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[1] The mass transfer (MT) equation and the Penman-Monteith (PM) equation are two
common approaches used in various land surface models for simulating evapotranspiration
(ET). Yet assessments are rarely conducted to determine how well these structurally
differing equations simulate ET across various biomes and climatic environments with
different canopy upscaling strategies. We evaluated the capacity of models to estimate ET
using the MT equation with the one-leaf strategy in the Community Land Model version 4
and the PM equation in the Dynamic Land Model using the one-leaf and two-leaf upscaling
approaches for 22 selected eddy covariance flux towers representing 10 typical
plant functional types. Overall, across half-hourly, daily, monthly, and seasonal scales, the
MT equation performed less robust than the PM equation in forests. The former had 8–15%
higher root-mean-square error and 1–4% lower index of agreement and a large uncertainty
in warm and wet seasons for several sites. It leaves a doubt about its application of
estimating ET across regional to global scales. Considering the net radiation available on the
surface of leaf/soil and adopting the two-leaf approach made the PM equation closer to the
ECmeasurements on average but still could not capture the variation during the cold season.
We suggest that further improvements in simulation of ET require seasonal variation of
some key parameters and quantification of spatial heterogeneity.
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1. Introduction

[2] Evapotranspiration (ET), which includes transpiration
and evaporation from the soil-plant system, is a major com-
ponent of the terrestrial water cycle and energy balance
(i.e., latent heat flux, LE) [Katul et al., 2012]. This process

returns ~ 60% of annual land precipitation to the atmosphere
[Jung et al., 2010; Oki and Kanae, 2006], which affects and
then is affected by local climate. One of the extensive adop-
tions for evaluating and predicting ET is the land surface
models (LSMs) [Jaksa et al., 2013; Vinukollu et al., 2012].
Not only because LSMs have a mechanism-based structure
and applicability to a wide range of space and time scales
[Chen and Coops, 2009] but also it can be coupled to a global
circulation model for estimating the effects of climate change
and accounting for possible feedback [Cox et al., 2000; Gent
et al., 2011; Subin et al., 2011]. Therefore, estimating ET
and quantifying the process accurately in LSMs are critical
to evaluating the potential impacts on the terrestrial water
balance and climate change [Bonan, 2008; Cao et al., 2010].
[3] ET is estimated by meteorological data in models. The

mass transfer (MT) equation is one of the classical methods
to estimate terrestrial water vapor flux, based on the propor-
tional relationship between vapor flux and vapor pressure
difference [Singh and Xu, 1997; Verstraeten et al., 2008].
Based on the combination of mass and heat transfer equa-
tions, and the energy balance equation, many expressions
have been derived, such as the Penman-Monteith (PM) equa-
tion [Monteith, 1965] and the Shuttleworth-Wallace equation
[Shuttleworth and Wallace, 1985]. Much effort has been
made to compare performances of different approaches to
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ET estimation that is systematically independent from the
land surface modeling systems [Fisher et al., 2005; Nazeer,
2010; Sentelhas et al., 2010; Stannard, 1993; Tabari et al.,
2011; Vinukollu et al., 2011]. These studies paid consider-
able attention to selecting an ET equation which has a simple
structure and an acceptable result, since some driven data are
incomplete or unavailable [Fisher et al., 2005; Nazeer, 2010;
Sentelhas et al., 2010; Tabari et al., 2011]. It has been shown
that the uncertainties in ET estimation mainly stemmed from
the differences of model structures [Fisher et al., 2005;
Tabari et al., 2011].
[4] LSMs calculate the total water vapor flux with three

parts: transpiration from the canopy, evaporation from the
intercepted water by canopy, and evaporation from soil
surface, in which the soil evaporation integrates with the soil
moistures [Chen et al., 2007a; Lawrence et al., 2007]. Many
LSMs adopt the MT equation to computer ET, such as
the Community Land Surface Model (CLM) [Oleson et al.,
2010], ecosys [Grant et al., 2012], and Cross-Chain Loran
Atmospheric Sounding System [Verseghy et al., 1993]. CLM
is the land surface model component of the Community
Earth System Model (CESM, http://www2.cesm.ucar.
edu/) developed by the National Center for Atmospheric
Research (NCAR). The model uses an improved MT equation
for determining transpiration and evaporation with the one-leaf
upscaling strategy [Oleson et al., 2010]. Recent assessments of
CLM version 4 indicated that the model can capture the spatial
distribution and the interannual variability of ETwell compared
with observations-based estimates at a global scale [Shi et al.,
2013]. The ET estimation has a better performance with im-
proved model structure or/and parameters of plant canopy
[Bonan et al., 2011]. Bonan et al. [2012] also reported that
the modeled latent heat flux decreased in the tropics after
replacing the two-leaf photosynthesis simulation method with
a multilayer upscaling strategy. The PM equation is another op-
tion adopted by LSMs [Chen et al., 2007a;Alton, 2011]. One of
them is the remote-sensing-based Ecosystem-Atmosphere
Simulation Scheme (EASS) [Chen et al., 2007a]. EASS adopts
the PM equation for modeling ET components and follows
the sunlit-shaded leaf stratification strategy in both canopy-
level photosynthesis and energy flux estimations. This canopy
strategy enhanced the realism and accuracy in the simulation
of net radiation and energy component fluxes of about 10%
compared with the one-leaf strategy [Chen et al., 2007a]. In
a further development, the EASS was coupled with the atmo-
spheric global environmental multiscale model (GEM), and
the EASS-GEM was reasonably successful in capturing both
the spatial and temporal variation in energy fluxes [Chen
et al., 2007b]. However, most of these results did not address
the impact of the ET equation itself on the ET simulation or
could not be used to improve the accuracy of estimation based
on the functional structures.
[5] More than functional structures, less attention has

been given to the model’s suitability of water vapor flux for
multiple biome types across different time scales and over
relatively long time periods. Previous studies have only eval-
uated the ET (or LE) estimation performance of LSMs for
individual sites [Chen et al., 2007a; Grant et al., 2005;
Wang et al., 2011] or for a limited number of vegetation func-
tional types [Hou et al., 2012; Stöckli et al., 2008], although
lots of model-data comparison for many sites have been
conducted in evaluating carbon dynamics models [Keenan

et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010;
Sprintsin et al., 2012]. Another fact is that few existing per-
formances of ET estimation operate across a number of time
scales (diurnal to interannual). This would leave a debate
about the success of ET simulation yearly. The issues men-
tioned above need to be clarified and resolved in order to re-
duce uncertainties in ET estimates at regional or global scales.
[6] In this study, we sought to address and to compare the

performances of the MT equation in CLM and the PM equa-
tion in the Dynamic Land Model (DLM) using measure-
ments of water vapor fluxes with the eddy covariance (EC)
technique at typical sites for major biomes. DLM is an
updated version of EASS. The selected EC towers represent
10 plant functional types across six biomes in three main
climate zones. We tested the equations’ ability at a series of
time scales, including half-hourly, daily, monthly, and sea-
sonal time scales, and then conducted a sensitivity test, so as
to find the uncertainties in performance of these two equations
for their potentials at regional or global scales. By using
existing data set and uncertainty quantification, this research
proves a solid foundation for evaluating equations to estimate
water vapor flux in LSMs across multiple plant functional
types and across a range of time scales.

