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It is challenging to perform spatial geochemical modelling due to the spatial heterogeneity features of
geochemical variables. Meanwhile, high quality geochemical maps are needed for better environmental
management. Soil organic C (SOC) distribution maps are required for improvements in soil management
and for the estimation of C stocks at regional scales. This study investigates the use of a geographically
weighted regression (GWR) method for the spatial modelling of SOC in Ireland. A total of 1310 samples
of SOC data were extracted from the National Soil Database of Ireland. Environmental factors of rainfall,
land cover and soil type were investigated and included as the independent variables to establish the
GWR model. The GWR provided comparable and reasonable results with the other chosen methods of
ordinary kriging (OK), inverse distance weighted (IDW) and multiple linear regression (MLR). The SOC
map produced using the GWR model showed clear spatial patterns influenced by environmental factors
and the smoothing effect of spatial interpolation was reduced. This study has demonstrated that GWR
provides a promising method for spatial geochemical modelling of SOC and potentially other geochemical
parameters.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It is challenging to perform spatial geochemical modelling due
to the spatial heterogeneity feature of geochemical variables
caused by multiple environmental factors such as rock type and
soil type. Jordan et al. (2007) attempted to separate the influences
of various factors and investigated the probability features of sur-
face soil geochemistry in Northern Ireland, and acknowledged that
‘‘it remains a challenging task in geochemistry to separate all the
factors and to model their influence at the regional scale.’’

One of the important geochemical variables is soil organic C
(SOC) which is not only related to soil fertility (Tisdale et al.,
1995) but also plays an important role in climate change. Small
changes in SOC may have a major impact on CO2 in the atmosphere
(Lal, 2003). High quality maps of SOC are needed not only to pro-
vide guidance for practical soil management but also to enable
more accurate calculations of C stocks. With the development of
computer software packages, especially integration in a geograph-
ical information system, spatial interpolation techniques such as
kriging (Webster and Oliver, 2007) and inverse distance weighted
(IDW) are widely applied in soil geochemistry for the production of
spatial distribution maps of soil parameters (Zhang, 2006). One of
the main features of the traditionally used spatial interpolation
ll rights reserved.
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techniques is that they generally focus on their mathematical
power (e.g., how to keep the estimation errors to a minimum),
but seldom include environmental factors in the modelling.

Many studies have shown relationships between environmental
factors and soil properties (Odeh et al., 1995; McKenzie and Ryan,
1999). More specifically, some studies have tried to map SOC dis-
tribution using secondary information such as land use, soil type,
lithology, topography and other environmental factors (Mueller
and Pierce, 2003; D’Acqui et al., 2007; Rawlins et al., 2009; Schulp
and Verburg, 2009).

Developments in kriging analyses have tried to incorporate aux-
iliary information such as co-kriging (McBratney and Webster,
1983; Odeh et al., 1995) and regression kriging for spatial interpo-
lation for soil parameters (Odeh et al., 1995; Rawlins et al., 2009).
Another possible way of incorporating environmental factors for
spatial interpolation is to use the geographically weighted regres-
sion method (GWR) (Fotheringham et al., 2002) which is receiving
increased attention. Strong spatial variation becomes a challenge
for the estimation of SOC at un-sampled sites, e.g., a function at
the global scale of a study area is not sufficient to address the spa-
tially varying relationships at the local level. A GWR approach is
useful when the assumption of spatial stationarity of the relation-
ship between dependent variable and independent variables is in-
valid, which is demonstrated by Osborne et al. (2007) on species
distribution. Scull (2010) showed that GWR performed better than
the ordinary multiple linear regression (MLR) for the prediction of
al modelling: Use of geographically weighted regression for mapping soil
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several surface soil properties including SOC in the USA, using a cli-
mate parameter (precipitation or temperature) as the independent
variable. Recently, Mishra et al. (2010) applied the GWR method
for prediction of spatial variation of the SOC pool at a regional scale
in the Midwestern USA.

The technique of GWR is a variant of MLR with a weight func-
tion included, which only takes the samples within a defined
neighbourhood (band width or number of samples) into calcula-
tion and also may weigh the contributions of closer samples more
than those farther away. In this case, it is possible to have separate
input samples and output parameters from each case under calcu-
lation, honouring the feature of spatially varying relationships at
the local level.

