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a  b  s  t  r  a  c  t

Characterization  of state-dependent  model  biases  in  land  surface  models  can  highlight  model  deficiencies,
and  provide  new  insights  into  model  development.  In this  study,  artificial  neural  networks  (ANNs)  are
used  to  estimate  the  state-dependent  biases  of  a land  surface  model  (ORCHIDEE:  ORganising  Carbon
and  Hydrology  in Dynamic  EcosystEms).  To  characterize  state-dependent  biases  in  ORCHIDEE,  we  use
multi-year  flux  measurements  made  at 125  eddy  covariance  sites  that  cover  7  different  plant  functional
types  (PFTs)  and  5 climate  groups.  We  determine  whether  the state-dependent  model  biases  in  five  flux
variables  (H:  sensible  heat,  LE: latent  heat,  NEE:  net  ecosystem  exchange,  GPP:  gross  primary  productivity
and Reco:  ecosystem  respiration)  are  transferable  within  and  between  three  different  timescales  (diurnal,
seasonal–annual  and  interannual),  and  between  sites  (categorized  by  PFTs  and  climate  groups).  For  each
flux variable  at each  site,  the  spectral  decomposition  method  (singular  system  analysis)  was  used  to
reconstruct  time  series  on  the three  different  timescales.

At  the  site  level,  we  found  that  the  share  of state-dependent  model  biases  (hereafter  called  “error

transferability”)  is  larger  for seasonal–annual  and  interannual  timescales  than  for  the  diurnal  timescale,
but  little  error transferability  was  found  between  timescales  in  all flux  variables.  Thus,  performing  model
evaluations  at multiple  timescales  is  essential  for  diagnostics  and  future  development.  For  all  PFTs,  cli-
mate  groups  and  timescale  components,  the  state-dependent  model  biases  are  found  to be  transferable
between  sites  within  the  same  PFT  and  climate  group,  suggesting  that  specific  model  developments  and
improvements  based  on  specific  eddy  covariance  sites  can  be  used  to enhance  the  model  performance  at
other  sites  within  the  same  PFT-climate  group.  This  also  supports  the  legitimacy  of  upscaling  from the
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ecosystem  scale  of  eddy  covariance  sites  to the  regional  scale  based  on  the  similarity  of PFT  and  climate
group.  However,  the  transferability  of  state-dependent  model  biases  between  PFTs  or  climate  groups  is
not  always  found  on  the  seasonal–annual  and  interannual  timescales,  which  is contrary  to  transferability
found on  the  diurnal  timescale  and  the  original  time  series.
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is defined according to aggregated Köppen–Geiger classification (cf.
. Introduction

The global eddy covariance network contains numerous on-line
bservations of CO2, water, and energy fluxes across a range of
iomes and timescales (Baldocchi et al., 2001; Baldocchi, 2008),
ith more than 965 site years in the La Thuile FLUXNET dataset

http://www.fluxdata.org). Recently, some large synthesis projects,
uch as the North American Carbon Program, have performed anal-
sis over very large number of sites (e.g. Schaefer et al., 2012; Dietze
t al., 2011; Richardson et al., 2012; Schwalm et al., 2010). Yet, many
revious studies that quantified the performance of land surface
odels were based on much fewer sites (e.g. Thornton et al., 2002;

rinner et al., 2005) and assessed model performance with root
ean square errors. Such characterization of model-observation
ismatches do not distinguish between the random and the sys-

ematic parts of these errors. The model-observation mismatches
esult from several sources of errors. One is from structural defi-
iencies in the model representation of physical and biological
rocesses and in the model initialization (Carvalhais et al., 2008),
r in wrong values of model parameters. The others could be from
odel inputs as well as errors in eddy covariance measurements

Richardson et al., 2008; Lasslop et al., 2008; Abramowitz et al.,
007).