2. Methods and Materials

2.1. FLUXNET Data

[7] We used the FLUXNET database (http://fluxnet.ornl.
gov/) to calibrate the DLM and validate the water vapor flux
estimates for both LSMs. The data set contains annual files of
half-hourly flux and meteorological data at more than 400 EC
stations across Europe (CarboEurope), America (AmeriFlux
and Fluxnet-Canada), Asia (AisaFlux and ChinaFLUX),
etc. We selected the EC towers according to a criterion in
order to reduce the error derived from the observations by
doing the following steps: (1) the site provides three or more
years of continuous driver and validation data as a part of
publicly accessible standardized level 4 or 3 database; (2) a
“site-year” is accepted for analysis if more than 90% of the
half hours in a year contained nonmissing values for each
of the meteorological data (downwelling solar radiation,
precipitation, wind speed, air temperature, and relative
humidity) and the energy fluxes (net radiation (Rn), ground
heat flux (G), latent heat flux (LE), and sensible heat flux
(H)); and (3) energy balance closure is evaluated for each
site-year according to the ratio of the dependent flux vari-
ables (H + LE) against the independently derived available
energy (Rn � G) for each half hour [Wilson et al., 2002].
The values of the half-hourly energy balance closure ratio
(H + LE)/(Rn � G) deviated from the ideal closure (the value
of 1) since random error exists [Wilson et al., 2002], so we
recorded the number of the ratio within 0.6–1.4 in the day-
time and then accepted a “site-year” when the accumulated
number exceeded 60% of the total numbers of the half hour
during the daytime of the growing season. Finally, 256 site-
years were selected, representing eight biome types across
three main climatic environments (i.e., plant functional types
(PFTs)) [Oleson et al., 2010] at 67 EC sites. We used half
of the sites for calibrating the model and used the others for
the validation. Before that, energy fluxes were corrected for
lack of energy balance closure by partitioning the available
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energy flux into LE and H according to the measured Bowen
ratio [Twine et al., 2000; Ingwersen et al., 2011].
[8] In this study, the representative simulations of 22 EC

towers (Table 1) were selected covering major six biomes
across three climate zones: 8 sites in boreal regions,
12 sites in temperate regions, and 2 sites in tropical
regions. The JP-Tom site in the temperate zone was catego-
rized as a boreal forest ecosystem because of the absence of the
temperate needleleaf deciduous forest in the PFTs we used
[Oleson et al., 2010]. For the same reason, five sites that
have mediterranean style climates were characterized as
in temperate zones.

2.2. Model Description

[9] We estimated water vapor flux using the MT equation
and the PM equation in two land surface models, respec-
tively. One is CLM4 [Bonan et al., 2011; Lawrence et al.,
2011; Oleson et al., 2010] in CESM version 1.0.3. We
revised the modules on two-stream radiative transfer, leaf
photosynthesis, and canopy scaling according to Bonan
et al. [2011]. The other model is DLM, which is an updated
version of EASS by Chen et al. [2007a] including an im-
proved coupled nitrogen-carbon dynamics module and a
vegetation dynamic model with a state-of-art phenology
module. DLM has been coupled to CESM 1.0.3 by replacing
the original photosynthesis and energy flux modules with
EASS-based formulations and optimizing the parameters.
These two LSMs adopt identical calculation approaches in
their biogeophysical modules except for ET estimation,
including the flux-gradient approach in modeling sensible
heat flux, the stomatal resistance model by Ball et al.
[1987], and the photosynthesis model by Farquhar et al.
[1980] and Collatz et al. [1991]. In both of LSMs, leaf
photosynthesis is linked to transpiration through the Ball-
Woodrow-Berry stomatal model. In addition, both models
use the two-leaf upscaling strategy in simulating canopy
photosynthesis, but this strategy is only adapted by DLM
to model energy flux.
[10] We employed the published parameters for CLM, e.g.,

the leaf maximum carboxylation rate at 25°C constrained by

leaf nitrogen [Bonan et al., 2011] and the slope of conduc-
tance-to-photosynthesis relationship [Oleson et al., 2010] in
Table 2, and optimized some PFTs-dependent parameters
about biochemistry and biophysics for DLM (Table 2) be-
cause of its updating. Adopting the parameter optimization al-
gorithm byChen et al. [2011a], we first identified the sensitive
parameters to photosynthesis and energy fluxes by analyzing
the response of parameters by random sampling of parameters
within their possible ranges. Then we applied the ensemble
Kalman filter data model synthesis approach, which encom-
passes both model parameter optimization and data assimila-
tion, to optimize these parameters by minimizing the
difference between observations and predications [Mo et al.,
2008]. Based on a 102 site-years analysis, we combined the
parameters for each PFT to perform a process-based analysis
at the global scale. The key PFTs-dependent parameters in
ET estimates are shown in Table 2 for both LSMs.
[11] We considered that the effects of using the MT and

PM equations in land surface modeling systems could be
assessed by comparing the estimates using CLM and DLM,
respectively. Three simulations were performed to determine
the biases arising for the ET estimation: MT, a control simula-
tion with the MT equation and the one-leaf strategy in water
vapor flux estimation by CLM4, which is revised according
to Bonan et al. [2011] based on the public release code in
CESM1.0.3; PM2L, a simulation with the PM equation and
a two-leaf strategy in carbon and energy fluxes simulation
(default DLM); and PM1L, a simulation in which the two-leaf
strategy has been replaced by a one-leaf strategy in ET estima-
tion and kept the other module unanimous with the default
DLM. The design of PM1L is aimed at distinguishing the
effects of the two canopy upscaling strategies on ET estima-
tion. We only utilized the biogeophysical module for each of
the simulation so that the estimates were unaffected by biases
in biogeochemistry (e.g., carbon-nitrogen coupling) [Bonan
et al., 2011; Lawrence et al., 2011].
2.2.1. Evapotranspiration
[12] 1. Mass transfer equation

In CLM, the water vapor flux is determined by vegetation
and ground specific humidity differences simultaneously in
the case of a vegetated surface and is the sum of the water
vapor transfer from the canopy to the canopy air for the veg-
etation (Eevap

veg ) and from the ground to the canopy air for the
ground (Eevap

grnd) [Oleson et al., 2010]:

ET ¼ Eevap
veg þ Eevap

grnd (1)

[13] The water vapor flux from vegetation is determined by
water vapor flux from wetted leaf and stem area ( f ′′Epot

veg) and

transpiration from the dry leaf surface ( f ′′dryE
pot
veg þWcan=Δ t)

[Oleson et al., 2010]

Eevap
veg ¼ min f ′′Epot

veg; f
′′
dryE

pot
veg þWcan=Δ t

� �
(2)

Epot
veg ¼

ρatm qsatTveg
� qs

� �
rb

(3)

where Epot
veg is the potential evaporation from wet foliage

per unit wetted area, f ′′ and f ′′
dry are fractions of potential

Table 2. Plant Functional Types-Dependent Parameters Used in
CLM and DLM for ET Estimationa

Biome
Type

Climate
Zone

CLM DLM

Vcmax25·f(N) m Vcmax25·f(N) m Ωb

(μmol m�2 s�1) — (μmol m�2 s�1) — —

NEF Temperate 55 6 46.3 5.5 0.55
NEF Boreal 42 6 41.1 7.3 0.55
NDF Boreal 29 6 25.5 7.6 0.68
BEF Tropical 66 9 48.6 9.2 0.63
BEF Temperate 51 9 39.4 6.0 0.63
BDF Temperate 30 9 31.0 5.7 0.70
BDF Boreal 40 9 35.3 8.4 0.70
BDS Temperate 30 9 23.6 5.3 0.70
BDS Boreal 19 9 21.3 8.5 0.70
GRA(C3) Temperate 26 9 25.4 8.3 0.80

aThe terms Vcmax25·f (N),m, andΩ are the leaf maximum carboxylation rate at
25°C constrained by leaf nitrogen, the slope of conductance-to-photosynthesis
relationship, and the foliage clumping index, respectively.

bParameters obtained from Tang et al. [2007].
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evaporation from leaf and through transpiration (see below),
respectively, Wcan/Δt is the water stored on the canopy at
each time step, rb is the leaf boundary layer resistance, qs is
the canopy specific humidity (in kg kg�1) affected by a com-
bination of heat conductance and specific humidity of air,
leaf, and ground, and qsatTveg

is the saturation specific humidity
at the vegetation temperature (Tveg) [Flatau et al., 1992;Oleson
et al., 2010]. Similarly, the expression for the actual specific
humidity at the ground surface (qgrnd) can be substituted to
obtain the water vapor flux from the ground beneath the canopy
(Eevap

grnd) [Lawrence et al., 2011; Oleson et al., 2010]:

Eevap
grnd ¼

ρatmβsoi qgrnd � qs
� �

r′aw þ rlitter
(4)

where βsoi is an empirical function of soil water, r′aw is the
aerodynamic resistance to water vapor transfer between the
ground and the canopy air, and rlitter is a resistance of the plant
litter layer. The value of qgrnd is assumed to be proportional to
the saturation specific humidity at the ground surface temper-
ature, and the proportion is a weighted combination of the
soil water matric potential of the top soil layer and the frac-
tion of ground covered by snow. See Oleson et al. [2010]
for more details.
[14] 2. Penman-Monteith equation