This paper explores the application of GWR for spatial
geochemical modelling using SOC in Ireland as an example, and
tries to demonstrate the procedures in an easy and concise way.
To assess the performance of GWR, three other methods of ordin-
ary kriging (OK), IDW and MLR were chosen for comparison. The
OK method was chosen as it was previously used for production
of SOC map using the National Soil Database of Ireland (Zhang
et al., 2008a,b). The IDW is popularly used in environmental geo-
chemistry and easy to implement. The reason why MLR was cho-
sen was because of its ‘‘global’’ feature in comparison with GWR.
It should be noted that this paper does not attempt to find out
the best spatial modelling or interpolation methods which could
be an endless task and beyond the scope of this study. The focus
of this study was to explore the application of the GWR method
for spatial geochemical modelling.

The objectives of this study included: (1) to integrate environ-
mental variables in the GWR model for spatial geochemical model-
ling of SOC in Ireland; (2) to assess the performance of GWR; and
(3) to discuss the features and uses of the GWR method in spatial
geochemical modelling.
2. Materials and methods

2.1. Sampling and analysis for SOC

The Republic of Ireland has a total land area of 71,000 km2. It is
traditionally an agricultural country with 66.4% of the total land
cover being used for agriculture and 18.69% being peat bogs and
wetlands (EPA, 2009). Blanket peat is distributed in the mountain
areas mainly along the western coastline of Ireland. There is also
basin peat located in the lowland areas, mainly in the central part
of midland Ireland.

The SOC data were retrieved from the National Soil Database of
Ireland (Fay and Zhang, 2007). A total of 1310 surface (0–10 cm)
soil samples were collected from predetermined positions based
on a grid sampling scheme at a density of two samples per
100 km2 unless the predetermined location was not accessible
(see Fig. 2). A total of 1179 samples (90% of the total number) were
randomly selected from the database for spatial analyses, and the
remaining 131 samples were reserved for evaluation of the perfor-
mances of the methods. Detailed information for sampling and SOC
analyses is available in Fay et al. (2007).
2.2. Generation of rainfall map of Ireland

The map of the 30-a average annual rainfall of Ireland
(1971–2000) was created for this study using a regression model
(Sweeney et al., 2003) plus IDW interpolation for the regression
residuals.

A system of 500 m � 500 m grid was created using the coastline
of Ireland, and this standard grid system formed the basis for raster
mapping in this study. Each grid point received an elevation value
Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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from the nearest point of SRTM (Shuttle Radar Topography Mis-
sion, V. 4, Jarvis et al., 2008) data of Ireland using the spatial join
function of a GIS. The spatial resolution of 500 m used this study
was considered good enough to reveal the spatial patterns of vari-
ables under study.

The raw point data of rainfall were acquired from Met Éireann
(191 stations for Republic of Ireland) and Met Office of the UK
(49 stations for Northern Ireland). To estimate the rainfall value
for each of the standard grid points, a regression model including
trend surface and elevation was adopted. It was found that the
2nd order polynomial regression equation (including variables x,
y, xy, x2, y2) and elevation was most applicable for the available
data in Ireland (Sweeney et al., 2003). A stepwise regression anal-
yses showed that all the variables were significant (p < 0.001, ex-
cept for xy at p = 0.023). Due to a problem of collinearity, the
variable xy was excluded from the regression model, and the fol-
lowing function was fitted and applied for the production of the
trend map of rainfall in Ireland during 1971 and 2000:

Rainfall ¼ 2432:713� 8:859x� 3:128yþ 0:014x2 þ 0:008y2

þ 2:092z ð1Þ

where x is the easting coordinate in km, y is the northing coordinate
in km, and z is the elevation above the sea level in m. The adjusted
R-square for this regression analysis was 0.756. It is noted that this
regression model captured the ‘‘trend’’ of rainfall. Other issues such
as rainfall shadow cannot be well modelled in this way. Therefore,
the residuals of the regression model for the 240 locations were uti-
lized to create the residual map based on the IDW method with 12
points as the neighbourhood and the power of 1. The ‘‘trend’’ map
and the ‘‘residual’’ map were combined using the ‘‘plus’’ calculation
for each grid point to produce the final 30-a average annual rainfall
map of Ireland during 1971 and 2000 for use in this study.

