19.48 | 836    | 52 24.6323   | 14 56.4827 | 1.51         |                               | Porc. Bank       |
| 41      | 32BC   | 13/03/ | 00.29 | 622.9  | 51 58.657    | 14 59.1788 |              | small sample                  | Porc. Bank       |
| 42      | 33BC   | 13/03/ | 01.02 | 615.8  | 51 58.5920   | 14 59.1710 |              |                               | Porc. Bank       |
| 44      | 34GC   | 13/03/ | 2.53  | 663.3  | 52 01.1599   | 14 57.6340 | 1.3          | coral in core catcher         | Porc. Bank       |
|         |        |        |       |        |              |            |              |                               | Porc. Bank       |
| 45      | 35BC   | 13/03/ | 3.32  | 667.9  | 52 01.2628   | 14 57.2057 |              |                               | Canyon Mounds    |
| 47      | 36VC   | 13/03/ | 22.08 | 155.6  | 53 02.3688   | 11 38.1194 | 1.66         |                               | Western Shelf    |
| 48      | 37VC   | 13/03/ | 22.56 | 156.4  | 53 02.3478   | 11 38.9392 | 0.57         | First time no drilling repeat | Western Shelf    |
| 49      | 38VC   | 13/03/ | 23.29 | 157.9  | 53 02.9512   | 11 38.9447 | 0            | 2nd Attempt                   | Western Shelf    |

| Station | Code   | Date   | Time  | Water | USBL (on bot | tom)       | Sample       | Comments                  | General locality |
|---------|--------|--------|-------|-------|--------------|------------|--------------|---------------------------|------------------|
| number  |        |        | (UTC) | depth | Lat Lo       | ong        | recovery (m) |                           |                  |
|         |        |        |       | (m)   |              | 1          |              |                           |                  |
| 49      | 39VC   | 14/03/ | 00.03 | 157.9 | 53 02.9505   | 11 38.9450 | 0.85         | 3rd attempt               | Western Shelf    |
| 50      | 40VC   | 14/03/ | 01.38 | 148.1 | 53 01.4478   | 11 24.5726 | 0.19         |                           | Western Shelf    |
| 51      | 41VCX  | 14/03/ | 02.34 | 139.3 | 53 00.6774   | 11 17.4374 | NA           | BAGGED                    | Western Shelf    |
| 52      | 41VCXX | 14/03/ | 03.19 | 139.7 | 53 00.3439   | 11 14.1776 | NA           | No core recovery          | Western Shelf    |
|         |        | 14/03/ |       |       |              |            |              |                           |                  |
| 53      | 41VC   | 4      | 05.10 | 138.7 | 53 01.0713   | 10 53.5889 | 0.85         |                           | Western Shelf    |
| 54      | 42VC   | 14/03/ | 09.18 | 121   | 52 27.9644   | 10 59.5819 | 0.74         |                           | Western Shelf    |
| 55      | 43VC   | 14/03/ | 10.20 | 125.3 | 52 27.9933   | 11 05.2261 | 0.6          |                           | Western Shelf    |
| 56      | 44VC   | 14/03/ | 10.44 | 124.2 | 52 27.9943   | 11 05.2357 | 1.02         |                           | Western Shelf    |
| 57      | 45VC   | 14/03/ | 11.52 | 120.4 | 52 22.6612   | 10 59.5971 | 0.15         |                           | Western Shelf    |
| 58      | 46VC   | 14/03/ | 12.18 | 120.3 | 52 22.6608   | 10 59.5971 | 0.58         |                           | Western Shelf    |
| 86      | 47VCX  | 15/03/ | 13.47 | 132.7 | 53 0.6032    | 11 5.9312  | -            | Large water volume        | Western Shelf    |
| 87      | 47VC   | 15/03/ | 14.14 | 137   | 53 0.6060    | 11 5.9579  | 1.36         | -                         | Western Shelf    |
| 88      | 48VC   | 15/03/ | 15.31 | 135   | 53 0.8306    | 10 59.6555 | 0.13         |                           | Western Shelf    |
| 89      | 49VC   | 15/03/ | 16.27 | 136.4 | 52 59.6566   | 10 53.1081 | 0.57         |                           | Western Shelf    |
| 90      | 50VC   | 15/03/ | 17.56 | 131.1 | 52 50.2575   | 10 56.7955 | 0.8          |                           | Western Shelf    |
| 91      | 51VC   | 15/03/ | 19.01 | 130.6 | 52 41.3120   | 10 57.9305 | 2.33         |                           | Western Shelf    |
| 92      | 52VC   | 16/03/ | 00.36 | 145.2 | 53 27.4427   | 11 0.3305  | 0.24         |                           | Western Shelf    |
| 106     | 53VC   | 16/03/ | 19.58 | 145.2 | 53 23.9868   | 11 1.1200  | 1.22         |                           | Western Shelf    |
| 107     | 54VC   | 16/03/ | 22.24 | 174.4 | 53 38.1163   | 11 12.5620 | 1.47         |                           | Western Shelf    |
| 108     | 55VC   | 16/03/ | 23.37 | 157.4 | 53 39.8226   | 11 03.3482 | 1.45         |                           | Western Shelf    |
|         |        |        |       |       |              |            |              | Liner cracked while       |                  |
| 109     | 56VC   | 17/03/ | 00.51 | 151.2 | 53 40.2773   | 10 53.0363 | 0.95         | capping, top of core lost | Killary & Clew   |
| 110     | 57VC   | 17/03/ | 01.19 | 150.9 | 53 40.2867   | 10 53.0842 | 1            | 2 try                     | Killary & Clew   |
| 111     | 58VC   | 17/03/ | 02.05 | 155.8 | 53 39.2546   | 10 51.8916 | 0.87         |                           | Killary & Clew   |
| 112     | 59VC   | 17/03/ | 03.48 | 132   | 53 35.8304   | 10 37.3172 | 3.47         |                           | Killary & Clew   |
| 113     | 60VC   | 17/03/ | 06.34 | 140   | 53 54.9804   | 10 34.6418 | 1.07         |                           | Killary & Clew   |

| Station | Code  | Date   | Time  | Water | USBL (on bot         | tom)       | Sample       | Comments             | General locality |
|---------|-------|--------|-------|-------|----------------------|------------|--------------|----------------------|------------------|
| number  |       |        | (UTC) | depth | Lat Long             |            | recovery (m) |                      |                  |
|         |       |        |       | (m)   | <u> </u>             |            |              |                      |                  |
| 114     | 61VCX | 17/03/ | 07.30 | 145   | 53 58.9595           | 10 36.3845 | 0            | vibro corer broken   | Killary & Clew   |
| 122     | 61VC  | 17/03/ | 16.45 | 141   | 53 58.9917           | 10 36.3351 | 0.21         | vibro corer repaired | Killary & Clew   |
| 123     | 62VC  | 17/03/ | 18.10 | 173.2 | 54 5.4311 10 41.6351 |            | 1.04         |                      | Killary & Clew   |

# CTD & SVP stations

| Station |      |          |                       | Water |         |          |                                     | General   |
|---------|------|----------|-----------------------|-------|---------|----------|-------------------------------------|-----------|
| number  | Code | Date     | Time UTC              | Depth | Lat     | Long     | Comments                            | locality  |
|         |      |          |                       |       |         |          |                                     | Porcupine |
| 43      | CTD1 | 13/03/14 | 1.57                  |       | 57.6302 | -14.9605 | ships position 20m drift of CPT     | Bank      |
|         |      |          | 2.15 bottle one fired | 620m  |         |          |                                     |           |
|         |      |          | 2.17 bottle two fired | 600m  |         |          |                                     |           |
|         |      |          | 2.18 other 4 bottles  |       |         |          |                                     |           |
|         |      |          | triggered in a row    |       |         |          |                                     |           |
|         |      |          |                       |       |         |          | Error message- stopped recording at |           |
|         |      |          |                       |       |         |          | water depth 650m & brought onboard  | Porcupine |
| 46      | CTD2 | 13/03/14 | 4.18                  |       |         |          | at 05.00                            | Bank      |
|         |      |          |                       |       | 53      | 10       |                                     | Western   |
| 53A     | SVP1 | 14/03/14 | 05.30                 | 139   | 01.0502 | 52.6139  |                                     | Shelf     |

