

RESULTS FROM TESTING OF A "CLOUD BASED" AUTOMATED FAULT DETECTION AND DIAGNOSIS TOOL FOR AHU'S

ETFA SEP 11TH 2013, CAGLIARI

Ken Bruton, Daniel Coakley, Peter O'Donovan, Marcus M. Keane & D. T. J. O'Sullivan

Agenda

- What is i2e2?
- Why does industry need this work?
- Why HVAC?
- An automated solution.....
- AFDD techniques
- Early Results

What is i2e2?

- i2e2 is an industry/academic collaboration under the Irish government's Technology Centre initiative
- Focus on research with a direct impact on industry
- UCC's task, in collaboration with NUIG, is to provide Appropriate Working Environments
- i2e2 companies provide access to their operations

Why does industry need this research work?

- Focus on production output in lieu of efficiency
- Difficult to track efficiency due to islands of information
- Competition from lower cost economies for investment

Why Focus on HVAC Systems?

- Typically greater than 20% of an industrial site's energy consumption
- HVAC systems get less efficient over time
- 20-30% energy savings are achievable by re-commissioning HVAC

How can AFDD help save HVAC Energy?

How can AFDD help save HVAC Energy?

How can AFDD help save HVAC Energy?

- Simultaneous heating & cooling
- Set point adjustments
- Manual operation
- Sub optimal performance of equipment

- Inefficient control strategies
- Poor loop tuning
- Free cooling
- Incorporation of Deadbands

AFDD tool requirements Prioritisation Minimal False positives/negatives Rapid Setup

OBJECTIVE

Use existing instrumentation

No sensor/instrument dependencies

BMS Flexibility

AFDD tool requirements

FDD Techniques

FDD automates the process of detecting and diagnosing faults

 A rule based FDD tool can be developed and implemented in industry relatively quickly utilising existing equipment

The Business Layer

- Business layer expanded on existing knowledge based rule sets by;
 - Applicable fresh air & recirculation AHU's as well as return air units
 - Detecting issues when the AHU is off
 - Calculating virtualised readings
 - Improved error threshold calculation
- A server side application performs the mode checks, calculates the virtual values, applies the business layer rules, and stores the results in the database

The Business Layer

Design of Test Study

- > 100 AHU's available on 4 industrial and commercial sites
- AHU's were selected with
 - Different component and sensor layouts
 - Varying levels of instrumentation

Site	No. AHUs	Туре	Design airflow [m3/s]	Type of zone(s) supplied	Operating hours per annum	BMS Software	Frequency of logged data
1	2	Constant volume	14	Office & canteen	8760	Trend	15 minutes
2	4	Constant volume	20	Production area	8760	Triđium	15 minutes
3	9	Variable Volume	13	Manufacturing Floor	6240	Cylon	15 minutes
4	3	Variable Volume	8	Commercial office space	6240	Schneider	15 minutes