2.3. GWR and MLR methods

The regression analysis is used to model the relationship be-
tween one variable and one or more other variables. Based on
Fotheringham et al. (2002), an ordinary (global) MLR model can
be written as:

yi ¼ b0 þ
X

k

bkxik þ ei ð2Þ

where y is the dependent variable with the value yi at the ith loca-
tion, xk are the independent variables with the value xik at the ith
location, k is the number of independent variables, b0 and bk are
the parameters to be estimated, and ei is an error term.

The GWR takes the spatial locations of samples into consider-
ation, permitting the estimated parameters to vary locally, thus
better reflecting the spatially varying relationships between the
dependent and independent variables. A GWR model can be writ-
ten as (Fotheringham et al., 2002):

yi ¼ b0ðui;v iÞ þ
X

k

bkðui;v iÞxik þ ei ð3Þ

where (ui, vi) denotes the coordinates of the ith location, and b0(ui,
vi) and bk(ui, vi) are the estimated parameters for the ith location,
whose values vary with the location. Therefore, compared with
the ordinary regression model, the GWR is a local regression model,
honouring local variation using spatially varying estimated
parameters.

The parameters for the ordinary (global) MLR model can be esti-
mated based on ordinary least square (OLS) as the following matrix
format (Fotheringham et al., 2002):

b̂ ¼ ðXT XÞ�1XT Y ð4Þ
al modelling: Use of geographically weighted regression for mapping soil
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where X is the matrix formed by the values of variables xk and Y is
the vector formed by values of variable y.

For the GWR, the parameters can be estimated using a weight-
ing function (Fotheringham et al., 2002):

b̂ðui;v iÞ ¼ ðXT Wðui; v iÞXÞ�1XT Wðui;v iÞY ð5Þ

where W(ui, vi) are the weights which are chosen so that those
observations near the point under study have more influence on
the results than those farther away. The weight function for GWR
in this study was selected as the adaptive spatial kernel type (Foth-
eringham et al., 2002), so that the spatial extent for samples in-
cluded in the GWR varied based on sample density. This was
useful for locations in the coastal and border areas where there
was a border effect (without samples located outside the study
area). The distance band width was determined using the Akaike
Information Criterion (AICc) which was effective in finding the opti-
mal band width in GWR (Fotheringham et al., 2002). The optimal
number of samples was 194 for the dataset with 1179 samples,
and it was 233 for the whole dataset. When the band width was
too short or the number of samples was too few, one of the main
problems for GWR called local multicollinearity became unavoid-
able, making the GWR results unreliable. The multicollinearity is a
well-known problem in regression analyses, which happens when
there is redundant information among two or more independent
variables. In GWR, the dummy variables for a categorical variable
(e.g., soil type and land cover) could become ‘‘redundant’’ locally
when the categories are spatially clustered in some areas with some
categories missing in other areas. A suggestion would be to avoid
using categorical variables that have values spatially clustered, or
to combine and reduce the number of categories, or to combine it
with other variables.

2.4. Kriging and IDW methods

Kriging and IDW are perhaps the most popular spatial interpo-
lation methods in environmental applications. Both methods take
neighbouring known samples into consideration, and give different
weights to different samples. The weights for samples in IDW de-
crease with the increase of distances between the known samples
and the point to be estimated, and the rate of decrease is propor-
tional to ‘‘inverse distance’’. The main problems for an IDW are that
the decision for the ‘‘rate’’ of decreasing weight (defined as the
power parameter of distance) and the number of neighbours to
be included is to some extent arbitrary. On the other hand, the
weights in kriging are decided based on the spatial structure
parameters of a variogram which measures the relationships
between squared differences between paired samples and their
distances (Webster and Oliver, 2007). In this study, the OK was in-
cluded as this method was applied previously for the same dataset
(Zhang et al., 2008b).

2.5. Input parameters for GWR

The category variables used in a regression model were re-
placed by dummy variables with the values of either 1 or 0, show-
ing the presence or absence of each category. To avoid the local
multicollinearity problem and to make each category variable
meaningful, it was necessary to simplify the land cover and soil
type data to be used in this study.