### Seismic lines

| Station<br>no. | Line<br>Name | Date   | Туре        | Start<br>time<br>(UTC) | End<br>time<br>(UTC) | SOL_lat               | SOL_lon    | EOL_lat           | EOL_lon    | Trigger<br>Rate<br>(ms) | Speed<br>(knts) | Layback<br>(m) +<br>30m | Comments          |
|----------------|--------------|--------|-------------|------------------------|----------------------|-----------------------|------------|-------------------|------------|-------------------------|-----------------|-------------------------|-------------------|
| 1              | SL1          | 07 /03 | Sparker     | 15.42                  | 17.03                | 51 34.496             | 9 51.810   | 51 37.474         | 9 42.734   | 800                     | 4               | 60                      | Sweeptime = 300ms |
| 1              | PL1          | 07 /03 | Pinger      | 15.42                  | 17.03                | 51 34.496             | 9 51.810   | 51 37.474         | 9 42.734   | 153                     | 4               | 0                       | GSI streamer      |
| 8              | SL2          | 08 /03 | Sparker     | 12.45                  | 13.30                | 51 36.593             | 9 46.54    | 51 35.212         | 9 50.2211  | 300                     | 4               | 60                      | GSI streamer      |
| 8              | PL2          | 08 /03 | Pinger      | 12.45                  | 13.30                | 51 36.593             | 9 46.54    | 51 35.212         | 9 50.2211  | 150                     | 4               | 0                       | GSI streamer      |
| 9              | SL3          | 08 /03 | Sparker     | 13.51                  | 14.14                | 51 36.1815            | 9 49.1115  | 51 36.9054        | 9 46.9835  | 900                     | 4               | 60                      | GSI streamer      |
| 9              | PL3          | 08 /03 | Pinger      | 13.51                  | 14.14                | 51 36.1815            | 9 49.1115  | 51 36.9054        | 9 46.9835  | 152                     | 4               | 0                       | GSI streamer      |
| 10             | SL4          | 08 /03 | Sparker     | 14.32                  | 15.18                | 51 37.6454            | 9 45.0076  | 51 39.4971        | 9 40.001   | 900                     | 4               | 60                      | MI streamer       |
| 10             | PL4          | 08 /03 | Pinger      | 14.32                  | 15.18                | 51 37.6454            | 9 45.0076  | 51 39.4971        | 9 40.001   | 152                     | 4               | 0                       | MI streamer       |
| 24             | ESL1         | 10/03  | Echosounder | 21.38                  | 22.19                | 51 29.7118            | 11 49.2006 | 51 26.6387        | 11 49.3348 |                         | 4               | 0                       |                   |
| 59             | SL5          | 14 /03 | Sparker     | 13.33                  | 15.05                | 52 22.9329            | 10 59.2899 | 52 28.043         | 11 04.356  | 900                     | 4               | 50                      | MI streamer       |
| 59             | PL5          | 14 /03 | Pinger      | 13.33                  | 15.05                | 52 22.9329            | 10 59.2899 | 52 28.043         | 11 04.356  |                         | 4               | 0                       | MI streamer       |
| 60             | SL6          | 14 /03 | Sparker     | 15.05                  | 15.41                | 52 28.043             | 11 04.356  | 52 29.857         | 10 59.539  | 900                     | 4               | 50                      |                   |
| 60             | PL6          | 14 /03 | Pinger      | 15.05                  | 15.41                | 52 28.043             | 11 04.356  | 52 29.857         | 10 59.539  | 0                       | 4               | 0                       |                   |
| 61             | SL7          | 14 /03 | Sparker     | 15.41                  | 16.39                | 52 27.851             | 10 59.539  | 52 21.195         | 10 59.537  | 900                     | 4               | 50                      |                   |
| 61             | PL7          | 14 /03 | Pinger      | 15.41                  | 16.39                | 52 27.851             | 10 59.539  | 52 21.195         | 10 59.537  | 0                       | 4               | 0                       |                   |
| 62             | SL8          | 14 /03 | Sparker     | 16.39                  | 17.25                | 52 29.195             | 10 59.537  | 52 21.182         | 10 59.677  | 900                     | 4               | 50                      |                   |
| 62             | PL8          | 14 /03 | Pinger      | 16.39                  | 17.25                | 52 29.195             | 10 59.537  | 52 21.182         | 10 59.677  | 0                       | 4               | 0                       |                   |
| 63             | SL9          | 14 /03 | Sparker     | 17.25                  | 17.58                | 52 21.206             | 10 59.758  | 52 23.199         | 11 01.218  | 900                     | 4               | 50                      |                   |
| 63             | PL9          | 14 /03 | Pinger      | 17.25                  | 17.58                | 52 21.206             | 10 59.758  | 52 23.199         | 11 01.218  | 0                       | 4               | 0                       |                   |
| 64             | SL10         | 14 /03 | Sparker     | 17.58                  | 19.08                | 52 23.199             | 11 01.218  | 52 28.317         | 11 05.080  | 900                     | 4               | 50                      |                   |
| 64             | PL10         | 14 /03 | Pinger      | 17.58                  | 19.08                | 52 23.199             | 11 01.218  | 52 28.317         | 11 05.080  | 0                       | 4               | 0                       |                   |
| 65             | SL11         | 14 /03 | Sparker     | 19.11                  | 19.33                | 52 28.317             | 11 05.080  | 52 30.125         | 11 04.442  | 1300                    | 4.1             | 50                      | 140314.1911       |
| 65             | PL11         | 14 /03 | Pinger      | 19.11                  | 19.33                | 52 28.317             | 11 05.080  | 52 30.125         | 11 04.442  | 0                       | 4.1             | 0                       | 140314.1911       |
| 66             | SL12         | 14 /03 | Sparker     | 19.33                  | 20.28                | 52 30.125             | 11 04.442  | 52 34.557         | 11 02.700  | 900                     | 4.5-5           | 50                      | 1200J             |
| 66             | PL12         | 14 /03 | Pinger      | 19.33                  | 20.28                | 52 30.125             | 11 04.442  | 52 34.557         | 11 02.700  | 0                       | 4.5-5           | 0                       |                   |
| 67             | SL13         | 14 /03 | Sparker     | 20.28                  | 21.22                | 52 34.557             | 11 02.700  | 52 38.699         | 11 01.173  | 900                     | 4.5-5           | 50                      |                   |
| 67             | PL13         | 14 /03 | Pinger      | 20.28                  | 21.22                | 52 34.557             | 11 02.700  | 52 38.699         | 11 01.173  |                         | 4.5-5           | 0                       |                   |
| 68             | SL14         | 14 /03 | Sparker     | 21.22                  | 22.25                | 52 38.699             | 11 01.173  | 52 43.013         | 10 59.127  | 900                     | 4.5-5           | 50                      |                   |
| 68             | PL14         | 14 /03 | Pinger      | 21.22                  | 22.25                | 52 38.69 <sup>9</sup> | 11 01.173  | 52 43.01 <u>3</u> | 10 59.127  | 0                       | 4.5-5           | 0                       |                   |
| 69             | SL15         | 14 /03 | Sparker     | 22.25                  | 23.20                | 52 43.013             | 10 59.527  | NA                | NA         | 900                     | 4.5-5           | 50                      |                   |