In DLM, canopy-scale ET can be expressed as [Chen et al.,
2007a] follows:

ET ¼ TC þ EC þ ES (5)

where TC is the transpiration from the canopy, EC is the water
vapor from the canopy including evaporation of rain and sub-
limation of snow, and ES is the combination of evaporation
and sublimation from the soil surface.
[15] Each ET component was calculated using the PM

equation expressed in a general form as given below [Chen
et al., 2005a; Chen et al., 2007a; Govind et al., 2009]:

ETi ¼
Δ�Rnî

þ ρatmcp eî
sat � eî

� �
=raî

λv Δþ γ 1þ rcî=raîð Þ½ � δt (6)

where ETi is the amount of water evaporated from the surface
of the leaf or soil (layer i = 1 or 2) or transported from the leaf
over the period δt,Rnî is the net radiation available on the sur-
face of layer i, which is calculated from the shortwave and
longwave radiation absorbed by the surface, ρatm is the den-
sity of moist air, cp is the specific heat of air at a constant
pressure, eî

sat is the saturated water vapor pressure in Pa,
which is calculated from an eighth-order polynomial function
of the temperature of each layer [Flatau et al., 1992], eî is the
actual water vapor pressure, λv is the latent heat of vaporiza-
tion of water, Δ is the slope of the saturated vapor pressure-
temperature curve, γ is the psychrometric constant, rcî is the
sunlit/shaded stomatal or soil resistance to vapor transport,
and raî is the aerodynamic resistance to vapor transport for
layer i. Details can be found in the supplemental material
and Chen et al. [2007a].
2.2.2. Canopy Upscaling
[16] 1. Two-leaf strategy

The DLM calculates canopy evaporation (EC) for sunlit and
shaded parts separately by adopting the sunlit and shaded leaf

area indices (LAIsun and LAIsha). The leaf stratification strat-
egy for EC is [Chen et al., 2007a]

EC ¼ EC sunLAIsun þ EC shaLAIsha (7)

LAIsun ¼ 1� exp �G θð Þ�Ω�LAI=μ½ �
G θð Þ=μ (8)

LAIsha ¼ LAI � LAIsun (9)

where G(θ) is the foliage projection coefficient taken as 0.5
assuming a spherical leaf angle distribution and μ is the
cosine of the solar zenith angle. The clumping index (Ω) char-
acterizes the leaf spatial distribution pattern in terms of the de-
gree of its deviation from the random case. This approach is
also applied to modeling transpiration (TC).
[17] 2. One-leaf strategy

Analogous to equations 8 and 9, CLM separates the canopy
into two parts (LAIsun and LAIsha) in photosynthesis and fur-
ther in stomatal resistance estimations[Oleson et al., 2010]
but adopts the foliage projection area as a function of the de-
parture of leaf angles from a random distribution and ignores
the impact of the clumping index. To combine the effects
from both sunlit and shaded leaves in the ET estimation,
CLM uses a fraction of potential evaporation through transpi-
ration (f ’’dry)[Oleson et al., 2010]in the following:

f ′′dry ¼
f dryrb
LAI

LAIsun
rb þ rsuns

þ LAIsha
rb þ rshas

� �
(10)

where fdry is the fraction of leaves that are dry and depends on
canopy water storage, LAI, and stem area index. rsuns and rshas
are the sunlit and shaded stomatal resistances, respectively,
both obtained using the Ball-Woodrow-Berry conductance
model [Oleson et al., 2010].
[18] In the one-leaf strategy of the PM equation (PM1L), we

replaced the value of fdry with 1.0 and removed rb in equation
10 to gain the one-leaf stomatal resistance from rsuns and rshas .
The water vapor flux was scaled up to the canopy level with
an exponential equation from that of an unshaded leaf [Alton
et al., 2007;Mercado et al., 2007; Sprintsin et al., 2012], which
is analogous to the calculation of half-hourly canopy evapora-
tion and transpiration in the two-leaf strategy (equations 7
and 8). The one-leaf strategy in the EC estimation follows

EC ¼ f scaleEC0 (11)

f scale ¼
1� exp �k�LAIð Þ

k
(12)

where Ec0 is the evaporation from an unshaded leaf and fscale
is a multiplicative factor, in which the canopy photosynthet-
ically active radiation (PAR) extinction coefficient k is taken
to be 0.5. The same approach is also used for TC estimate.

2.3. Model Simulations

[19] Off-line single point simulations with a 30 min time
step were performed using observed meteorological data and
land surface data. The half-hourly meteorological data were
measured at the EC towers, including downwelling solar radia-
tion (in W m�2), precipitation (in mm), wind speed (in m s�1),
air temperature (in K), and relative humidity (in %). Missing
half-hourly values of these key model inputs due to periods
of instrument failure were gap filled by linear interpolation
of gaps less than 2 h. Larger gaps were filled by applying a
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simple interpolation technique of mean diurnal variation [Falge
et al., 2001; Moffat et al., 2007].
[20] For each site, the soil texture (i.e., percentages of sand

and clay) were obtained from the site’s information or pub-
lished articles (Table 1). We adopted soil property data sets
(i.e., soil color and organic matter content at each soil depth)
provided by CESM1.0.3 as a source of land surface data for
the year 2000 [Lawrence et al., 2011; Stöckli et al., 2008].
Soil state variables (e.g., soil temperature and moisture) of
each site for the off-line simulations were initialized by spinning
up for 200 years with repeat years 1982–2001 atmospheric
forcing data set from the National Centers for Environmental
Prediction reanalysis data set [Qian et al., 2006] provided
by NCAR.
[21] Monthly LAI values for each site were extracted from

a global LAI map based on 10 day synthesis VEGETATION
images at 1 km spatial resolution in 2003, which has been

corrected based on a global clumping index map produced
from the multiangle observation of POLDER 1, 2, and 3
sensors [Chen et al., 2005b, 2012; Deng et al., 2006]. We
corrected the monthly LAI for each site according to the
LAImax value (Table 1) supplied by the biological informa-
tion for each site. Although the years for which available
supplementary land surface data are available do not always
correspond to the years being modeled, we assumed that
the data are adequate for our water vapor flux modeling.

2.4. Model Performance

[22] We quantified model performance using statistical anal-
ysis based on half-hourly LE for each model-data pair. Model-
data mismatch was evaluated using bias, root-mean-square
error (RMSE) [Willmott, 1982; Willmott and Matsuura,
2005; Willmott et al., 1985], normalized mean absolute
error (NMAE) [Marlin, 2004], as well as index of agreement

Figure 1. Simulated (color lines) and observed (dark lines and symbols) vegetation and soil temperatures
and soil moistures for two site-years (CA-Ca1 (2006) in the left-hand side and CA-Ojp (2008) in the right-
hand side). (a,b) Daily gross primary production (GPP); (c,d) annually averaged diurnal composites of sim-
ulated vegetation temperature (lines), observed tree foliage temperature (filled circles), and observed air
temperature above the canopy (open circles); (e,f) daily averaged soil temperature in the surface layer
(10 cm depth); and (g,h) daily averaged soil moisture in surface layer (10 cm depth, lines) and daily cumu-
lative precipitation (bars).
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(IA) [Vörösmarty et al., 1996;Willmott, 1982]. The skills were
calculated by the following:

Bias ¼ ∑
n

i¼1
Pi � Oið Þ=n (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Pi � Oið Þ2=n

s
(14)

NMAE ¼ ∑
n

i¼1
Oi � Pij j= nO

� �
(15)

and

IA ¼ 1� ∑
n

i¼1
Pi � Oið Þ2=∑

n

i¼1
Pi � O
		 		þ Oi � O

		 		� �2
(16)

where Pi and Oi denote predicated and observed values, re-
spectively; Ō is the mean of the observed data.
[23] A final characterization of model performance uses the

Taylor diagram [Taylor, 2001], in which a single point
indicate the linear correlation coefficient (R) and the ratio of
the standard deviations between the prognosis and the obser-
vation (σnorm = σp/σo), along with the root-mean-square differ-
ence of the two patterns on a two-dimensional plot. An ideal
model would have a standard deviation ratio of 1.0 and a cor-
relation coefficient of 1.0, i.e., the reference point on the x axis.
Taylor skill (S) is a single value summary of a Taylor diagram
where unity indicates perfect agreement with observations.
More generally, each point for any arbitrary data group
[Schwalm et al., 2010; Taylor, 2001] can be scored as follows:

S ¼ 2 1þ Rð Þ= σnorm þ 1=σnormð Þ2 (17)

3. Results

3.1. Estimates of Important Variables

[24] Key variables used to simulate water vapor flux are
derived from the outputs of other modules in both LSMs, as
the stomatal resistance is based on the Ball-Woodrow-Berry
stomatal model (equation S25 in the supporting information)

in equations 6 and 10, the leaf and soil temperatures (equations
S26–S29) used to calculating saturation specific humidity in
the equations 3 and 4 and saturation vapor pressure in the
equation 6, and the soil moisture distribution (equation
S30) in simulating soil moisture dynamics to limit soil evap-
oration (βsoi in equation 4 and rcî in equation 6). We drew a
comparison between these modeled and measured variables
to clarify a potential module structure effect on the accuracy
of ET estimation. Examples were presented for CA-Ca1 and
CA-Ojp (Figure 1). These two needleleaf evergreen forests
in temperate and boreal regions, respectively, provided
complete observations, including the tree foliage tempera-
ture, in all sites we selected. We only show one preventative
year at each site since the behavior is comparable from year
to year in simulation.
[25] In the Ball-Woodrow-Berry stomatal model (equation

S25), the stomatal resistance is calculated based on the
photosynthetic rate, which derived from Farquhar photo-
synthesis mode in both LSMs. As shown in Figures 1a and
1b, the daily gross primary productions (GPP) simulated by
CLM and DLM were comparable to the observations in both
sites, excepting that both LSMs underestimated the values
at CA-Ojp from August to October in 2008. Annual averaged
diurnal variations of modeled vegetation temperatures of
these two sites were higher than air temperature at midday
(Figures 1c and 1d). The errors of DLM-PM1L and DLM-
PM2L estimations were usually less than 1°C, but CLM errors
far exceeded 2°C. Moreover, all models did not capture the
elevated temperature of tree foliage in the afternoon. DLM-
PM1L and DLM-PM2L adopted the same approach as that
used in CLM to estimate soil temperature (equation S29). As
shown in Figures 1e and 1f, modeled daily averaged soil tem-
peratures (10 cm depth) agreed well with observations during
the warm days for both sites. The models explained 70–96%
and 80–83% of the variance at CA-Cal and CA-Ojp, respec-
tively, from April to October (n = 214 for each site in each
model). However, the soil temperatures were underestimated
during the cold months especially in CA-Ojp. The average
biases of this site were �2.7°C, �5.9°C, and �5.0°C for
MT, PM1L, and PM2L (n = 151 for each model), respectively.

Figure 2. Performance of the three models for the 22 selected tower sites (number 1–22). Statistics in the
Taylor diagram are derived from simulated and observed LE fluxes of site-year: (a) half-hourly and (b)
daily averaged. Color regimes: blue for MT, green for PM1L, and red for PM2L. An ideal model would
have a standard deviation ratio (σnorm) of 1.0 and a correlation coefficient of 1.0 (REF, the reference point).
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We compared daily averaged soil moisture contents at a soil
depth of 10 cm and precipitation at CA-Cal and CA-Ojp
(Figures 1g and 1h). The simulated soil moisture contents in
the surface layer agreed well with the measurements, except-
ing that CLM underestimated soil moisture content in the
middle of the year 2008 at CA-Ojp. Peak values of simulated
and observed soil moisture values were associated with high
daily accumulated precipitation, which indicate that changes
in soil water content in response to rainfall events and drying
were reasonably captured by the three models. Similar results
were also observed in other sites. These comparisons suggest
that with the samemethods in modeling GPP, soil temperature,
and soil moistures, there are no obvious discrepancy in these
key variables used to simulate water vapor flux in all three
models. The differences existed in leaf temperature estimates,

which are calculated during the iterated process in modeling
canopy energy fluxes in three simulation scenarios.

3.2. Model-Data Agreement on Half-Hourly and Daily
Time Scales

[26] Comparisons between modeled and observed LE in
Figure 2 and Table 3 provided an overview of performances
among models on half-hourly and daily time scales. Overall,
the three models had a similar R range within the same
time scale, but PM2L performed better thanMT and PM1Lwith
σnorm closer to 1, smaller RMSE and NMAE, and greater IA.
[27] Half-hourly LEwas well quantified by the three models

for the 22 tower sites. As shown in Figure 2a, model fittings to
the observed data ranged in R values of 0.55–0.93, 0.59–0.93
and 0.61–0.94 for MT, PM1L and PM2L, and in σnorm of

Table 3. Comparison of Model Performance in Estimating Latent Heat Flux (LE) at Half-Hourly and Daily Time Scalesa

Number Site ID

MT PM1L PM2L

Slope RMSE NMAE IA Slope RMSE NMAE IA Slope RMSE NMAE IA

(W m�2) (W m�2) (W m�2)

Half-Hourly
1 CA-Ca1 0.87 34.7 0.69 0.85 0.46 37.4 0.73 0.74 0.61 34.0 0.66 0.81
2 DE-Tha 0.60 38.8 0.59 0.87 0.66 43.8 0.67 0.85 0.73 42.0 0.64 0.87
3 ES-ES1 0.56 42.5 0.60 0.81 0.52 39.2 0.53 0.83 0.70 35.4 0.47 0.88
4 US-Ho1 0.65 38.6 0.79 0.87 0.54 36.3 0.69 0.86 0.70 36.4 0.65 0.89
5 CN-Qia 0.53 65.7 0.54 0.84 0.63 62.5 0.53 0.88 0.85 55.1 0.47 0.93
6 CA-Ojp 0.82 31.1 0.78 0.85 0.40 30.3 0.78 0.75 0.60 31.7 0.71 0.80
7 CA-NS1 0.73 26.2 0.68 0.89 0.56 26.7 0.66 0.86 0.71 27.3 0.61 0.88
8 FI-Hyy 0.66 27.8 0.76 0.86 0.66 25.5 0.62 0.88 0.88 24.2 0.56 0.92
9 JP-Tom 0.38 61.3 0.68 0.73 0.56 57.7 0.64 0.81 0.77 56.2 0.60 0.86
10 ID-Pag 1.04 73.4 0.37 0.95 0.67 81.2 0.39 0.91 0.85 68.7 0.32 0.94
11 TH-Sak 1.11 73.0 0.78 0.89 0.56 57.3 0.58 0.86 0.73 58.4 0.56 0.89
12 FR-Pue 1.36 48.3 0.82 0.88 0.64 33.3 0.62 0.88 0.85 35.8 0.59 0.89
13 IT-Cpz 1.12 40.1 0.90 0.85 0.48 31.6 0.71 0.80 0.64 35.7 0.75 0.81
14 IT-Col 0.88 35.6 0.83 0.87 0.52 33.9 0.74 0.81 0.60 32.8 0.71 0.84
15 US-MOz 0.49 90.8 1.41 0.72 0.33 79.5 1.26 0.70 0.41 80.1 1.25 0.74
16 CA-Oas 1.02 32.0 0.79 0.89 0.61 28.3 0.66 0.86 0.77 37.8 0.63 0.82
17 DK-Sor 0.51 48.2 0.75 0.84 0.81 52.5 0.75 0.88 0.82 44.6 0.64 0.91
18 CA-Mer 0.85 26.5 0.36 0.96 0.67 33.5 0.44 0.93 0.84 26.0 0.35 0.97
19 US-Ivo 0.68 21.1 1.18 0.79 0.37 19.8 1.02 0.70 0.55 20.2 1.01 0.77
20 CA-NS6 0.49 90.8 1.41 0.72 0.33 79.5 1.26 0.70 0.41 80.1 1.25 0.74
21 AT-Neu 0.80 30.9 0.41 0.95 0.73 34.5 0.46 0.93 0.79 37.4 0.46 0.93
22 IE-Dri 0.62 42.3 0.63 0.85 0.53 45.9 0.66 0.80 0.66 41.6 0.57 0.86