The land cover data used in this study were the Coordination of
Information on the Environment (CORINE) Land Cover 2006 data
provided by the Irish Environmental Protection Agency as part of
the EU programme (EPA, 2009). The highest level (level 1) of COR-
INE classification has five classes: artificial surfaces, agricultural
areas, forest and semi-natural areas, wetlands and water bodies.
Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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The 1310 SOC values were classified into the first four classes,
and their differences were tested using analysis of variances (ANO-
VA) following a normal score transformation, which was effective
in pushing the data towards normality via ranking the raw data
and assigning the corresponding normal scores to each of the
raw data values. The four classes were further simplified using a
multiple comparison of Duncan’s method (Duncan, 1955) follow-
ing the test for homogeneity of variances using the Levene’s test,
and classes in the same group were combined into a new category.

The soil type data was acquired via digitization of the Soil Asso-
ciation Map of Ireland (Gardiner and Radford, 1980) by Teagasc,
Ireland. There were a total of 44 soil associations which were sim-
plified to 9 soil types: Podzols, Brown Podzolics, Grey Brown Podz-
olics, Acid Brown Earths, Gleys, Brown Earths, Rendzinas, Lithosols
and Peat (Gardiner and Radford, 1980). The same procedures of
ANOVA and a multiple comparison were performed for the soil
type data for further simplification. It was observed that ‘‘peat’’
was regarded as a separate group in both classifications of land
cover (with the term of ‘‘wetlands’’) and soil type, but their spatial
distributions were different. Since the soil type ‘‘peat’’ was further
combined with other soil types, ‘‘peat’’ or ‘‘non-peat’’ was not sep-
arately treated in this study. Furthermore, harmonizing the ‘‘peat’’
distribution in the two different maps from different sources could
be a challenging task, which is beyond the scope of this study.

Three environmental factors were included in the GWR in this
study: rainfall, land cover and soil type. Rainfall was a scale vari-
able and was used as an independent variable directly. Land cover
classes were simplified into three categories: (1) wetlands, (2) for-
est and semi-natural areas, and (3) the others. Soil type classes
were grouped into two main categories: (1) Podzols, Rendzinas,
Lithosols and peat, (2) the others. Detailed justification for such
grouping is provided later.

Therefore, two dummy variables were needed for land cover,
and one dummy variable was used for soil type. The input param-
eters for GWR were: rainfall, land cover dummy 1, land cover dum-
my 2, and soil type dummy. The 1310 soil samples and all the
500 m grid points were given rainfall values from their nearest grid
points of the rainfall map. They received the values of ‘‘1’’ for land
cover dummy 1 if they were located in wetlands, and ‘‘0’’ other-
wise. The values for land cover dummy 2 were ‘‘1’’ if the points
were located in forest or semi-natural areas, and ‘‘0’’ otherwise.
The values for soil type dummy were ‘‘1’’ if the points were located
in Podzols, Rendzinas, Lithosols or peat areas, and ‘‘0’’ otherwise.
2.6. Data transformation and computer software

To alleviate the problems of non-normality and skewness of the
raw data (Zhang et al., 2008a), a Box–Cox transformation (Box and
Cox, 1962) was applied to SOC data for kriging, GWR and MLR anal-
yses. The transformed data were also used for IDW for consistency.
All the spatial analyses were carried out and all maps were pro-
duced using ArcGIS� (version 10) software, and conventional sta-
tistical analyses were performed using SPSS� (version 18) and
Microsoft Excel� (version 2007). The basic GIS data were acquired
from Ordinance Survey Ireland (OSI).
3. Results and discussion

3.1. SOC in soils of Ireland and its relationships with land cover and soil
type

The basic statistics for SOC in Ireland (n = 1310) are available in
Zhang et al. (2008a). It varied from 1.40% to 55.80%, with a median
value of 7.00%. Meanwhile, the histogram of SOC exhibited two
clear peaks (Fig. 1), indicating two distinct soil types: the mineral
al modelling: Use of geographically weighted regression for mapping soil
ochem.2011.04.014
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Fig. 1. Histogram of SOC in Ireland.
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soils and organic soils (peat) (Zhang et al., 2008a), and implying the
influence of land cover and soil type.