| Station<br>no. | Line<br>Name | Date   | Туре    | Start<br>time<br>(UTC) | End<br>time<br>(UTC) | SOL_lat   | SOL_lon   | EOL_lat   | EOL_lon   | Trigger<br>Rate<br>(ms) | Speed<br>(knts) | Layback<br>(m) +<br>30m | Comments               |
|----------------|--------------|--------|---------|------------------------|----------------------|-----------|-----------|-----------|-----------|-------------------------|-----------------|-------------------------|------------------------|
| 69             | PL15         | 14 /03 | Pinger  | 22.25                  | 23.20                | 52 43.013 | 10 59.527 | NA        | NA        | 0                       | 4.5-5           | 0                       |                        |
| 70             | SL16         | 14 /03 | Sparker | 23.20                  | 00.21                | NA        | NA        | 52 51.839 | 10 56.130 | 900                     | 4.5-5           | 50                      |                        |
| 70             | PL16         | 14 /03 | Pinger  | 23.20                  | 00.21                | NA        | NA        | 52 51.839 | 10 56.130 | 0                       | 4.5-5           | 0                       |                        |
| 71             | SL17         | 15 /03 | Sparker | 00.21                  | 01.21                | 52 51.839 | 10 56.130 | 52 56.284 | 10 54.434 | 900                     | 4.5-5           | 50                      |                        |
| 71             | PL17         | 15 /03 | Pinger  | 00.21                  | 01.21                | 52 51.839 | 10 56.130 | 52 56.284 | 10 54.434 | 0                       | 4.5-5           | 0                       |                        |
| 72             | SL18         | 15 /03 | Sparker | 01.21                  | 02.21                | 52 56.284 | 10 54.434 | 53 00.832 | 10 52.689 | 900                     | 4.5-5           | 50                      |                        |
| 72             | PL18         | 15 /03 | Pinger  | 01.21                  | 02.21                | 52 56.284 | 10 54.434 | 53 00.832 | 10 52.689 | 0                       | 4.5-5           | 0                       |                        |
| 73             | SL19         | 15 /03 | Sparker | 02.21                  | 02.27                | 53 00.832 | 10 52.689 | 53 01.079 | 10 52.752 | 900                     | 4.5-5           | 50                      |                        |
| 73             | PL19         | 15 /03 | Pinger  | 02.21                  | 02.27                | 53 00.832 | 10 52.689 | 53 01.079 | 10 52.752 | 0                       | 4.5-5           | 0                       |                        |
| 74             | SL20         | 15 /03 | Sparker | 02.27                  | 03.31                | 53 01.079 | 10 52.752 | 53 00.843 | 10 59.779 | 900                     | 4.5-5           | 50                      |                        |
| 74             | PL20         | 15 /03 | Pinger  | 02.27                  | 03.31                | 53 01.079 | 10 52.752 | 53 00.843 | 10 59.779 | 0                       | 4.5-5           | 0                       |                        |
| 75             | SL21         | 15 /03 | Sparker | 03.31                  | 04.31                | 53 00.843 | 10 59.779 | 53 00.587 | 11 06.548 | 900                     | 4.5-5           | 50                      | Moraine starts         |
| 75             | SL21         | 15 /03 | Pinger  | 03.31                  | 04.31                | 53 00.843 | 10 59.779 | 53 00.587 | 11 06.548 | 0                       | 4.5-5           | 0                       |                        |
| 76             | SL22         | 15 /03 | Sparker | 04.31                  | 05.26                | 53 00.587 | 11 06.548 | 53 00.374 | 11 12.439 | 900                     | 4.5-5           | 50                      | AOI                    |
| 76             | PL22         | 15 /03 | Pinger  | 04.31                  | 05.26                | 53 00.587 | 11 06.548 | 53 00.374 | 11 12.439 | 0                       | 4.5-5           | 0                       |                        |
| 77             | SL23         | 15 /03 | Sparker | 05.26                  | 05.37                | 53 00.374 | 11 12.439 | 53 00.340 | 11 13.697 | 900                     | 4.5-5           | 50                      |                        |
| 77             | PL23         | 15 /03 | Pinger  | 05.26                  | 05.37                | 53 00.374 | 11 12.439 | 53 00.340 | 11 13.697 | 0                       | 4.5-5           | 0                       |                        |
| 78             | SL24         | 15 /03 | Sparker | 05.37                  | 06.35                | 53 00.340 | 11 13.697 | 53 00.944 | 11 20.122 | 900                     | 4.5-5           | 50                      | Turn                   |
| 78             | PL24         | 15 /03 | Pinger  | 05.37                  | 06.35                | 53 00.340 | 11 13.697 | 53 00.944 | 11 20.122 | 0                       | 4.5-5           | 0                       |                        |
| 79             | SL25         | 15 /03 | Sparker | 06.35                  | NA                   | 53 00.944 | 11 20.122 | NA        | NA        |                         |                 | 50                      |                        |
| 79             | PL25         | 15 /03 | Pinger  | 06.35                  | NA                   | 53 00.944 | 11 20.122 | NA        | NA        |                         |                 | 0                       |                        |
| 80             | SL26         | 15 /03 | Sparker | NA                     | 08.36                | NA        | NA        | 53 22.590 | 11 35.074 | 900                     | 4.8             | 50                      |                        |
| 80             | PL26         | 15 /03 | Pinger  | NA                     | 08.36                | NA        | NA        | 53 22.590 | 11 35.074 | 0                       | 4.8             | 0                       |                        |
| 81             | SL27         | 15 /03 | Sparker | 08.36                  | 09.23                | 53 02.590 | 11 35.074 | 53 02.374 | 11 39.996 | 900                     | 4.5-5           | 50                      |                        |
| 81             | PL27         | 15 /03 | Pinger  | 08.36                  | 09.23                | 53 02.590 | 11 35.074 | 53 02.374 | 11 39.996 | 0                       | 4.5-5           | 0                       |                        |
| 82             | SL28         | 15 /03 | Sparker | 09.23                  | 10.19                | 53 02.374 | 11 39.996 | 53 01.588 | 11 31.410 | 900                     | 4.5-5           | 50                      |                        |
| 82             | PL28         | 15 /03 | Pinger  | 09.23                  | 10.19                | 53 02.374 | 11 39.996 | 53 01.588 | 11 31.410 | 0                       | 4.5-5           | 0                       |                        |
| 83             | SL29         | 15 /03 | Sparker | 10.19                  | 11.16                | 53 01.588 | 11 31.410 | NA        | NA        | 900                     | 4.5-5           | 50                      |                        |
| 83             | PL29         | 15 /03 | Pinger  | 10.19                  | 11.16                | 53 01.588 | 11 31.410 | NA        | NA        | 0                       | 4.5-5           | 0                       |                        |
| 84             | SL30         | 15 /03 | Sparker | 11.16                  | 11.50                | NA        | NA        | 53 00.284 | 11 18.236 | 900                     | 4.5-5           | 50                      |                        |
| 84             | PL30         | 15 /03 | Pinger  | 11.16                  | 11.50                | NA        | NA        | 53 00.284 | 11 18.236 | 0                       | 4.5-5           | 0                       |                        |
| 85             | SL31         | 15 /03 | Sparker | 11.50                  | 12.53                | 53 00.284 | 11 18.236 | 52 59.566 | 11 11.735 | 900                     | 4.5-5           | 50                      | Change of power socket |
| 85             | PL31         | 15 /03 | Pinger  | 11.50                  | 12.53                | 53 00.284 | 11 18.236 | 52 59.566 | 11 11.735 | 0                       | 4.5-5           | 0                       |                        |
| 93             | SL32         | 16 /03 | Sparker | 07.39                  | 09.08                | 53 41.100 | 10 50.950 | 53 37.854 | 10 41.458 | 900                     | 4.5-5           | 50                      | 1200J                  |
| 93             | PL32         | 16 /03 | Pinger  | 07.39                  | 09.08                | 53 41.100 | 10 50.950 | 53 37.854 | 10 41.458 | 0                       | 4.5-5           | 0                       |                        |
| 94             | SL33         | 16 /03 | Sparker | 09.08                  | 09.55                | 53 37.854 | 10 41.458 | 53 36.365 | 10 35.948 | 900                     | 4.5-5           | 50                      |                        |

