Environmental Research Conference:

Royal Hospital Kilmainham – Feb. 7, 2008.

How Sensitive is Carbon Uptake in Peatlands and Grasslands

to Observed Climate Variation

Gerard Kiely, Paul Leahy, Matteo Sottocornola, Owen Carton

Hydromet, University College Cork

Transport / Industry

Ruminant Animals

Fertilised Grasslands / Arable

Man Made Emissions of Greenhouse Gases (GHG) Fluxes from surface to atmosphere are (+)

Flux study sites -UCC

Net Ecosystem Exchange – NEEEddy Covariance Methodover a footprint area ~ 1km by 1 km.NEE = $P_G - R_E$ Tons of Carbon/HaNEE = F_{CO2} Flux of CO2Definition of the CO2 flux

 $F_c \cong -w' \rho_c'$

LI-7500 Open Path CO₂/H₂O gas analyser ho_c' – the density fluctuation of CO₂ [µmol/m³] @ 10Hz w' - the vertical wind velocity fluctuation [m/s] @ 10Hz

30 min averaging time

NEE	of Different Ecosystems				
(-) uptake:		(+) emission			
Ecosystem	NEE	C sequestered			
	t C /ha.yr	t C /ha.yr			
Bogs:					
UCC – Kerry	-0.17 to -0.92	Subtract CH ₄ & DOC			
	(uptake)				
Grasslands					
UCC – Dripsey	-1.9 to -2.9	subtract			
UCC -Wexford	-0.2 to - 3.9	lots			
	(uptake)				

Blanket Peatland at Glencar, Co. Kerry.

NEE and Total Carbon Budget (Bogs)

NEE = Net of CO_2 = Photosynthesis - Respiration = - 0.52 TC/ha.yr (range -0.18 to - 0.92)

Total Carbon Budget (for 2007) $\Delta C = C (CO_2) - C (CH_4) - C (DOC)$ = -0.17 (uptake) + 0.05(loss) + 0.14(loss) = + 0.02 TC/ha.yr LOSS

Total Carbon Budget (for 2004) $\Delta C = C (CO_2) - C (CH_4) - C (DOC)$ = -0.92 (uptake) + 0.05(loss) + 0.14(loss) = -0.73 TC/ha. UPTAKE

Carbon sequestered in bog = ± 0.02 to -0.73 TC/ha.yr.

Bog Results: cumulative CO₂ flux

Bog Results: monthly CO₂ flux

Bog environmental data

Bog environmental data

Bog Results: cumulative CO₂ flux

Bog Results: monthly CO₂ flux

CONCLUSIONS for Glencar Bog -NEE

2004/05...Highest CO₂ Uptake = - 0.92 TC/ha.

- Low respiration due to "normal" winter/spring temperatures
- High photosynthesis in summer due to frequent but not excess rain with ("normal" water table) accompanied with high soil temperature

2006/07.....Lowest CO₂ Uptake = - 0.18 TC/ha.

- High Respiration from Spring due to high temperature
- Low photosynthesis in Summer due to excess rain (high water table) and reduced soil temperature (reduced PAR) or drought
- CO₂ Drivers: PAR and Rain and vegetation

Dripsey, Co. Cork - Grassland

Small Farms in Dripsey, Cork.

Dripsey Management practices

- ~ 50 ha divided into approx. 50 paddocks.
- Cattle grazing:
 - typically from March to October,
 - density: < 2 LU/ha, with rotations.
- Silage cuts: twice a year.
- Fertiliser + slurry application: < 300 kgN/ha.</p>

in kgN/ha	Chemical fertiliser	Slurry	Total
2002	214	91	305
2003	204	130	334
2004	177	30*	207

Dripsey - Cumulative NEE in t C /ha

Dripsey – Monthly NEE

Dripsey Environmental Parameters

CONCLUSIONS for Dripsey

- 1. The NEE (CO₂) was -1.9 to -2.9 t C /ha.yr as uptake
- 2. Resilient to winter Rain
- 3. Summer rains reduce uptake
- 4. Based on farm C soil balance, the C sequestered by the soil was ~ -0.5 t C /ha.yr

Wexford flux/met data

7th February 2008

Wexford Grass Fluxes 03 to 07

Wexford Grass Fluxes 04 & 07

Wexford met data 2004/2007

Wexford met data 2004/2007

CONCLUSIONS for Wexford

 The NEE (CO₂) was -0.2 to -3.2 t C /ha.yr as uptake
Sensitive to amount and timing of Rain and to PAR changes

Overall Conclusions

BOG:

1. Are sensitive ecosystems and do not do well in extremes of heat or rain

Grasslands:

- 1. Dripsey (poorly draining soils) are resilient to extremes of winter/spring rain but are poorly productive in wet summers.
- 2. Wexford (free draining soils) are more sensitive to extremes of rain in Spring and Summer.

Acknowledgements

This work has been prepared as part of the ERTDI which is managed by the EPA and financed by the Irish Government under the NDP, 2000 – 2006 (Grant No. 2001-CC/CD-(5/7))

All colleagues in the HYDROMET Group at UCC

The END

Thank You

Overall Conclusions

Blanket Bog

- •NEE ranges from -0.18 to -0.92 TC/ha.yr
- •Total C budget ranges from +0.02 to 0.73 TC/ha.yr
- •Warm winters/spring + cool wet summers increase respiration and so reduce uptake
- •Normal winters/spring reduce respiration and moist warm summers increase photosynthesis and so increase uptake

Grasslands

- •Wexford NEE ranges from -0.02 to 3.2 TC/ha.yr
- •Dripsey NEE ranges from -1.9 to -2.9 TC/ha.yr
- •Dripsey more resilient to changes in rain and PAR amount
- •Wexford sensitive to rain amount and timing and to PAR changes