The symbol map for SOC in Ireland (Fig. 2) showed clear spatial
patterns: high values in the west and midland and low values in
the east. Western Ireland, especially along the west coastal areas,
is mountainous with extensive cover of blanket peat. In the mid-
land areas, scattered basin peat exists in the lowland areas. In east-
ern Ireland, soils are mainly mineral where agricultural activities
are more intensive, except for some small areas such as the Wick-
low Mountains (see Fig. 4). The good spatial relationship between
SOC and peat is clearly shown. In this map, the spatial locations of
131 (10% of the total) samples randomly selected for the following
validation of models are shown as crosses.

The influence of land cover and soil type on SOC can be demon-
strated via box-plots (Fig. 3). Wetlands showed the highest SOC
content, followed by forest. For soil type, elevated SOC values were
observed in Lithosols, peat, Podzols and Rendzinas. The high SOC
values in areas of Lithosols and Rendzinas could be related to the
sampling procedure: soils were collected from rock cracks where
it was possible to collect soil samples. There were quite a few out-
liers in several groups, especially in agricultural areas, Acid Brown
Earths, Brown Podzolics, Gleys and Grey Brown Podzols. Mean-
while, those which did not exhibit outliers had quite long box
lengths (wide inter-quartile ranges), such as forest, wetlands,
Lithosols and peat. These features demonstrated the strong varia-
tion and heterogeneity of SOC within each group, causing large
uncertainties in modelling SOC using environmental factors. Such
strong variability of SOC could be related to variation caused by
other environmental factors within each group, the uncertainties
in classification of the samples using maps, as well as possible er-
rors during sampling and laboratory analyses.

While both land cover and soil type showed their influences on
SOC, some of their groups shared similar central tendencies, e.g.,
the medians for agricultural areas and artificial surface groups
were close. To simplify the grouping, ANOVA was applied following
the normal score transformation. Significant differences (p < 0.05)
were found in both land cover groups and soil type groups. Results
of the Levene’s test for homogeneity of variances for land cover
groups and soil type groups were both insignificant (p > 0.05), with
significance values of 0.185 and 0.064, respectively. The multiple
comparison simplified the land cover into three groups with wet-
lands and forest areas in separate groups, and agriculture and arti-
ficial surfaces in the other group (detailed statistical results not
shown here). Soil types were simplified into two main groups, with
peat, Lithosols, Rendzinas and Podzols in one group, and the others
Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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in the other group. Such new grouping results were transformed
into dummy variables for use in GWR. This provides justification
for the input parameters in the GWR described earlier.
3.2. Relationship between SOC and rainfall

The 30-a (1971–2000) annual average rainfall map for Ireland is
shown in Fig. 4. It needs to be mentioned that the recent 30-a aver-
age annual rainfall data were used here for exploration of the sta-
tistical relationship between SOC and rainfall, while rainfall has
been affecting SOC for a much longer period. The rainfall largely re-
flected the topography of Ireland with high values (>1400 mm a�1)
in the mountain areas, mainly along the coastal areas of the west.
In the midland and east (except for the Wicklow Mountains), rain-
fall was relatively low (<1000 mm a�1).

The spatial distribution of rainfall map coincided well with that
of SOC (Fig. 2), both of which had high values along the coastal
areas in the west. However, differences existed in the midland
and SE areas. In the midland lowland areas, there were scattered
patches of basin peat causing high values of SOC where rainfall
was not high. In the SE, intensive agricultural activities and lack
of peat caused the generally low values of SOC, even though rain-
fall was relatively high. Some scattered high SOC values in the SE
and east could also be attributed to scattered peat in elevated
areas. Such spatially varying relationships between SOC and rain-
fall required spatial statistics at the local level, not at the global
scale, making it reasonable to consider the methodology of GWR.

Another factor that could be considered is the elevation (Raw-
lins et al., 2009). Since the generation of the rainfall map of Ireland
already included elevation, only one of them should be considered
in GWR. The Spearman’s correlation coefficients with SOC showed
both were significant at the level of <0.01. The specific coefficients
were 0.348 between rainfall and SOC, and 0.135 between elevation
and SOC. Therefore, rainfall was included in the GWR modelling.
Since the correlation coefficient between SOC and rainfall was still
low, other influencing factors should be included in the regression
model to achieve better results.