Daily
1 CA-Ca1 0.99 16.4 0.42 0.87 0.72 22.1 0.52 0.76 0.83 19.2 0.46 0.82
2 DE-Tha 0.79 20.2 0.43 0.88 0.95 24.9 0.48 0.86 1.00 23.4 0.44 0.88
3 ES-ES1 0.59 24.3 0.43 0.69 0.58 21.6 0.39 0.73 0.69 17.5 0.29 0.82
4 US-Ho1 0.68 15.3 0.42 0.92 0.66 15.9 0.41 0.92 0.76 16.1 0.39 0.93
5 CN-Qia 0.62 32.9 0.40 0.83 0.77 25.6 0.30 0.91 0.98 15.7 0.18 0.97
6 CA-Ojp 0.89 13.4 0.50 0.90 0.60 13.3 0.45 0.86 0.80 11.5 0.38 0.91
7 CA-NS1 0.81 10.7 0.40 0.94 0.80 11.3 0.35 0.93 0.92 11.0 0.34 0.94
8 FI-Hyy 0.79 14.9 0.56 0.90 0.93 12.7 0.41 0.93 1.13 13.0 0.38 0.94
9 JP-Tom 0.25 43.3 0.60 0.60 0.41 42.6 0.58 0.69 0.60 38.2 0.51 0.77
10 ID-Pag 0.31 46.1 0.24 0.68 0.28 68.5 0.43 0.57 0.24 53.0 0.30 0.60
11 TH-Sak 1.02 44.4 0.63 0.59 0.58 21.6 0.30 0.76 0.52 25.3 0.32 0.70
12 FR-Pue 1.59 29.7 0.66 0.85 0.63 17.8 0.40 0.87 0.81 18.6 0.40 0.88
13 IT-Cpz 1.23 21.3 0.65 0.78 0.30 15.3 0.50 0.66 0.40 16.4 0.51 0.71
14 IT-Col 0.95 17.7 0.53 0.87 0.57 16.8 0.52 0.82 0.65 14.8 0.46 0.87
15 US-MOz 0.43 48.0 0.94 0.57 0.43 33.2 0.66 0.69 0.43 36.3 0.73 0.67
16 CA-Oas 1.06 15.0 0.52 0.93 0.77 12.8 0.38 0.93 0.88 12.0 0.36 0.94
17 DK-Sor 0.69 20.8 0.44 0.90 1.04 24.8 0.41 0.91 0.99 19.2 0.33 0.94
18 CA-Mer 0.90 14.1 0.25 0.97 0.69 21.0 0.39 0.91 0.86 16.3 0.28 0.95
19 US-Ivo 0.66 13.1 0.91 0.80 0.42 12.8 0.83 0.74 0.62 12.8 0.83 0.80
20 CA-NS6 0.43 48.0 0.94 0.57 0.43 33.2 0.66 0.69 0.43 36.3 0.73 0.67
21 AT-Neu 0.90 12.1 0.24 0.97 0.74 18.1 0.38 0.92 0.82 17.2 0.34 0.94
22 IE-Dri 0.90 18.7 0.41 0.88 0.67 20.1 0.42 0.83 0.85 15.3 0.31 0.91

aBold numbers show the best of the three models for each diagnostic and site.
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Figure 3
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0.54–1.54, 0.54–1.03, and 0.68–1.11, respectively. Note that
although these models had similar R values, values of σnorm
in PM2L were close to unity, i.e., the reference point (REF
on the x axis). Figure 2 shows a smaller estimation error of
PM2L compared with MT and PM1L. Overall agreements
across the selected 22 sites were better using the PM equation
than using the MT equation, with NMAE and IA values being
close to zero and 1.0, respectively, for PM2L on average.
[28] By averaging half-hourly LE into a daily time scale,

the performance of the PM equation was more robust than
the MT equation (Figure 3). The R2 of daily LE were larger
for the PM equation (PM1L and PM2L) compared to the
MT equation at most forest sites (Figures 3a–3g), varying
from 0.25–0.74 (MT) to 0.34–0.73 (PM1L) and 0.32–0.80
(PM2L), except for two broadleaf evergreen forests located in
the temperate climate zone (FR-Pue and IT-Cpz, Figure 3e).
The LE values of this PFT were overestimated by the MT
equation as indicated by a slope >1. The simulation biases
using the two equations for shrubs (Figures 3h and 3i) and
grasslands (Figure 3j) were similar. A further improvement
in both correlation and variability was achieved using the
two-leaf strategy with the PM equation. The averaged slope
of daily LE for various plant functional types increased from
0.64 (±0.16) (±standard deviation, PM1L) to 0.75 (±0.16)
(PM2L), and the corresponding R2 ranged from 0.61 (±0.16)
to 0.65 (±0.17) (Figure 3). These suggest that the PM equa-
tion with a two-leaf upscaling strategy performed better
than the MT equation.

3.3. Model-Data Agreement at Monthly and Seasonal
Time Scales

[29] To explore the equations’ responses to varying weather
conditions during different seasons, we compared the simu-
lated monthly and seasonal LE variations among the models
for 20 sites in temperate and boreal zones (Table 4). Two
tropical sites (ID-Pag and TH-Sak) were excluded, as ET
shows hardly any seasonality under these climate conditions.
The LE differences were not significant (p > 0.05) by one-
way analysis of variance among three models during the same
season but were significant during the different seasons for each
model. For the four seasons, all three models underestimated
LE in winter and spring seasons (negative bias), and three esti-
mates were variable in summer and fall with both positive and
negative biases. Removing biases of opposite sign, R values
were close to 1.0 with large RMSE during the growing season
for individual models. Moreover, model skill (Figure 4) and
regression analysis (Table 4) show that PM2L performed well
for summer (R = 0.81(±0.11)) and fall (R = 0.72 (±0.12))
across the 20 sites, while MT was better than PM2L for winter
(R = 0.44 (±0.22)) and spring (R = 0.72 (±0.17)). Overall, all
three models performed well in summer and less well during
the other seasons, indicating that it may be challenging to cap-
ture ET dynamics during the cold season.
[30] Figure 5 compared simulations and observations of

monthly composite diurnal variations. Examples are presented
for each plant functional types. Overall modeled LE captured
the observed diurnal variation within or near the margins of

Table 4. Bias, Correlation Coefficient (R), and Root-Mean-Square Error (RMSE) of Half-hourly Latent Heat Flux (LE) With Respect to
Individual Months and Seasons in Temperate and Boreal Sites

MT PM1L PM2L

Bias R RMSE Bias R RMSE Bias R RMSE

Months/Seasons (W m�2) (W m�2) (W m�2) (W m�2) (W m�2) (W m�2)