AFDD tool in Alpha testing

AFDD tool in Alnha testing 31779

		ENGINEER 5 KE	PORT &			2
A 8 C	DEFGH	DAYWORKS	SHEET	SITE	DEPU'Y	AP AQ AR AS AT
1 Current display time			Balliscollin, Co. Cark	CUSTOMER	ALIGHTY	
2 2011-12-0707:00 Wed	Mode 2		Phone (021) 4873 005	SITE CONTACT	DAVE COTAREL	
4 Day 1	Economiser with no		Noos Rood, Dublin 24	ENGINEER	TOM DEASY	
5 Week 🗘 0	heating or cooling	CONTROL SYSTEMS LTD.	Phone (01) 4036 202	PROJECT NO.	MC55 P.M. YC	
6 Reset schematic diagram						
Vienps Vibrar cond Vienps Vibrar cond	Return air	CHARTER ON CIPER	ATTONN OF COL	170010 0		Zone
9 Valve/damper positor	Rise 1.0*0	CALLET UN OFEL	ANDNS OF LON	314013 0	D PRODUCTION FROM	
10 List faults by		AHU'S 6,4,819				
11frequencycost						
12 Estult selection	21.7°C V (())	·C			are it as are in	20.9°C
14 Go to	***	CHECKED ALL C	-H.W + L.P.H.V	VALVE	S FOIZ SIGNS OF PRESSING	
15 Oldest Newest	VSD	ALL TEMPERATUR	E SENSORS CI	HECKED (CRRECTLY CALIBRATION	· —
16 Next Previous	Flow 21.1m3	AND ADJUSTED	WERE REQUI	RED		
17 Description of current fault	-+	0				CettaT e cal
19	40	UHECKED CORRECT	OPERATION OF	F FIZESH	RECIRC AND BHAUST DAMP	Lo_mor, 2
20	35	ALL ASSOCIATED	FIELD EQUIPE	MENT (1E	V.S.D'S, ACTUATOR CHECK	0
21 The supply temperature is	30			0		
higher than the mix	25	E				
temperature, when it should	20	TOULD FOLLOWING I	SSUE'S			
25 be identical (2) or lower	1-1-1	AHU 6 (A) CHECKED	Salar designationalist	FFUSER C	N LEGS TOUND & AIR	
26 (3,4)-		DISCUSTE ALL IT	C 12 LINE 0.000			
27	10	DIFFOSEE ON LE	U S NOT OPEN	CATING .		T_supT Telet
29	3	ANY Y (A) RETURN M	OTOR FAULTY RECO	MHEND R	ERACENG AS THIS IS	92
30 No. fault hours 92	07 13	EPFECTISIG OPERATIO	ON OF SHOTEH	5 DAMPER	'S AND IS CAUSING	
31 as % of period 27% 22 as % of run hours 22%		AREA TO OVERHEA	T (B) PRESH AR	DAN PER M	CTUATOR ON OPPER	
		PARTEE PAULI			DAMAGED	
		AHU 8 (A) RECIRC I	DAMPER NOT SEA	LING COREI	ECTLY LOUVERS	
		(3) COOLING VALVE S	LIGHTLY PASSING	CLADDING	G AROUND VALVE TO	
	_					
		L. A CONFLO ID	DELENTING WI	DIEE	YAN WELL I	
		AHU 9 (A) RECIRC E	INMPER NOT SEAL	ING COZEE	CTUY LOUVERS DAMAGED	
		•				

AFDD tool in Alpha testing

UCC

Coláiste na hOllscoile Corcaigh, Éire National University of Ircland, Galway University College Cork, Ireland Ollscoil na bÉircann, Gaillimb

Requirements Versus Developments

Rationale	Requirement(s)	Framework/Tool Developed	
Data Access Layer Flexibility	Compatibility with any BMS type or age	A generic data access tool was developed	
Business Layer Flexibility	Compatible with various combinations of sensors and components	Calculation of virtual values coupled with "rule libraries"	
Reliability	Low number of false positives/negatives	A error threshold applied to each rule based on rule makeup	
Usability	User friendly graphical user interface (GUI)	A browser based GUI was developed	
Fault Priority	Quantification and prioritisation of the diagnosed faults	Each fault is prioritised in terms of cost and frequency of occurrence	
Scalability	Rapid setup time per AHU	A web based site configuration tool was developed	
Low Cost	Ability to use existing measurements	First principal techniques and engineering computation utilised to calculate readings where none are present	

Faults: Damaged dampers, high supply temperature, passing cooling coil Savings: €53,000

Next Steps

- Extend the data access platform
- Minimise design data required
- Expand the business layer to incorporate humidity control AFDD
- Expand the prioritisation methodology
- Improve diagnostic capabilities
- Link to planned maintenance systems

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

Ken Bruton

i2e2 Researcher

Department of Civil & Environmental Engineering,

University College Cork

k.bruton@ucc.ie