Based on the above analyses, the three factors of rainfall, land
cover and soil type were included in the GWR modelling. Other fac-
tors, if found to play an important role on SOC, could also be con-
sidered in future studies. However, there will be an increasing
possibility of multicollinearity when more independent variables
are included in a regression model.
3.3. Comparison of performance of GWR with other methods

To investigate how useful GWR was for SOC spatial interpola-
tion, its performance was compared with OK, IDW and MLR. The
methods chosen for comparison were not supposed to be a com-
plete list of available, advanced or complicated methods, as it
was not the objective of this study to prove that the GWR method
was better than the others. The aim was to determine if the GWR
provided reasonable results, and if so to evaluate its features. The
1179 samples randomly selected from the database were used
for spatial interpolation, and the remaining 131 samples were re-
served for evaluation of the performances of these methods.

As with the whole dataset (Zhang et al., 2008b), a Box–Cox
transformation was performed for the 1179 SOC values. The best
power value for the 1179 values was �0.372, which was similar
to the value of �0.376 for the whole dataset (Fay et al., 2007).
For consistency, the power of �0.376 was also applied in this
study. Specific variogram parameters were studied for the 1179
samples, and it was found that they were similar to the parameters
for the whole dataset (Zhang et al., 2008b). For consistency, the
variogram parameters used for the whole data set were applied
al modelling: Use of geographically weighted regression for mapping soil
ochem.2011.04.014
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Fig. 2. Symbol map for SOC in Ireland overlaid on peat distribution (crossed samples are reserved for validation).

Fig. 3. Box-plots for SOC in different groups (a) land cover and (b) soil type.
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Fig. 4. Rainfall map of Ireland.

Table 1
Comparison of performances of GWR with other chosen methods (error, absolute
error and RMSE units in % SOC, squared error unit in %-square SOC).

Method Min. 25% Median 75% Max. RMSE

Error
GWR �41.41 �3.40 0.14 1.84 42.74 NA
OK �40.17 �3.81 1.87 5.41 19.44 NA
IDW �43.91 �5.67 �0.07 2.67 17.02 NA
MLR �42.15 �5.03 �0.14 2.11 20.04 NA

Absolute error
GWR 0.01 0.97 2.15 7.54 42.74 NA
OK 0.03 2.28 5.18 8.90 40.17 NA
IDW 0.07 1.51 3.31 9.37 43.91 NA
MLR 0.02 1.19 2.37 9.40 42.15 NA

Squared error
GWR 0.00 0.94 4.61 56.83 1826.31 10.99
OK 0.00 5.20 26.83 79.28 1613.50 11.50
IDW 0.00 2.29 10.98 87.82 1927.67 12.07
MLR 0.00 1.42 5.63 88.41 1776.21 11.57
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in this study. Then, a trans-Gaussian kriging (Cressie, 1993) was
performed.

The performances of the spatial interpolation methods were
evaluated using the 131 reserved SOC values. The predicted values
were compared with the observed values. The error values were
calculated as ‘‘predicted value – observed value’’ for all the 131
samples. Basic statistics for the error, absolute error and squared
error are shown in Table 1. These statistics provide a robust mea-
surement of the performances. Meanwhile, the commonly used
root mean square error (RMSE) values are also listed.

All the minimum and maximum errors were high and similar,
showing that all the methods over-estimated some small values
and under-estimated some high values, and thus no method was
perfect. The maximum error value of 42.74 was observed for
GWR which could be related to the misclassification of the sam-
pling location into ‘‘peat’’ using maps while it was mineral soil
based on the observed data. This highlights the importance of qual-
ity of maps used in GIS analyses and subsequent environmental
geochemical modelling. The IDW, GWR and MLR had the median
Please cite this article in press as: Zhang, C., et al. Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil
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errors of �0.07, 0.14 and �0.14 respectively, which were close to
‘‘0’’. For the absolute errors and squared errors, the GWR had the
lowest 25th percentiles, median values and 75th percentiles.
MLR also had a relatively good overall performance, as auxiliary
information was used. Meanwhile, GWR also showed the lowest
value of RMSE. Overall, these results demonstrated that the GWR
did provide good and reasonable results in comparison with the
other methods.
Fig. 5. Spatially varying coefficients

Table 2
Basic statistics for GWR model coefficients.