Jan. �6.3(±27.6)a 0.38(±0.27) 23.18(±16.61) �4.1(±28.1) 0.32(±0.23) 20.98(±19.56) �3.9(±27.9) 0.33(±0.24) 20.78(±19.38)
Feb. �7.1(±32.9) 0.55(±0.23) 26.70(±20.38) �7.3(±35.1) 0.46(±0.26) 25.68(±25.02) �7.0(±34.5) 0.47(±0.26) 25.08(±24.72)
Mar. �5.4(±44.3) 0.57(±0.25) 35.64(±27.02) �6.8(±45.1) 0.53(±0.26) 34.81(±29.78) �5.3(±44.7) 0.53(±0.26) 34.88(±28.73)
Apr. �2.5(±49.0) 0.70(±0.17) 44.14(±22.53) �9.8(±45.8) 0.65(±0.24) 40.22(±25.22) �6.4(±43.9) 0.66(±0.25) 38.88(±22.82)
May �1.2(±52.3) 0.76(±0.20) 48.72(±19.30) �12.2(±50.5) 0.71(±0.19) 48.81(±18.69) �5.4(±49.8) 0.75(±0.19) 46.98(±18.67)
Mar. �5.4(±44.3) 0.57(±0.25) 35.64(±27.02) �6.8(±45.1) 0.53(±0.26) 34.81(±29.78) �5.3(±44.7) 0.53(±0.26) 34.88(±28.73)
Apr. �2.5(±49.0) 0.70(±0.17) 44.14(±22.53) �9.8(±45.8) 0.65(±0.24) 40.22(±25.22) �6.4(±43.9) 0.66(±0.25) 38.88(±22.82)
May �1.2(±52.3) 0.76(±0.20) 48.72(±19.30) �12.2(±50.5) 0.71(±0.19) 48.81(±18.69) �5.4(±49.8) 0.75(±0.19) 46.98(±18.67)
Jun. �8.2(±67.0) 0.81(±0.07) 60.80(±29.42) �8.0(±53.5) 0.78(±0.09) 52.41(±15.35) 3.7(±53.8) 0.81(±0.09) 52.14(±17.61)
Jul. �0.2(±63.0) 0.81(±0.08) 59.16(±22.75) �14.0(±59.2) 0.76(±0.14) 58.21(±19.73) �1.8(±56.5) 0.83(±0.15) 53.65(±18.33)
Aug. �3.3(±58.2) 0.78(±0.08) 54.44(±23.61) �8.6(±56.4) 0.75(±0.10) 54.00(±21.31) 2.2(±56.3) 0.79(±0.11) 53.29(±19.36)
Sep. �2.5(±50.5) 0.75(±0.09) 46.16(±21.31) �2.9(±43.2) 0.74(±0.12) 40.90(±14.15) 2.7(±42.6) 0.77(±0.12) 40.23(±13.96)
Oct. �6.2(±39.9) 0.63(±0.16) 36.74(±21.37) �2.7(±34.6) 0.64(±0.17) 31.42(±17.35) �0.2(±35.1) 0.68(±0.17) 31.91(±16.48)
Nov. �6.4(±34.2) 0.54(±0.22) 27.72(±21.07) �2.4(±32.2) 0.47(±0.23) 23.70(±22.24) �2.1(±31.2) 0.47(±0.25) 23.93(±20.40)
Dec. �6.7(±27.6) 0.40(±0.27) 22.85(±16.65) �3.2(±27.5) 0.34(±0.25) 21.48(±17.33) �2.7(±30.1) 0.34(±0.26) 23.51(±18.85)
Winterb �6.7(±29.3) 0.44(±0.22) 24.67(±17.21) �4.8(±30.3) 0.35(±0.22) 23.06(±20.31) �4.4(±30.9) 0.35(±0.23) 23.77(±20.24)
Spring �2.2(±48.7) 0.72(±0.17) 43.93(±21.50) �9.6(±47.3) 0.68(±0.18) 42.87(±22.68) �5.7(±46.2) 0.69(±0.19) 41.59(±21.70)
Summer �1.5(±63.0) 0.79(±0.08) 58.68(±24.03) �10.2(±56.5) 0.75(±0.10) 55.24(±17.90) 1.4(±55.6) 0.81(±0.11) 53.34(±17.55)
Fall �5.0(±42.1) 0.70(±0.12) 38.19(±19.63) �2.7(±37.0) 0.71(±0.12) 33.89(±15.63) 0.1(±36.7) 0.72(±0.12) 33.61(±15.00)
All year �3.1(±47.6) 0.77(±0.10) 43.66(±19.62) �6.8(±44.1) 0.75(±0.10) 41.60(±16.80) �2.2(±43.6) 0.78(±0.10) 40.72(±16.17)

aValues in parentheses are ±1 standard deviation.
bWinter is given by December, January, and February with divided 1 year into four seasons.

Figure 3. Comparison of the observed daily averaged latent heat flux (LE) simulated by MT (open symbols, blue lines),
PM1L (gray symbols, green lines), and PM2L (dark symbols, red lines) across the selected 22 sites for different plant func-
tional types: (a,b) needleleaf evergreen forests in temperate and boreal zones; (c) needleleaf deciduous forest in boreal zone;
(d,e) broadleaf evergreen forests in tropical and temperate zones; (f,g) broadleaf deciduous forests in temperate and boreal
zones; (h,i) broadleaf deciduous shrubs in temperate and boreal zones; and ( j) grasslands.
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±1 standard deviation range of the mean observations for most
site-years, except for the US-MOz site (Figure 5f), in which
underestimation by all the three models occurred during the
winter and early spring. The MT equation performance was
variable in seasonal simulation, especially in summer (from
June to August). For instance, for some boreal forest sites
(FI-Hyy and DK-Sor), it underestimated LE by 30% on aver-
age (Figures 5c and 5g), while it overestimated LE by 91%
on average for a tropical climate site (TH-Sak, Figure 5d)
and two sites in mediterranean climate zones (FR-Pue and
US-MOz, Figures 5e and 5f). LE modeled by the PM equa-
tions (PM1L and PM2L) was quite consistent with measure-
ments without obvious bias for all the EC sites during the
warm seasons. Linear regression analyses of the diurnal com-
posites for these site-years showed that the values of R2 were
0.57–0.95 and 0.60–0.96 for PM1L and PM2L, respectively,
and the corresponding RMSE were 10.7–54.3 W m�2 and
6.9–50.6 W m�2. Systematic biases as a result of using PM1L
were found for most of the 10 sites with the one-leaf strategy
generally underestimating LE around midday in the warm sea-
sons (Figure 5).

3.4. Dominant Factors in ET Estimation Approaches

[31] To explore the further reasons that induced the dif-
ferences among the ET estimations mentioned above, we
conducted a set of sensitivity tests and assessed them as er-
rors. Table 5 shows that the ET estimations varied within
12% of their base values when the parameters in each of
these models increased or decreased by 20%.
[32] The relative differences change by 6% to 12% with

the slope of conductance-to-photosynthesis relationship (m,
equation S25) was found for all of the three models. This

PFTs-dependent factor is a constant and affects stomatal con-
ductance in canopy transpiration and evaporation simulations
(equations 2 and 6) by adopting the Ball-Woodrow-Berry
conductance model in both of the two land surface models
[Chen et al., 2007a; Oleson et al., 2010]. LAI is another sen-
sitive factor in ET estimation. Increasing or decreasing it by
20% altered ET by ~5% on average (Table 5), with the
increase mainly in canopy transpiration (data not shown).
In general, modifying other parameters in the land surface
models, such as maximum rate of carboxylation (Vcmax,
equation S19) for net photosynthesis and then for gs, albedo
(α, equations S8–S11), and friction velocity (u*, equation S2)
for aerodynamic resistance of canopy, caused ET to change
in the same direction for the three models. Moreover, our test
(Table 5) shows that there was little sensitivity of ET to varia-
tion in the clumping index (Ω). It is noteworthy that an in-
crease or decrease of albedo by 20% changed the relative
differences between the base values and three models by
�3.0 to 3.1% (Table 5), even though the albedo was consid-
ered in the MT equation indirectly by effecting rsuns and rshas
in equation 10. Given the direct beam albedo and diffuse
albedo in MT, radiative transfer within vegetative canopies
was calculated from the two-stream approximation [Sellers,
1985]. As a part of the solutions, the photosynthetically active
radiation absorbed by the vegetation was used to estimate the
light-limited rate of carboxylation by the Farquhar’s photosyn-
thesis model and then the stomatal resistances of the sunlit
and shaded leaves ( rsuns and rshas ) by the Ball-Woodrow-
Berry conductancemodel. The values ofrsuns andrshas were used
in equation 10 to estimate ET based on the MT equation
[Oleson et al., 2010].
[33] Furthermore, we quantified the simulated differences

in annual ET for each modeling test by normalizing the
PM2L results. As shown in Table 5, all of the 10 cases, in-
cluding the increase and decrease of input variables or pa-
rameters by 20%, changed in the same direction for PM1L
with a relative error of around �18%, but for MT, relative
errors were quite variable with a relative span from �3.9%
to 2.4%. These results suggest that changes in parameters
or input variables within 20% of their initial values can re-
duce the difference between the results of using the MT
and PM equations but not for that between the one-leaf and
two-leaf upscaling strategies both using the PM equation.