| Station<br>no. | Line<br>Name | Date   | Туре    | Start<br>time<br>(UTC) | End<br>time<br>(UTC) | SOL_lat    | SOL_lon   | EOL_lat    | EOL_lon   | Trigger<br>Rate<br>(ms) | Speed<br>(knts) | Layback<br>(m) +<br>30m | Comments |
|----------------|--------------|--------|---------|------------------------|----------------------|------------|-----------|------------|-----------|-------------------------|-----------------|-------------------------|----------|
| 94             | PI 33        | 16 /03 | Pinger  | 09.08                  | 09.55                | 53 37 854  | 10 41 458 | 53 36 365  | 10 35 948 | 0                       | 4 5-5           | 0                       |          |
| 95             | SI 34        | 16/03  | Sparker | 09.55                  | 10.39                | 53 36.365  | 10 35,948 | 53 34.873  | 10 40.840 | 900                     | 4.5-5           | 50                      |          |
| 95             | PL34         | 16 /03 | Pinger  | 09.55                  | 10.39                | 53 36.365  | 10 35.948 | 53 34.873  | 10 40.840 | 0                       | 4.5-5           | 0                       |          |
| 96             | SL35         | 16 /03 | Sparker | 10.39                  | 11.55                | 53 34.873  | 10 40.840 | 53 36.424  | 10 48.336 | 900                     | 4.5-5           | 50                      |          |
| 96             | PL35         | 16 /03 | Pinger  | 10.39                  | 11.55                | 53 34.873  | 10 40.840 | 53 36.424  | 10 48.336 | 0                       | 4.5-5           | 0                       |          |
| 97             | SL36         | 16 /03 | Sparker | 11.55                  | 13.01                | 53 36.424  | 10 48.336 | 53 40.305  | 10 53.417 | 900                     | 4.5-5           | 50                      |          |
| 97             | PL36         | 16 /03 | Pinger  | 11.55                  | 13.01                | 53 36.424  | 10 48.336 | 53 40.305  | 10 53.417 | 0                       | 4.5-5           | 0                       |          |
| 98             | SL37         | 16 /03 | Sparker | 13.01                  | 13.41                | 53 40.305  | 10 53.417 | 53 40.058  | 10 58.172 | 900                     | 4.5-5           | 50                      |          |
| 98             | PL37         | 16 /03 | Pinger  | 13.01                  | 13.41                | 53 40.305  | 10 53.417 | 53 40.058  | 10 58.172 | 0                       | 4.5-5           | 0                       |          |
| 99             | SL38         | 16 /03 | Sparker | 13.41                  | 14.27                | 53 40.058  | 10 58.172 | 53 39.795  | 11 03.666 | 900                     | 4.5-5           | 50                      |          |
| 99             | PL38         | 16 /03 | Pinger  | 13.41                  | 14.27                | 53 40.058  | 10 58.172 | 53 39.795  | 11 03.666 | 0                       | 4.5-5           | 0                       |          |
| 100            | SL39         | 16 /03 | Sparker | 14.27                  | 15.38                | 53 39.795  | 11 03.666 | 53 39.385  | 11 12.313 | 900                     | 4.5-5           | 50                      |          |
| 100            | PL39         | 16 /03 | Pinger  | 14.27                  | 15.38                | 53 39.795  | 11 03.666 | 53 39.385  | 11 12.313 | 0                       | 4.5-5           | 0                       |          |
| 101            | SL40         | 16 /03 | Sparker | 15.38                  | 15.55                | 53 39.385  | 11 12.313 | 53 39.079  | 11 13.986 | 900                     | 4.5-5           | 50                      |          |
| 101            | PL40         | 16 /03 | Pinger  | 15.38                  | 15.55                | 53 39.385  | 11 12.313 | 53 39.079  | 11 13.986 | 0                       | 4.5-5           | 0                       |          |
| 102            | SL41         | 16 /03 | Sparker | 15.55                  | 17.08                | 53 39.079  | 11 13.986 | 53 34.342  | 11 07.268 | 900                     | 4.5-5           | 50                      |          |
| 102            | PL41         | 16/03  | Pinger  | 15.55                  | 17.08                | 53 39.079  | 11 13.986 | 53 34.342  | 11 07.268 | 0                       | 4.5-5           | 0                       |          |
| 103            | SL42         | 16/03  | Sparker | 17.08                  | 17.52                | 53 34.342  | 11 07.268 | 53 31.462  | 11 04.038 | 900                     | 4.5-5           | 50                      |          |
| 103            | PL42         | 16/03  | Pinger  | 17.08                  | 17.52                | 53 34.342  | 11 07.268 | 53 31.462  | 11 04.038 | 0                       | 4.5-5           | 0                       |          |
| 104            | SL43         | 16/03  | Sparker | 17.52                  | 18.58                | 53 31.462  | 11 04.038 | 53 26.867  | 10 59.730 | 900                     | 4.5-5           | 50                      |          |
| 104            | PL43         | 16/03  | Pinger  | 17.52                  | 18.58                | 53 31.462  | 11 04.038 | 53 26.867  | 10 59.730 | 0                       | 4.5-5           | 0                       |          |
| 105            | SL44         | 16/03  | Sparker | 18.58                  | NA                   | 53 26.867  | 10 59.730 | NA         | NA        | 900                     | 4.5-5           | 50                      |          |
| 105            | PL44         | 16 /03 | Pinger  | 18.58                  | NA                   | 53 26.867  | 10 59.730 | NA         | NA        | 0                       | 4.5-5           | 0                       |          |
| 115            | SL45         | 17 /03 | Sparker | 11.20                  | 12.00                | 54 06.259  | 10 44.557 | 54 05.028  | 10 40.079 | 700                     | 4.5-5           | 50                      | 800J     |
| 115            | PL45         | 17 /03 | Pinger  | 11.20                  | 12.00                | 54 06.259  | 10 44.557 | 54 05.028  | 10 40.079 | 0                       | 4.5-5           | 0                       |          |
| 116            | SL46         | 17 /03 | Sparker | 12.00                  | 12.39                | 54 05.028  | 10 40.079 | 54 03.909  | 10 35.574 | 800                     | 4.5-5           | 50                      | 1000J    |
| 116            | PL46         | 17 /03 | Pinger  | 12.00                  | 12.39                | 54 05.028  | 10 40.079 | 54 03.909  | 10 35.574 | 0                       | 4.5-5           | 0                       |          |
| 117            | SL47         | 17 /03 | Sparker | 12.39                  | 13.36                | 54 03.909  | 10 35.574 | 54 02.250  | 10 28.789 | 1000                    | 4.5-5           | 50                      | 1300J    |
| 117            | PL47         | 17 /03 | Pinger  | 12.39                  | 13.36                | 54 03.909  | 10 35.574 | 54 02.250  | 10 28.789 | 0                       | 4.5-5           | 0                       |          |
| 118            | SL48         | 17 /03 | Sparker | 13.36                  | 14.18                | 54 02.250  | 10 28.789 | 54 01.0423 | 10 24174  | 1000                    | 4.5-5           | 50                      |          |
| 118            | PL48         | 17 /03 | Pinger  | 13.36                  | 14.18                | 54 02.250  | 10 28.789 | 54 01.0423 | 10 24174  | 0                       | 4.5-5           | 0                       | 1300J    |
| 119            | SL49         | 17 /03 | Sparker | 14.18                  | 15.14                | 54 01.0423 | 10 24.174 | 54 00.112  | 10 29.614 | 1000                    | 4.5-5           | 50                      |          |
| 119            | PL49         | 17 /03 | Pinger  | 14.18                  | 15.14                | 54 01.0423 | 10 24.174 | 54 00.112  | 10 29.614 | 0                       | 4.5-5           | 0                       |          |
| 120            | SL50         | 17 /03 | Sparker | 15.15                  | 15.54                | 54 00.098  | 10 29.724 | 54 59.287  | 10 34.402 | 1000                    | 4.5-5           | 50                      |          |
| 120            | PL50         | 17 /03 | Pinger  | 15.15                  | 15.54                | 54 00.098  | 10 29.724 | 54 59.287  | 10 34.402 | 0                       | 4.5-5           | 0                       |          |
| 121            | SL51         | 17 /03 | Sparker | 15.54                  | NA                   | 54 59.287  | 10 34.402 | 53 58.881  | 10 36.732 | 1000                    | 4.5-5           | 50                      |          |

| Station<br>no. | Line<br>Name | Date   | Туре   | Start<br>time<br>(UTC) | End<br>time<br>(UTC) | SOL_lat   | SOL_lon   | EOL_lat   | EOL_lon   | Trigger<br>Rate<br>(ms) | Speed<br>(knts) | Layback<br>(m) +<br>30m | Comments |
|----------------|--------------|--------|--------|------------------------|----------------------|-----------|-----------|-----------|-----------|-------------------------|-----------------|-------------------------|----------|
| 121            | PL51         | 17 /03 | Pinger | 15.54                  | NA                   | 54 59.287 | 10 34.402 | 53 58.881 | 10 36.732 | 0                       | 4.5-5           | 0                       |          |
| 124            | PL52         | 17 /03 | Pinger | 20.24                  | 21.10                | 53 58.067 | 10 43.138 | 53 57.036 | 10 48.398 | 0                       | 4.5-5           | 0                       |          |