Min. 5% 25%

Intercept 0.176 0.528 0.882
C1_Rainfall �0.00038 �0.00018 0.00002
C2_CLCDum1 �0.046 0.047 0.248
C3_CLCDum2 �0.017 0.008 0.093
C4_SoilDum �0.071 0.001 0.098

Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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Another analysis on the validation results was the correlation
coefficients between the measured and estimated SOC values for
GWR, kriging, IDW and MLR. They were 0.646, 0.591, 0.593, and
0.619 using Pearson’s method, and 0.629, 0.516, 0.519, and 0.579
using the Spearman’s method, respectively. Even though all were
significant at the level of p < 0.01, both methods demonstrated that
GWR had the highest correlation coefficients among the four meth-
ods compared.
for rainfall in the GWR model.

Median 75% 95% Max.

1.041 1.344 1.555 1.822
0.00021 0.00035 0.00067 0.00090
0.376 0.511 0.630 0.697
0.217 0.278 0.382 0.446
0.198 0.234 0.289 0.343
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3.4. Creation of spatial distribution map of SOC in Ireland using GWR

As explained earlier, a standard grid system at an interval of
500 m was created based on the boundary of Ireland. Each of the
grid points acquired the rainfall, land cover and soil type informa-
tion from GIS maps, and the dummy variables were created for
GWR. Points with unmatched values obtained values from their
nearest points with matched values.

To make use of all the available SOC data, all the 1310 values
including the 131 values reserved for validation earlier were used
for GWR modelling following the Box–Cox transformation. To
justify the ‘‘spatially varying’’ relationship between SOC and the
independent variables, the spatial distribution map showing
coefficients for rainfall for the grid points was produced (Fig. 5)
and the summary statistics for the GWR model coefficients for all
the independent variables are listed in Table 2.

The spatially varying feature of coefficients for rainfall was
clearly demonstrated (Fig. 5). The coefficients could be negative
and positive, showing that the relationship between SOC and
Fig. 6. Spatial distribution map of SO

Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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rainfall was different at different locations. Generally in the rela-
tively small mountainous areas in the east, SE and NW, the rela-
tionship was positive. However, it was obvious that in the
midland area where basin peat was scattered (rather than con-
centrated) the relationship between SOC and rainfall was nega-
tive: basin peat was located in low elevation areas with low
rainfall, but the SOC concentrations were high. In the peat areas
of the west, the coefficients for rainfall were close to ‘‘0’’, which
should be related to the dominant role played by ‘‘peat’’ found
in large mountainous areas.

For the other independent variables used in the GWR model
(Table 2), they also varied from negative to positive values, and
their strong variation was depicted by the differences between
the minimum and maximum values. The results provided justifica-
tion of using GWR for estimation of SOC in this study.

The GWR parameters were applied for estimating SOC values at
the points of the 500 m grid system, and the values were back-
transformed and converted to an ArcGIS GRID data for creation
of the spatial distribution map of SOC in Ireland (Fig. 6).
C in Ireland created using GWR.
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The SOC maps showed elevated values in western Ireland where
organic soils (or mainly blanket peat) are widespread, as well as
the areas with high rainfall. Southwest Ireland and the Wicklow
mountains in the East also exhibited high SOC. These areas are of
high elevation and high rainfall, with upland blanket peats. In
the midland of Ireland, there were scattered patches of high SOC
areas, which were in line with the distribution of basin peat. The
spatial distribution map of SOC in Ireland created using the GWR
showed clear SOC relationships with rainfall and distribution of
peat. Compared with the map created using a trans-Gaussian
kriging (Zhang et al., 2008b), the smoothing effect was obviously
reduced in the map created using GWR. This feature should also
be regarded as an improvement.