4. Discussion

4.1. Effects of Model Structure on ET Estimates

[34] The differences of ET estimate between these two
LSMs were not indirectly caused by their uncertainties, be-
cause the same methods were adopted in each model to com-
puter key variables for ET calculation, and the comparisons
did not show systematic errors for model ET-sensitive variables
(Figures 1a, 1b, and 1e–1h), though CLM overestimated the
canopy temperature during the daytime and underestimated
the value at nighttime (Figures 1c and 1d) for each site-year.
We also found that for some sites, e.g., CA-Ca1 (Figure 5a),
the monthly averaged diurnal composites of LE modeled by
the MT equation were close to the observations (Figure 5)
or even better than that by the PM equation. One possible rea-
son for this is that the errors stemmed from the biases in simu-
lated leaf temperature would be compensated by parameters

Figure 4. Boxplots of Taylor skill (S) for half-hourly LE by
models and seasons across the selected 20 sites in temperate
and boreal regions. Panels show interquartile range (box),
mean (square), median (solid line), range (whiskers), and
outliers (cross). Colors indicate models: blue for MT, green
for PM1L, and red for PM2L. Models and seasons sorted
by the median Taylor skill.
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adjustment during the energy fluxes calculation. As described
by Bonan et al. [2011] and Chen et al. [2010a], a revision of
model parameters could reduce the errors caused by model
structure and the improved carbon and energy fluxes estima-
tion. A second possible cause is the structure of iterated process
inmodeling canopy energy fluxes. Based on these analyses, we
believe that the errors in ET estimated by MT, PM1L, and
PM2L are not mainly caused by the biases in the simulated
ET-sensitive variables in CLM and DLM.
[35] There are two structural differences among the MT,

PM1L, and PM2L models: (i) which upscaling strategy from
leaf to canopy is adopted (i.e., one-leaf or two-leaf strategy)
and (ii) whether the model separately calculate the net radia-
tion at the interface between canopy and soil (Rnî in equitation
6). It is obvious that the variance in half-hourly and daily ET
explained by the two-leaf strategy is better than that by the

one-leaf strategy using the same PM equation (Figures 2, 3,
and 5 and Tables 3 and 4). This is because the latter ignores
a large contribution of diffuse PAR to the shaded leaves,
which is more efficiently absorbed by the canopy for photo-
synthesis than direct PAR [Dai et al., 2004; Sprintsin et al.,
2012]. Underestimation was also found in water vapor flux
simulation by the MT equation with one-leaf strategy in
CLM, but only for several PFTs (Figures 3a, 3c, and 3g).
The other structural difference is the Rnî . This variable is
adopted by the PM equation (equation 6) but not employed
by the MT equation (equations 3 and 4), which could explain
the sensitivity difference of albedo between the two ET equa-
tions in Table 5. Using an improved model base on the PM
equation to simulate soil evaporation and plant transpiration
in a crop field, Gao et al. [2013] also found that the model
was extremely sensitive to the radiation captured by crop. In

Figure 5. Monthly averaged diurnal composites of observed latent heat flux (dark lines) and simulated by
MT (blue lines), PM1L (green lines), and PM2L (red lines) at sites representing each plant functional type:
(a, b) needleleaf evergreen forests in temperate and boreal zones; (c) needleleaf deciduous forest in boreal
zone; (d, e) broadleaf evergreen forests in tropical and temperate zones; (f, g) broadleaf deciduous forests in
temperate and boreal zones; (h, i) broadleaf deciduous shrubs in temperate and boreal zones; and (j) grass-
lands. The gray bars indicate ±1 standard deviation of the averaged observations.
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the ET process, solar radiation proves the energy to change
the state of the molecules of water on leaf/soil surface from
liquid to vapor and control ET combined with the ambient
temperate [Allen et al., 1998]. In general, increasing radiation
loading on the leaf surface results in an increase in transpira-
tion [Phyo and Chung, 2013], partly due to an increase in sto-
matal conductance [Hetherington andWoodward, 2003], and
the difference between the rate of transpiration and the rate of
production of water vapor inside the leaf by absorbed radia-
tion controls the water potential of the epidermis in the leaf
[Pieruschka et al., 2010]. Therefore, ignoring the impacts of
solar radiation captured by leaf/soil will lead to errors in the
estimates of water vapor fluxes. However, this could not be
an important cause leading to the different performances
between these two equations (MT and PM) in the two
LSMs, because we did not find a systematic model bias in
all the site-years simulations.

4.2. Seasonal Uncertainties in Model Performance

[36] The simulated ET with the MT equation has larger
biases than with the PM equation (larger RMSE and σnorm,

Table 3 and Figure 2), especially for FI-Hyy, JP-Tom, FR-
Pue and IT-Cpz. Table 6 shows that the daytime ET estima-
tions by the MT equation during warm and wet seasons were
almost equivalent to that during the whole year in IT-Cpz or
even higher in FR-Pue, but the modeled values were 29%
and 14% lower than the measurements in FI-Hyy and JP-
Tom fromMay to October, respectively. A further exploration
for the MT equation revealed that more water was lost as a re-
sult of canopy transpiration for these sites, which was ~10%
high in warm and wet seasons compared with that in whole
year around. It is similar to PM1L and PM2L, but the contribu-
tion of transpiration was ~6% high (Table 6). This result is
consistent with our analysis results shown in Table 4. These
ET estimation errors using the MT equation in CLM are
expected to be stemmed from biases in calculations of transpi-
ration, stomatal conductance, and photosynthesis (Table 5).
The water vapor flux contributed from transpiration was rela-
tively low during other seasons for all three models (Table 6).
[37] Many studies reported that the stomatal conductance

and photosynthesis are changed with seasons or phenology.
Zhang et al. [2009] estimated that the slope between net

Table 6. Total Evaportranspiration (ET, mm H2O yr�1) and Relative Contribution of Transpiration From Vegetation (TC/ET) During the
Daytime for the Whole Year and Seasons

MT PM1L PM2L

Number and Site ID Year/Seasons Observed ET ET TC/ET ET TC/ET ET TC/ET

8 FI-Hyy Whole year course 264.6b 189.9(�0.28)c 0.68 212.0(�0.20) 0.70 268.5(0.01) 0.71
Warm and wet seasonsa 239.1 170.3(�0.29) 0.74 202.9(�0.15) 0.72 255.8(0.07) 0.74

Other seasons 25.5 19.6(�0.23) 0.15 9.1(�0.64) 0.18 12.7(�0.50) 0.20
9 JP-Tom Whole year course 330.3 291.0(�0.12) 0.40 317.8(�0.04) 0.57 359.4(0.09) 0.54

Warm and wet seasons 259.8 222.5(�0.14) 0.52 277.4(0.07) 0.64 285.5(0.10) 0.65
Other seasons 70.5 68.5(�0.03) 0.01 40.4(�0.43) 0.07 73.9(0.05) 0.09

12 FR-Pue Whole year course 399.0 621.7(0.56) 0.61 398.9(0.00) 0.48 408.0(0.02) 0.52
Warm and wet seasons 271.9 473.9(0.74) 0.70 269.4(�0.01) 0.54 279.2(0.03) 0.58

Other seasons 127.1 147.8(0.16) 0.34 129.5(0.02) 0.36 128.8(0.01) 0.39
13 IT-Cpz Whole year course 317.5 510.3(0.61) 0.75 271.3(�0.15) 0.60 357.4(0.13) 0.64

Warm and wet seasons 218.2 302.6(0.63) 0.85 185.2(�0.15) 0.66 247.2(0.13) 0.71
Other seasons 99.3 207.7(1.09) 0.57 86.1(�0.13) 0.44 110.2(0.11) 0.46

aThe warm and wet seasons involve summer and fall (from May to October). Two months are advanced for IT-Cpz because of its mediterranean climate.
bThe value represents the water vapor flux with default parameters as shown in Table 5.
cThe value in brackets is the difference relative to the observed ET.

Table 5. Sensitivity of Site-Averaged Evapotranspiration (ET, mm H2O yr�1) to Errors in the Major Input Parameters of Leaf Area Index
(LAI), Foliage Clumping Index (Ω), Slope of Conductance-to-Photosynthesis Relationship (m) for Stomatal Conductance, Maximum Rate
of Carboxylation (Vcmax) for Photosynthesis, Albedo (α), and Friction Velocity (u*) for Aerodynamic Resistance of Canopy