### Multibeam lines

|          |                                      | Min     | Max     | Total   |         |          |        |                 |
|----------|--------------------------------------|---------|---------|---------|---------|----------|--------|-----------------|
| Day      | Line                                 | Time    | Time    | Time    | Heading | Length   | Speed  | Tide Applied    |
| 2014-072 | 0000_20140313_161938_celtic_explorer | 19:38.8 | 22:15.8 | 02:37.0 | 86.628  | 834.361  | 5.3144 | GPS Datum Model |
| 2014-072 | 0001_20140313_052359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 86.839  | 18337.9  | 5.0953 | GPS Datum Model |
| 2014-072 | 0002_20140313_062359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 86.707  | 18540.62 | 5.1516 | GPS Datum Model |
| 2014-072 | 0003_20140313_072359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 86.882  | 18366.16 | 5.1031 | GPS Datum Model |
| 2014-072 | 0004_20140313_082359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 86.101  | 18264.77 | 5.075  | GPS Datum Model |
| 2014-072 | 0005_20140313_092359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 85.556  | 18684.26 | 5.1915 | GPS Datum Model |
| 2014-072 | 0006_20140313_102359_celtic_explorer | 23:59.8 | 23:59.8 | 00:00.0 | 85.8    | 18573.04 | 5.1592 | GPS Datum Model |
| 2014-072 | 0007_20140313_112400_celtic_explorer | 24:00.8 | 23:58.8 | 59:58.0 | 84.509  | 17913.02 | 4.9786 | GPS Datum Model |
| 2014-072 | 0008_20140313_122359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 84.842  | 18612    | 5.1714 | GPS Datum Model |
| 2014-072 | 0009_20140313_132359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 85.807  | 18511.42 | 5.1435 | GPS Datum Model |
| 2014-072 | 0010_20140313_142359_celtic_explorer | 23:59.8 | 23:58.8 | 59:59.0 | 85.185  | 19563.81 | 5.4359 | GPS Datum Model |
| 2014-072 | 0011_20140313_152359_celtic_explorer | 23:59.8 | 19:37.8 | 55:38.0 | 83.562  | 18124.3  | 5.4297 | GPS Datum Model |
| 2014-072 | 0011_20140313_162332_celtic_explorer | 23:31.8 | 23:31.8 | 00:00.0 | 64.939  | 19031.05 | 5.2864 | GPS Datum Model |
| 2014-072 | 0012_20140313_172332_celtic_explorer | 23:32.8 | 23:31.8 | 59:59.0 | 5.204   | 18908.65 | 5.2539 | GPS Datum Model |
| 2014-072 | 0014_20140313_182719_celtic_explorer | 27:19.8 | 27:18.8 | 59:59.0 | 5.65    | 18610.48 | 5.171  | GPS Datum Model |
| 2014-072 | 0015_20140313_192719_celtic_explorer | 27:19.8 | 27:18.8 | 59:59.0 | 5.26    | 18480.86 | 5.135  | GPS Datum Model |
| 2014-072 | 0016_20140313_202719_celtic_explorer | 27:19.8 | 27:18.8 | 59:59.0 | 5.462   | 17598.92 | 4.8899 | GPS Datum Model |
| 2014-072 | 0017_20140313_212719_celtic_explorer | 27:19.8 | 27:18.8 | 59:59.0 | 341.759 | 1689.397 | 0.4694 | GPS Datum Model |
| 2014-072 | 0018_20140313_222719_celtic_explorer | 27:19.8 | 27:18.8 | 59:59.0 | 323.23  | 1563.677 | 0.4345 | GPS Datum Model |
| 2014-073 | 0020_20140314_015239_celtic_explorer | 52:39.8 | 52:38.8 | 59:59.0 | 101.691 | 9333.305 | 2.5933 | GPS Datum Model |
| 2014-073 | 0021_20140314_025239_celtic_explorer | 52:39.8 | 21:33.8 | 28:54.0 | 101.396 | 2844.566 | 1.6405 | GPS Datum Model |
| 2014-073 | 0021_20140314_032435_celtic_explorer | 24:35.8 | 24:34.8 | 59:59.0 | 88.154  | 14670.25 | 4.0762 | GPS Datum Model |
| 2014-073 | 0022_20140314_042435_celtic_explorer | 24:35.8 | 42:54.8 | 18:19.0 | 88.921  | 5796.771 | 5.2746 | GPS Datum Model |
| 2014-073 | 0023_20140314_044255_celtic_explorer | 42:55.8 | 42:54.8 | 59:59.0 | 105.467 | 5517.815 | 1.5332 | GPS Datum Model |

|          |                                      | Min     | Max     | Total   |         |          |        |                 |
|----------|--------------------------------------|---------|---------|---------|---------|----------|--------|-----------------|
| Day      | Line                                 | Time    | Time    | Time    | Heading | Length   | Speed  | Tide Applied    |
| 2014-073 | 0024_20140314_054255_celtic_explorer | 42:55.8 | 42:54.8 | 59:59.0 | 188.649 | 18136.04 | 5.0392 | GPS Datum Model |
| 2014-073 | 0025_20140314_064255_celtic_explorer | 42:55.8 | 42:54.8 | 59:59.0 | 189.457 | 18435.56 | 5.1224 | GPS Datum Model |
| 2014-073 | 0026_20140314_074255_celtic_explorer | 42:55.8 | 42:59.8 | 00:04.0 | 187.724 | 18744.03 | 5.2009 | GPS Datum Model |
| 2014-073 | 0027_20140314_084300_celtic_explorer | 43:00.8 | 24:17.8 | 41:17.0 | 190.386 | 5634.517 | 2.2747 | GPS Datum Model |
| 2014-073 | 0027_20140314_095759_celtic_explorer | 57:59.8 | 59:05.8 | 01:06.0 | 273.509 | 114.62   | 1.7367 | GPS Datum Model |
| 2014-073 | 0028_20140314_095917_celtic_explorer | 59:17.8 | 59:16.8 | 59:59.0 | 183.034 | 1319.352 | 0.3666 | GPS Datum Model |
| 2014-073 | 0029_20140314_105917_celtic_explorer | 59:17.8 | 59:16.8 | 59:59.0 | 148.363 | 11357.65 | 3.1558 | GPS Datum Model |
| 2014-073 | 0030_20140314_115917_celtic_explorer | 59:17.8 | 15:58.8 | 16:41.0 | 139.493 | 102.573  | 0.1025 | GPS Datum Model |
| 2014-073 | 0030_20140314_122934_celtic_explorer | 29:33.8 | 29:33.8 | 00:00.0 | 51.688  | 7737.827 | 2.1494 | GPS Datum Model |
| 2014-073 | 0031_20140314_132934_celtic_explorer | 29:34.8 | 29:33.8 | 59:59.0 | 325.676 | 7746.705 | 2.1525 | GPS Datum Model |
| 2014-073 | 0032_20140314_142934_celtic_explorer | 29:34.8 | 04:51.8 | 35:17.0 | 333.149 | 4331.224 | 2.0459 | GPS Datum Model |
| 2014-073 | 0033_20140314_150452_celtic_explorer | 04:52.8 | 04:51.8 | 59:59.0 | 117.747 | 8587.468 | 2.3861 | GPS Datum Model |
| 2014-073 | 0034_20140314_160452_celtic_explorer | 04:52.8 | 04:51.8 | 59:59.0 | 181.738 | 7358.028 | 2.0445 | GPS Datum Model |
| 2014-073 | 0035_20140314_170452_celtic_explorer | 04:52.8 | 23:18.8 | 18:26.0 | 183.611 | 2358.069 | 2.1321 | GPS Datum Model |
| 2014-073 | 0036_20140314_172319_celtic_explorer | 23:19.8 | 23:18.8 | 59:59.0 | 334.41  | 7939.124 | 2.2059 | GPS Datum Model |
| 2014-073 | 0037_20140314_182319_celtic_explorer | 23:19.8 | 23:18.8 | 59:59.0 | 345.482 | 8903.314 | 2.4738 | GPS Datum Model |
| 2014-073 | 0038_20140314_192319_celtic_explorer | 23:19.8 | 33:37.8 | 10:18.0 | 13.318  | 1562.395 | 2.5281 | GPS Datum Model |
| 2014-073 | 0039_20140314_193338_celtic_explorer | 33:38.8 | 35:31.8 | 01:53.0 | 13.661  | 287.18   | 2.5414 | GPS Datum Model |
| 2014-073 | 0039_20140314_193708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.903  | 9133.627 | 2.5378 | GPS Datum Model |
| 2014-073 | 0040_20140314_203708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.563  | 8722.702 | 2.4236 | GPS Datum Model |
| 2014-073 | 0041_20140314_213708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.777  | 8393.293 | 2.3321 | GPS Datum Model |
| 2014-074 | 0042_20140314_223708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.452  | 8450.821 | 2.3481 | GPS Datum Model |
| 2014-074 | 0043_20140314_233708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.657  | 8498.391 | 2.3613 | GPS Datum Model |
| 2014-074 | 0044_20140315_003708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 14.667  | 8510.683 | 2.3647 | GPS Datum Model |
| 2014-074 | 0045_20140315_013708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 2.643   | 8183.228 | 2.2737 | GPS Datum Model |
| 2014-074 | 0046_20140315_023708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 268.363 | 7345.718 | 2.041  | GPS Datum Model |
| 2014-074 | 0047_20140315_033708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 267.985 | 7338.624 | 2.0391 | GPS Datum Model |
| 2014-074 | 0048_20140315_043708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 268.413 | 7614.686 | 2.1158 | GPS Datum Model |