3.5. Discussion of GWR method

Since GWR takes environmental factors into consideration,
there are possibilities for further improvement of spatial interpola-
tion using this method: when the influences of environmental fac-
tors are better understood; when the environmental factor maps
are improved; or when the classification for sampling locations
and locations to be predicted is improved, it is expected that better
performance for GWR can be achieved. The currently used land
cover map in the study area can be replaced by the land use map
when it becomes available, as it is expected that land use may have
a better relationship with SOC. The soil type map of Ireland in use
was simplified based on a ‘‘soil associations’’ map (Gardiner and
Radford, 1980), and it is expected that an updated version of the
soil type map of Ireland will become available in a few years. Based
on the box-plots (Fig. 3), misclassification of land cover and soil
type for sampling locations did occur, e.g., some of the outliers in
agricultural area had SOC values as high as 50%, and some of the
wetland samples had SOC values less than 5%. Such misclassifica-
tions can hardly be avoided using maps. However, they can be cor-
rected using field investigation, as well as ‘‘manual manipulation’’,
e.g., soils with SOC >15% could be arbitrarily classified as ‘‘organic
soils’’ (Zhang et al., 2008a). All of these possibilities provide ways
for a further improved spatial interpolation using GWR which
can be explored in the future.

Another factor that could affect the performance of GWR is the
sample size of the dataset (SOC here) itself. When geochemical
data are collected at a higher density, GWR models could be estab-
lished at smaller spatial scales, and the performance can be further
improved.

While this study has demonstrated that GWR provided at least
comparable and reasonable results in comparison with the other
chosen methods, there are some issues related to GWR that need
attention. Like any regression analyses, there must be good rela-
tionships between the dependent variable (SOC here) and the inde-
pendent variables (rainfall, land cover and soil type here). Such
relationships can be complicated and spatially varying. GWR is
good at dealing with the ‘‘spatially varying’’ aspect of the relation-
ships, but the true relationships may still not be captured by the
model, e.g., missing other important factors. Some studies have in-
cluded the factor of geology (rock type) (e.g., Mishra et al., 2010) in
GWR modelling. In Ireland, the spatial distribution maps between
rock type and SOC did not exhibit a clear correlation. Therefore,
rock type was not considered in the GWR in this study. The selec-
tion of appropriate environmental factors for GWR needs careful
consideration and justification.

Another problem related to GWR is local multicollinearity. This
problem may occur when there is a large area with the same value
of an independent category variable (e.g., same land use of grass-
land), and lack of other values of the same independent variable
(e.g., absence of one category of land use). One way to partly solve
this problem is to use a more general and small number of catego-
Please cite this article in press as: Zhang, C., et al. Towards spatial geochemic
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ries, which was why the soil type and land cover type were gener-
alized in this study. Environmental factors tend to have similar
regional values with the absence of some categories, and thus this
problem can be serious. In this case, the neighbourhood used in
GWR has to be enlarged to include the other values of the same
independent variable. When the neighbourhood is enlarged to
the whole study area, GWR becomes MLR, thus loosing its power
of modelling spatially varying relationships.

It was noted in this study that GWR may produce a small num-
ber of predicted values outside the range of the observed data, the
same as an ordinary regression analysis. The issue became more
serious for the power transformed data, as the back-transforma-
tion may end up in extreme values. A possible solution may be
to replace the extreme values using the observed maximum and
minimum values.

There are a lot of technical details and factors that need to be
considered when using GWR. This paper neither attempts to find
the ‘‘best’’ way for using various methods nor demonstrates that
GWR is superior to other techniques. Further studies on the influ-
ences of various technical parameters on the performance of GWR
could be considered. Nevertheless, GWR takes environmental fac-
tors into consideration and models the spatially varying relation-
ships, thus providing a promising way for spatial geochemical
modelling for SOC and potentially other soil properties. When
the map quality of environmental factors is high, or when the envi-
ronmental factors are properly assigned to sampling and estima-
tion locations, it is expected that good results from GWR can be
obtained.
4. Conclusions

Rainfall, land cover and soil type all influence SOC in Irish soils.
GWR is able to include environmental factors into its spatial geo-
chemical modelling, and the performance of GWR for spatial mod-
elling of SOC in Ireland was good and reasonable in comparison
with the chosen methods of OK, IDW and MLR. The GWR interpo-
lated spatial distribution map of SOC of Ireland showed clear influ-
ences of the environmental factors, and it reduced the smoothing
effect problem of other methods. With better understanding of
environmental factors, availability of better environmental factor
maps, and better classification of sampling and estimation loca-
tions, further improvement in the spatial geochemical modelling
using GWR is possible.
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