MT PM1L PM2L MT-Base PM1L-Base PM2L-Base MT-PM2L PM1L-PM2L

Basea 436.9(±284.7)b 354.1(±197.5) 435.6(±266.8) — — — 1.3(0.3%) �81.5(�18.7%)
1.2 ×LAI 447.8(±333.3) 373.6(±215.8) 451.9(±280.8) 10.8(2.5%)c 19.5(5.5%) 16.3(3.7%) �4.1(�0.9%) �78.3(�17.3%)
0.8 ×LAI 422.8(±316.4) 336.3(±193.4) 420.3(±267.3) �14.1(�3.2%) �17.8(�5.0%) �15.4(�3.5%) 2.6(0.6%) �84.0(�20.0%)
1.2 ×Ω — 354.8(±205.2) 436.0(±276.6) — 0.7(0.2%) 0.4(0.1%) — �81.2(�18.6%)
0.8 ×Ω — 353.5(±201.4) 432.8(±268.5) — �0.6(�0.2%) �2.8(�0.6%) — �79.3(�18.3%)
1.2 ×m 479.6(±360.2) 376.9(±218.7) 468.4(±301.7) 42.7(9.8%) 22.7(6.4%) 32.8(7.5%) 11.2(2.4%) �91.5(�19.5%)
0.8 ×m 386.1(±277.3) 330.2(±182.9) 388.6(±235.0) �50.9(�11.6%) �23.9(�6.7%) �47.0(�10.8%) �2.5(�0.6%) �58.4(�15.0%)
1.2 ×Vcmax 438.2(±328.4) 369.7(±211.4) 456.0(±273.0) 1.3(0.3%) 15.6(4.4%) 20.3(4.7%) �17.7(�3.9%) �86.3(�18.9%)
0.8 ×Vcmax 411.7(±306.8) 334.5(±190.2) 422.3(±260.2) �25.3(�5.8%) �19.7(�5.6%) �13.3(�3.1%) �10.7(�2.5%) �87.9(�20.8%)
1.2 × α 432.6(±322.8) 344.9(±198.6) 422.6(±267.4) �4.3(�1.0%) �9.2(�2.6%) �13.0(�3.0%) 10.0(2.4%) �77.7(�18.4%)
0.8 × α 439.1(±327.0) 362.9(±206.5) 449.0(±280.3) 2.2(0.5%) 8.8(2.5%) 13.3(3.1%) �9.8(�2.2%) �86.1(�19.2%)
1.2 × u* 446.1(±319.6) 358.3(±206.2) 442.3(±262.3) 9.1(2.1%) 4.2(1.2%) 6.7(1.5%) 3.8(0.8%) �84.0(�19.0%)
0.8 × u* 424.0(±315.0) 348.9(±197.5) 426.1(±264.0) �13.0(�3.0%) �5.2(�1.5%) �9.5(�2.2%) �2.1(�0.5%) �77.2(�18.1%)

aThe base values are calculated based on observed latent heat flux (LE) from eddy covariance tower measurements: ET = LE/λ. We assume a latent heat of
vaporization (λ) of 2.501 × 106 J kg�1 [Oleson et al., 2010].

bValues in parentheses are standard deviations.
cThe percentage in brackets is the difference relative to the base value.
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assimilation rate (An) and stomatal conductance (gs) for four
broadleaf species significantly increased in the dry season
compared with the wet season (Figure 4), indicating increased
photosynthetic water-use efficiency. Gratani et al. [2000]
also reported that the daily gs/An change of a forest in the
Mediterranean Basin could be described by a linear equation
with negative slope over time (Figure 2), which was very close
to 80 mol μmol�1 as the leaves expanded (February) but less
than a half at midyear. Using a top-down approach based on
a double-source canopy model and eddy flux measurements,
Ono et al. [2013] estimated the canopy-scale relationship be-
tween gross photosynthesis adjusted for environmental vari-
ables and gs for a paddy rice canopy throughout the growing
season. They found that m appeared to vary seasonally with
the ontogenic changes. Similarly, many studies have found
that m could be higher in growth or young stages, e.g., in tem-
perate deciduous broadleaf trees [Kosugi et al., 2003], tropical
rainforest [Kosugi et al., 2012], boreal forest [Stokes et al.,
2010], and grassland [Wolf et al., 2006], since there is a
more rapid increase in gs compared with the An during periods
of leaf expansion [England and Attiwill, 2011; Ono et al.,
2013]. However, two sensitive parameters m and Vcmax are
empirical variables in the LSMs, which could not well capture
temporal changes in gs and An. Unrobustly, seasonal perfor-
mance in ET simulation was also reported by Schwalm et al.
[2010] by comparing monthly CO2 exchange from 44 EC
towers using 22 terrestrial biosphere models. It means that
even these key parameters have been optimized well, the dis-
crepancies between modeled seasonal photosynthesis and ET
and observations could not be removed if the seasonal or phe-
nology impacts are not reasonably considered by the models.
Many efforts have been made to quantify the seasonal varia-
tions of some key parameters in gs and An in calculation.
In the parameterization in CLM4 for each ecoregion based on
3125 inventory plots measured during 2001 to 2006 in
Oregon forests, Hudiburg et al. [2013] modeled monthly
GPP that fell within the observed range of uncertainty for the
majority of the year but still could not capture the seasonal re-
sponse of Vcmax to temperature, precipitation, and day length.
Moreover, the seasonal variation of Vcmax at the ecosystem
scale was not sufficiently explained by upscaling with LAI
[Groenendijk et al., 2011]. By changing the parameter m
in the stomatal conductance calculation equation, Zhu et al.
[2011] tested the observed responses of m to simulated net
assimilation and transpiration rates. Their results suggest that
more efforts are needed to adjust the values of some key param-
eters varying seasonally, such asm in land surface models in or-
der to extend its application to regional or global scales. Bonan
et al. [2011] and Chen et al. [2010a] pointed out that the uncer-
tainties in land surface model estimations due to errors in input
parameters would be the same as those from different struc-
tures. Our results agree with it, and we consider that the errors
in modeling water vapor flux induced by the key parameters
would be larger than those from the structures of ET equation.
[38] More than the model structures and variables, the

uncertainties in seasonal ET estimates are also contributed
from the EC data, which have gaps especially in the cold sea-
son. Even we have corrected energy fluxes according to the
measured Bowen ratio (section 2.1). Following the linear re-
gression slope from the ordinary least squares (OLSs) rela-
tionship between the half-hourly values of LE + H against
Rn � G and energy balance ratio (EBR), i.e., Σ(LE + H)/

Σ(Rn � G), described by Wilson et al. [2002], we evaluated
the energy balance closure of measurements over each season
for 20 temperate and boreal sites. The results showed that the
R2 values of OLSs increased from winter to summer months,
with an average of about 0.67 in January and February and
0.87 in July and August. The mean EBR is lower in winter
(0.79) than in summer (0.84). It was associated with biophys-
ical characteristics, where the sampling error is generally
greater in open canopies or at topographically complex sites
[Misson et al., 2007; Scott et al., 2004; Scott, 2010; Stoy
et al., 2013; Sun et al., 2010]. Regarding the uncertainty
resulting from spatial heterogeneity, an approach to deal with
this issue is to couple a LSM with a footprint model, such as
SAFE-f (Simple Analytical Footprint model on Eulerian coor-
dinates for flux), in which the model considers the effects from
land surface heterogeneity around the EC tower [Chen et al.,
2009]. This method has been applied to assessing carbon
budget estimation by combining EC flux and remote sensing
at landscape to regional scales and to characterize the spatial
representativeness of EC measurements [Chen et al., 2010b,
2011b]. However, its applications in land surface modeling
are few. The combination of these two methods and the
data-model fusion approach [Chen et al., 2010b; Hu et al.,
2009; Kattge et al., 2009] would effectively increase the accu-
racy in upscaled regional flux estimation.

5. Conclusions

[39] By comparing the two commonly used equations
for estimating terrestrial ET in land surface models across
10 PFTs across half-hourly, daily, monthly, and seasonal
scales, our multisite study illustrated that the ET estimated
by the MT equation in CLM has large uncertainties in warm
and wet seasons, especially in deciduous forests. The errors
mainly stemmed from ill parameterization in the stomatal
conductance module. It raises a doubt on the accuracy of sim-
ulated temporal and spatial distribution of ET distribution by
CLM even though the modeled global sum of water vapor
flux was reasonable [Bonan et al., 2011; Shi et al., 2013].
Except for underestimation during cold season, the ET estima-
tion by the PM equation is robust and much better with two-
leaf strategy than with one-leaf strategy. This may attribute
to its structure considering net radiation on both the surfaces
of leaf and soil and the different contributions of diffused
PAR to the shaded leaves compared to direct PAR to the sunlit
leaves. This ET equations comparison study suggested the
LSM community that the PM equation with a two-leaf canopy
upscaling strategy is a better choice in ET simulation. One of
future work directions is a need to improve seasonal or phenol-
ogy variations of key parameters in stomatal conductance cal-
culation to reduce the uncertainties in simulated ET in LSMs.
Another thing worthy to do is to extend the calibration of the
PM equation in DLM for cropland to expand its application
to large heterogeneous of regions.
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