|          |                                      | Min     | Max     | Total   |         |          |        |                 |
|----------|--------------------------------------|---------|---------|---------|---------|----------|--------|-----------------|
| Day      | Line                                 | Time    | Time    | Time    | Heading | Length   | Speed  | Tide Applied    |
| 2014-074 | 0049_20140315_053708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 280.845 | 7690.962 | 2.137  | GPS Datum Model |
| 2014-074 | 0050_20140315_063709_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 281.67  | 7667.006 | 2.1303 | GPS Datum Model |
| 2014-074 | 0051_20140315_073708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 282.894 | 8079.81  | 2.245  | GPS Datum Model |
| 2014-074 | 0052_20140315_083708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 265.089 | 8445.791 | 2.3467 | GPS Datum Model |
| 2014-074 | 0053_20140315_093708_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 103.461 | 9108.343 | 2.5308 | GPS Datum Model |
| 2014-074 | 0054_20140315_103709_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 101.297 | 8850.91  | 2.4593 | GPS Datum Model |
| 2014-074 | 0055_20140315_113709_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 100.773 | 8856.582 | 2.4608 | GPS Datum Model |
| 2014-074 | 0056_20140315_123709_celtic_explorer | 37:08.8 | 37:07.8 | 59:59.0 | 82.089  | 9542.975 | 2.6516 | GPS Datum Model |
| 2014-075 | 0057_20140315_133709_celtic_explorer | 37:08.8 | 08:43.8 | 31:35.0 | 287.71  | 392.408  | 0.2071 | GPS Datum Model |
| 2014-074 | 0057_20140315_133709_celtic_explorer | 37:08.8 | 08:43.8 | 31:35.0 | 287.71  | 392.408  | 0.2071 | GPS Datum Model |
| 2014-075 | 0058_20140315_194032_celtic_explorer | 40:32.8 | 12:58.8 | 32:26.0 | 0.805   | 8726.428 | 4.4843 | GPS Datum Model |
| 2014-075 | 0058_20140315_221935_celtic_explorer | 19:35.8 | 19:34.8 | 59:59.0 | 1.63    | 15176.91 | 4.217  | GPS Datum Model |
| 2014-075 | 0059_20140315_231935_celtic_explorer | 19:35.8 | 17:38.8 | 58:03.0 | 359.911 | 11264.3  | 3.2341 | GPS Datum Model |
| 2014-075 | 0060_20140316_074910_celtic_explorer | 49:10.8 | 04:38.8 | 15:28.0 | 137.13  | 2147.869 | 2.3145 | GPS Datum Model |
| 2014-075 | 0060_20140316_080733_celtic_explorer | 07:33.8 | 07:32.8 | 59:59.0 | 114.931 | 8535.361 | 2.3716 | GPS Datum Model |
| 2014-075 | 0061_20140316_090733_celtic_explorer | 07:33.8 | 40:39.8 | 33:06.0 | 114.644 | 4647.557 | 2.3402 | GPS Datum Model |
| 2014-075 | 0061_20140316_094349_celtic_explorer | 43:49.8 | 43:48.8 | 59:59.0 | 231.766 | 8356.944 | 2.322  | GPS Datum Model |
| 2014-075 | 0062_20140316_104350_celtic_explorer | 43:49.8 | 59:10.8 | 15:21.0 | 291.52  | 1839.967 | 1.9978 | GPS Datum Model |
| 2014-075 | 0062_20140316_110054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 293.701 | 7090.055 | 1.97   | GPS Datum Model |
| 2014-075 | 0063_20140316_120054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 325.28  | 8245.795 | 2.2911 | GPS Datum Model |
| 2014-075 | 0064_20140316_130054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 266.731 | 8035.675 | 2.2328 | GPS Datum Model |
| 2014-075 | 0065_20140316_140054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 267.106 | 8036.116 | 2.2329 | GPS Datum Model |
| 2014-075 | 0066_20140316_150054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 259.563 | 8069.431 | 2.2421 | GPS Datum Model |
| 2014-075 | 0067_20140316_160054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 141.339 | 9585.851 | 2.6635 | GPS Datum Model |
| 2014-075 | 0068_20140316_170054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 147.949 | 8984.492 | 2.4964 | GPS Datum Model |
| 2014-075 | 0069_20140316_180054_celtic_explorer | 00:54.8 | 00:53.8 | 59:59.0 | 152.369 | 8840.686 | 2.4564 | GPS Datum Model |
| 2014-075 | 0070_20140316_190054_celtic_explorer | 00:54.8 | 15:25.8 | 14:31.0 | 152.746 | 2160.038 | 2.48   | GPS Datum Model |
| 2014-076 | 0071_20140317_092240_celtic_explorer | 22:40.8 | 22:39.8 | 59:59.0 | 331.012 | 10491.83 | 2.9152 | GPS Datum Model |

|          |                                      | Min     | Max     | Total   |         |          |        |                 |
|----------|--------------------------------------|---------|---------|---------|---------|----------|--------|-----------------|
| Day      | Line                                 | Time    | Time    | Time    | Heading | Length   | Speed  | Tide Applied    |
| 2014-076 | 0072_20140317_102240_celtic_explorer | 22:40.8 | 22:39.8 | 59:59.0 | 306.405 | 6100.762 | 1.6951 | GPS Datum Model |
| 2014-076 | 0073_20140317_112240_celtic_explorer | 22:40.8 | 38:51.8 | 16:11.0 | 110.594 | 2195.466 | 2.261  | GPS Datum Model |
| 2014-076 | 0073_20140317_114405_celtic_explorer | 44:05.8 | 44:04.8 | 59:59.0 | 116.357 | 8302.446 | 2.3069 | GPS Datum Model |
| 2014-076 | 0074_20140317_124405_celtic_explorer | 44:05.8 | 44:04.8 | 59:59.0 | 113.656 | 8408.241 | 2.3363 | GPS Datum Model |
| 2014-076 | 0075_20140317_134405_celtic_explorer | 44:05.8 | 18:37.8 | 34:32.0 | 116.241 | 4640.444 | 2.2396 | GPS Datum Model |
| 2014-076 | 0076_20140317_141838_celtic_explorer | 18:38.8 | 18:37.8 | 59:59.0 | 255.609 | 6760.882 | 1.8785 | GPS Datum Model |
| 2014-076 | 0077_20140317_151838_celtic_explorer | 18:38.8 | 14:27.8 | 55:49.0 | 254.857 | 7451.469 | 2.225  | GPS Datum Model |
| 2014-076 | 0078_20140317_192933_celtic_explorer | 29:33.8 | 29:37.8 | 00:04.0 | 254.762 | 8936.687 | 2.4797 | GPS Datum Model |
| 2014-076 | 0079_20140317_202938_celtic_explorer | 29:38.8 | 12:43.8 | 43:05.0 | 254.049 | 5763.254 | 2.2295 | GPS Datum Model |
| 2014-076 | 0080_20140317_211658_celtic_explorer | 16:58.8 | 17:02.8 | 00:04.0 | 45.736  | 17966.39 | 4.9851 | GPS Datum Model |
| 2014-076 | 0081_20140317_221703_celtic_explorer | 17:03.8 | 16:57.8 | 59:54.0 | 47.804  | 17532.06 | 4.8781 | GPS Datum Model |
| 2014-076 | 0082_20140317_231658_celtic_explorer | 16:58.8 | 01:10.8 | 44:12.0 | 53.128  | 13203.56 | 4.9787 | GPS Datum Model |

Appendix IV

Box core descriptions

# PORCUPINE BANK CANYON MOUNDS (ON-MOUND)



Fig. 1









Subcores for sedimentological/pleontological analysis

Fig. 2

#### On board processing

After the water was siphoned, the box-core surface was photographed and the live macrofauna collected and preserved in ethanol 70%. For the purpose of sedimentological, macro- and micropalentological studies, six 10 cm diameter liners were pushed to the bottom of the box-core (Figs. 2-3) and two subsamples (7x7 cm<sup>2</sup>) were removed from the surface layer. The remnant sediment was split in four parts (0-2 cm, 2-7 cm, 7-12 cm, 12 cm-base) and sieved using 2mm, 1mm, 0.5 mm sieves.

#### Description

**Surface** (Figs. 1-2): Slightly inclined, consisting of silty sand and coral fragments. Corals are concentrated on one side (black arrow in Fig. 1), due to the movement of the box-corer during retrieval, and mostly cinsist of *Madrepora*, rare *Lophelia* and *Desmophyllum*. Coral fragments are heavily bioeroded and slightly stained by Fe-Mn oxides. Other bioclasts include bivalves, tiny gastropods, echinoderm spines and plates, rare pteropods, brachiopods, serpulids and bryozoans. The living fauna consists of both mobile (cidarids, Fig. 5, munidids, Fig. 6, decapods, polychaetes, ophiuroids) and sessile (mostly Arcidae bivalves, sponges, bryozoans, scyphozoans, hydroids, tunicates) organisms.

**Vertical section**: Coral rubble along the entire section, embedded in brownish silty sand (in the upper 20 cm) evolving into grey silty clay toward the bottom. The dominant coral is *M. oculata, Lophelia* fragments and *Caryophyllia* specimens can be found below 5 cm sediment depth.







Fig. 6

# PORCUPINE BANK CANYON MOUNDS (ON-MOUND)

# CE 14004 - 32BC



Surface sample (0-1 cm depth) for live foraminifera analysis

#### On board processing

The box-core surface was photographed and the live macrofauna collected and preserved in ethanol 70%. For the purpose of micropalentological studies, one subsample (7x7 cm<sup>2</sup>; Fig. 7) was collected from the surface layer. The remnant sediment was sieved using 63 micron sieve.

#### Description

The collected sediment, only 2 cm thick, consists of coral rubble in coarse muddy sand. Most corals (*Lophelia, Madrepora, Pliobothrus*) are bioeroded and slightly stained by Fe-Mn oxides. Other bioclasts include bivalves, tiny gastropods, echinoderm spines and plates, rare pteropods, brachiopods, serpulids and bryozoans. Foraminifera are very common and some miliolids are up to 2 mm in size. One *Lophelia* fragment is embedded in a hardground piece with a matrix made of foram grainstone and mudstone. The living macrofauna consists of only mobile polychaetes and ophiuroids.

Fig. 7

# PORCUPINE BANK CANYON MOUNDS (ON-MOUND)

CE 14004 - 33BC



Subcores for sedimentological/paleontological analysis



#### On board processing

The box-core surface was disturbed during retrieval. After photographing, the live macrofauna was collected from the sample surface and preserved in 70% ethanol. For the purpose of sedimentological and paleontological studies, one liner (7 cm in diameter; Fig. 8a) was pushed to the bottom of the box-core. The disturbed surface layer was removed and put aside. Both this layer and the remnant sediment were sieved using 2 mm, 1 mm and 0.5 mm sieves. The living fauna was extracted from the upper layer (0-2cm) and the lower layer (2-8 cm) separately.

#### Description

The collected sample, up to 8 cm thick, consists of coral rubble and muddy sand. Most corals (*Lophelia, Madrepora, Desmophyllum*, tiny *Stylaster*) are bioeroded and slightly stained by Fe-Mn oxides. Other bioclasts include bivalves, tiny gastropods, echinoderm spines and plates, brachiopods, serpulids and reteporiform bryozoans. Large foraminifera are less common than in sample BC\_32, but some specimens of *Hyrrokkin sarcophaga* can reach up to 2 mm in size. The living macrofauna consists of mobile (polychaetes, ophiuroids) and sessile (Fig. 8b: encrusting and boring sponges, bryozoans; Fig. 8c: hydrozoans, scyphozoans, tunicates; bivalves) organisms colonising coral fragments.

Fig. 8a-c

# PORCUPINE BANK CANYON MOUNDS (OFF-MOUND)

# CE 14004 - 35BC



Surface sample (0-1 cm depth) for live foraminifera analysis Subcores for sedimentological/paleontological analysis

#### On board processing

After siphoning the water and photographing the box-core surface, the sea anemone (Fig. 9) was collected and preserved in 70% ethanol. For the purpose of sedimentological and macro- and micropaleontological studies, one liner (7 cm in diameter) was pushed to the bottom of the box-core and a subsample (10x2 cm) was collected from the core surface. The upper 2 cm of sediment was sieved using a 63 micron sieve. The remaining sediment was split in two portions (2-10 cm, 10-15 cm) and sieved using 2 mm, 1 mm and 0.5 mm sieves. Part of the 10-15 cm layer was sieved with a 63 micron sieve.

#### Description

The collected sample, up to 15 cm thick, consists of foraminiferal sand. The living macrofauna consists of a sea anemone and an infaunal bivalve.

Appendix V

Marine mammal observer report

# **Marine Mammal Observer Report**

**R.V. Celtic Explorer** 

# **CE14004**

West of Ireland Coring Programme (WICPro)

Western Continental Shelf, Porcupine Bank and Porcupine Seabight

06th - 18th March 2014

MMO: Marian McGrath

# Contents

| 1.0 Introduction                           | 3  |
|--------------------------------------------|----|
| 2.0 Date & Location of Survey              | 4  |
| 3.0 Survey Vessel                          | 4  |
| 4.0 Marine Mammal Observers/Qualifications | 4  |
| 5.0 Survey Areas                           | 4  |
| 6.0 Equipment                              | 11 |
| 7.0 Marine Mammal Observations             | 12 |
| 8.0 Pre-Shoot Watches                      | 13 |
| 9.0 References                             | 13 |
| Appendix: Record of Operations Form        | 14 |

#### **1.0 Introduction**

Ireland's Exclusive Economic Zone (EEZ) has one of the most important marine mammal habitats in Europe. All marine mammal species in Irish waters are protected by the 1976 wildlife act (and wildlife amendment act 2000). The Habitats Directive applies within Ireland's 200 nautical mile limit for the protection of species and the continental Shelf for habitats (Arts, Heritage and the Gaeltacht, 2014). The National parks and Wildlife Service (NPWS) has set aside Special Areas of Conservation (SACs) and Special Protected Areas (SPAs) under this wildlife act to ensure no operations can take place in areas where an abundance of marine mammals are present. Such operations include seismic surveys, multibeam and side-scan sonar which have been set aside in a code of practice published by the NPWS (Anon. 2007).

A comprehensive review of Irish cold water coral reefs was undertaken in 2003 by the National Parks and Wildlife Service of the Department of the Environment, Heritage and Local Government and the Marine Institute. The purpose of the review was to identify representative sites that were suitable for designation and protection. The conclusion of the review in 2005 was that four sites were to be regarded as biogenic forms of the Annex 1 habitat Reefs and set aside as SACs. These are: the North-West Porcupine Bank, the South-West Porcupine Bank, the Hovland Mound Province and the Belgica Mound Province. These cover over 2,500 km2 within the Irish EEZ (Department of the Environment, Heritage and Local Government, 2006).

Marine Mammal Observers (MMO) are required by law to be aboard any vessel which is carrying out seismic surveys within Irish waters. It has been recognised that the sound generated by seismic sources has the potential to cause both disturbance and injury to marine mammals (JNCC, 2010). The minimum acoustic source level to achieve the desired results should be used. In unprotected areas an MMO is required to carry out a 30 minute pre seismic watch followed by a 30 minute watch during the soft start. In coral reef areas which fall within SACs the MMO has to the survey the area for 60 minutes before the soft start begins. If marine mammals are seen within 2000 metres of the centre of the sound source then the sound source should be delayed until they have moved away, allowing adequate time after the last sighting for the animals to leave the area (60 minutes). If marine mammals do not leave the area then the vessel has to alter its course to ensure the animals are not within the 2000 metre exclusion zone. Soft starts should then achieve the maximum or desired output after 40 to 60 minutes.

# 2.0 Date & Location of Survey

06th to 18th March 2014 Western Continental Shelf, Porcupine Basin and Porcupine Seabight

#### 3.0 Survey Vessel

**R.V Celtic Explorer** 

# 4.0 Marine Mammal Observers/Qualifications

Qualified MMO: Marian McGrath Casual Observations: Bridge and deck crew

#### **5.0 Survey Areas**

This survey was undertaken to provide core material and data to support a broad range of ongoing scientific endeavours. These include:

- Studying environmental records from cold-water coral reefs
- Studying the history of glaciomarine deposition from the Porcupine Bank flank
- Studying ice limits and glacial processes on the western shelf

Three key target areas are identified where the retrieval of core material and seismic data was undertaken in pursuit of the above objectives. The cruise was delayed for four days in Bantry Bay due to bad weather at the start of the survey so some test seismic lines were run in the bay also. The survey sites are shown below (Figure 1, 2, 3, 4,5 & 6).



Figure 1. Seismic Lines and cores collected in Bantry Bay during bad weather down time



Figure 2. Cores collected from the Moira Mounds, Belgica Mound Province, Eastern Porcupine Seabight.



Figure 3. Cores collected from the Porcupine Bank Canyon Mounds



Figure 4. Cores collected from the Porcupine Bank



Figure 5. Cores and Seismic Lines collected from the Western Shelf



Figure 6. Cores and Seismic Lines collected from the Killary and Clew area

#### 6.0 Equipment

#### **Research vessel - RV Celtic Explorer**

The Celtic Explorer is a 65.5 m multi-purpose research vessel (Figure 7). The vessel has wet, dry and chemical laboratories, which are permanently fitted with standard scientific equipment and can accommodate 20-22 scientists along with 13-15 crew who are highly skilled with the handling and deployment of scientific equipment. It has a maximum endurance of 35 days. The Celtic Explorer is equipped with two Trimble 300-D GPS and has Dynamic Positioning.

On the aft deck is a 25 tonne A-frame with 4m outward and inward reach in addition to a 3m, 10 tonne starboard T-frame. The ship also comprises of a midship, forward and aft crane as well as a 6 tonne CTD winch.



Figure 7. RV Celtic Explorer

#### Geo-Source 400 sparker seismic system

The Geo-Source 400 sparker seismic system of the Marine Institute was used during the survey (Figure 8). This sparker seismic system consists of the Geo-Spark 6 kJ pulsed power supply which emits a pulse to the sparker source which is towed behind the vessel. The source comprises four electrode modules that are evenly spaced in a planar array. The return signal is picked up in Geo-Sense single channel hydrophone array. The system provides high resolution (<30cm) seismic profiles of the Shallow sub-bottom strata. The device achieves

this level of accuracy due to its multi-tip array of sparker nodes, which are evenly spaced and set in-phase producing a very strong downward projection of acoustic energy. The system is designed to be towed on or just below the water-surface. High resolution seismic profiles of up to 300m depth can be imaged using the Geo-Spark 200 depending on the composition of the water column, sea conditions and the nature of the underlying geology.



Figure 7. Sparker Seismic System

### Hull mounted ESE 5001S 3.5 kHz pinger system

The Sonar Equipment Services Ltd Probe 5001S 3.5 kHz sub-bottom profiler comprises of a surface processor and a sub-surface transceiver. The processor is set up for 16 transducers (4 X 4 array). The transducers are located in starboard mid sea water ballast tank. Output Power is up to 10KW at an operating frequency of 3.5 to 9.0 kHz. Maximum repetition rate is 10Hz The system is triggered from a CODA DA2000.

#### 7.0 Marine Mammal Observations

Marine mammal observations were carried out from the bridge. This gave the best view point of both sides and in front of the vessel. Prior to commencement of the acoustic survey in SACs a 60 minute watch was carried out in SACs and in non SACs a 30 minute watch was carried out. Weather conditions were favourable during MMO watches.

Observations were undertaken using a reticular binoculars and also by the naked eye. Distance to marine mammals is determined using this reticular binoculars and height above sea level. To determine the range one of the divisions present in the binoculars is placed on the horizon. A formula is then used to determine the distance of the mammal from the ship. The formula is:

Distance (m) = (height of eye above sea level (m) x 1000/ no. of mils down from horizon)

No marine mammals were spotted during this survey.

#### 8.0 Pre-Shoot Searches

As detailed in the NPWS code of Practice, a 30 minute watch was carried out in non SACs and a 60 minute watch in SACs prior to shooting the Sparker for mammals within 2000m range of the equipment. If marine mammals were spotted within this area, Sparker would have to be halted for a certain period of time or the vessel would have to move to a different area of the survey. If no marine mammals were seen within the watch time then a soft start would commence. A Sparker soft start was carried out each time the acoustic equipment was switched on.

A normal soft start comprises of a ramp up of source power of acoustic emission over at least 30 minutes until full power is reached. The Sparker was stopped during transit between study areas so soft starts were carried out each time it was re-started. The Sparker was always started during daylight hours to allow for MMO watches to be carried out prior to soft starts. The MMO watch was continued till the Sparker reached full power. Watches do not need to be carried out once the Sparker is already operating on full power. Throughout the duration of this survey no marine mammals were seen during the watches prior to the soft starts.

#### 9.0 References

Anon. 2007. Code of Practice for the Protection of Marine Mammals during Acoustic Seafloor Surveys in Irish Waters. National Parks and Wildlife Service.

JNCC. 2010. Joint Nature Conservation Committee guidelines for minimising the risk of disturbance and injury to marine mammals from seismic surveys.

Arts, heritage and the Gaeltacht. 2014. Guidance to Manage the Risk to Marine Mammals from Man-made Sound Sources in Irish Waters.

Department of the Environment, Heritage and Local Government. 2006. Code of Practice for Marine Scientific Research at Irish Coral Reef Special Areas of Conservation. **Record of Operations Forms** 

# MARINE MAMMAL RECORDING FORM - RECORD OF OPERATIONS

| Ship: RV Celtic Explorer | Client: UCC | Seismic Contractor: UCC | PAD No: N/A |
|--------------------------|-------------|-------------------------|-------------|
|--------------------------|-------------|-------------------------|-------------|

Complete this form every time the airguns are used, including overnight, whether for shooting a line or for testing or for any other purpose. (Times should be in GMT)

Once the Sparker was started it was kept running during transit between short lines. It was turned off during longer transits and an MMO watch was carried out before each re-start

|            | Seismic activity                       |                                                  |                                   |                         |                                                                        |                                    | Pre-shooting search                                                               |                                                                                  |                                                              |                                                                                                                       | Action necessary                                 |                                                                                       |                                                                         |                                                               |                                           |
|------------|----------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|
| Date       | Time<br>when<br>soft<br>start<br>began | Time<br>when<br>airguns<br>reached<br>full power | Time<br>of<br>start<br>of<br>line | Time o<br>end o<br>line | f Time<br>f output<br>reduce<br>d to<br>150 dB<br>(if<br>releva<br>nt) | Time<br>when<br>airguns<br>stopped | Who<br>carried<br>out a<br>search<br>for<br>marine<br>mammals<br>?<br>(Job title) | Time<br>when<br>pre-<br>shooting<br>search<br>for<br>marine<br>mammal<br>s began | Time<br>when<br>search<br>for<br>marine<br>mammal<br>s ended | Was there<br>any reason<br>why marine<br>mammals<br>may no<br>have been<br>seen?<br>(e.g. dark<br>fog, swell<br>etc.) | e Were<br>h hydro-<br>phone<br>s<br>t used?<br>h | Were<br>marine<br>mammal<br>s present<br>before<br>the<br>airguns<br>began<br>firing? | If yes,<br>give time<br>when<br>marine<br>mammal<br>s were<br>last seen | lf<br>mammals<br>present,<br>action was<br>(e.g.<br>shooting) | marine<br>were<br>what<br>taken?<br>delay |
| 07/03/2014 | 15.00                                  | 15.30                                            | 15.42                             | 17.03                   |                                                                        | 17.03                              | MMO                                                                               | 13.30                                                                            | 16.00                                                        | No                                                                                                                    | Yes                                              | No                                                                                    |                                                                         |                                                               |                                           |
| 08/03/2014 | 12.22                                  | 12.52                                            | 12.45                             | 15.18                   |                                                                        | 15.18                              | MMO                                                                               | 11.30                                                                            | 12.52                                                        | No                                                                                                                    | Yes                                              | No                                                                                    |                                                                         |                                                               |                                           |
| 14/03/2014 | 12.53                                  | 13.23                                            | 13.33                             | 12.53<br>15/03/14       |                                                                        | 12.53<br>15/03/14                  | MMO                                                                               | 11.15                                                                            | 13.23                                                        | No                                                                                                                    | Yes                                              | No                                                                                    |                                                                         |                                                               |                                           |
| 16/03/2014 | 07.20                                  | 07.50                                            | 07.39                             | 18.58                   |                                                                        | 18.58                              | MMO                                                                               | 06.30                                                                            | 07.50                                                        | No                                                                                                                    | Yes                                              | No                                                                                    |                                                                         |                                                               |                                           |
| 17/03/2014 | 10.20                                  | 11.10                                            | 11.20                             | 15.54                   |                                                                        | 15.54                              | MMO                                                                               | 09.30                                                                            | 11.10                                                        | No                                                                                                                    | Yes                                              | No                                                                                    |                                                                         |                                                               |                                           |
|            |                                        |                                                  |                                   |                         |                                                                        |                                    |                                                                                   |                                                                                  |                                                              |                                                                                                                       |                                                  |                                                                                       |                                                                         |                                                               |                                           |
|            |                                        |                                                  |                                   |                         |                                                                        |                                    |                                                                                   |                                                                                  |                                                              |                                                                                                                       |                                                  |                                                                                       |                                                                         |                                                               |                                           |
|            |                                        |                                                  |                                   |                         |                                                                        |                                    |                                                                                   |                                                                                  |                                                              |                                                                                                                       |                                                  |                                                                                       |                                                                         |                                                               |                                           |