In order to characterize state-dependent model biases, recent
tudies (Dekker et al., 2001; Abramowitz, 2005; Abramowitz et al.,
007) demonstrated the value of explicitly quantifying state-
ependent model biases as a function of chosen variables using
rtificial neural network (ANN) techniques. The idea is to estab-
ish a functional relationship between meteorological inputs (ANN
nputs) and model-observation mismatch (ANN output) in a partic-
lar flux at a specific eddy covariance site by means of supervised
raining by ANN (the “ANN error model”). This error model is
hen applied to predict model-observation mismatches in an eval-
ation dataset not used for training. The state-dependent model
ias could then be determined by quantifying the amount of the
odel-observation mismatch in the evaluation dataset that is

ccounted for by the error model. However, the state-dependent
odel biases could not always be fully documented since ANN

nputs can be limited by both data availability and our current
nderstanding of underlying processes. This methodology could
otentially provide insights into the extent to which the state-
ependent model bias is shared (hereafter transferable) between
imulations of different environments, which may  help to define
irections for model improvements (Abramowitz et al., 2007).
bramowitz et al. (2007) examined the share of state-dependent
odel bias (hereafter called “transferability of state-dependent
odel bias”) across sites within and across vegetation types, and

nvestigated the degree to which improvements of land surface
odels derived from a given site can be applied to other sites within

he same vegetation type. They found that state-dependent model
iases for both sensible and latent heat fluxes can be transferred
ithin and across different vegetation types in the three models

ncluded in their study (CBM, CLM and a version of ORCHIDEE
ithout dynamic vegetation). However, they did not investigate

ariations of the state-dependent model biases within a vegeta-
ion type that exists across different climate regimes or different

imescales.

Previous studies (e.g. Siqueira et al., 2006; Mahecha et al.,
010a; Wang et al., 2011) reported model-observation mismatch
© 2012 Elsevier B.V. All rights reserved.

on different timescales in different ecosystem types, and pointed
out that long timescales (e.g. seasonal–annual and interannual)
always had larger relative model-observation mismatch than short
timescales (e.g. diurnal). However, the systematic structure of
model-observation mismatch in the timescale domain is still poorly
understood. Equipped with the knowledge of transferability of
state-dependent model bias within each timescale, modelers can
make informed decisions on necessary developments. For example,
one could prioritize new parameterizations to decrease state-
dependent model biases for a specific purpose (e.g. a specific
timescale). Furthermore, it is important to know whether improv-
ing a model for a process on a given timescale (e.g. diurnal
variability of photosynthesis) also results in a better fit to observa-
tions on another timescale (e.g. seasonal or interannual variability
of photosynthesis).

The aim of this study is to understand the extent to which
state-dependent model biases are transferred in both space and
timescale domains. To achieve this, a land surface model ORCHIDEE
(ORganising Carbon and Hydrology in Dynamic EcosystEms) is
used. ORCHIDEE is a Soil–Vegetation–Atmosphere-Transfer model,
coupled to an ecosystem carbon model, that simulates energy,
water and carbon exchanges between the atmosphere and the bio-
sphere on different timescales, ranging from hours to centuries
(Krinner et al., 2005). ORCHIDEE uses 12 plant functional types
(PFTs) to describe vegetation distributions (Krinner et al., 2005).
It can be run at both global and point scales, and a local point
simulation forced by in situ meteorological data is performed
in the present study. Point evaluation of ORCHIDEE simulations
using eddy covariance datasets has been conducted on different
timescales for all PFTs in previous studies (Krinner et al., 2005;
Mahecha et al., 2010a).  Here, we use a method of integrating time
series decomposition into different timescales (singular system
analysis: SSA, Mahecha et al., 2007, 2010a)  and Artificial Neural
Network (ANN, Chevallier et al., 1998) technique to quantify the
error transferability in both space and timescale domains using 125
eddy covariance sites across the globe (obtained from the La Thuile
FLUXNET database). The scientific questions addressed in this study
are:

(1) Are state-dependent model biases transferable within and
across timescales?

(2) Are state-dependent model biases transferable within and
across PFTs and climate groups on different timescales?

2. Data and methods

2.1. Eddy covariance data

In this study, flux and meteorological drivers on half-hourly
time steps are from Version 2 of the FLUXNET La Thuile dataset
(http://www.fluxdata.org), and hourly time steps are aggregated
from half-hourly data. We  selected only sites with at least three
years of data, and a data coverage of >70% within each year. A total
of 125 sites are selected for the present study. For each site, climate
http://www.fluxdata.org); vegetation class is from IGBP definitions,
which is then classified to the corresponding PFT in ORCHIDEE. The
distribution of studied sites with respect to PFT and climate groups

http://www.fluxdata.org/
http://www.fluxdata.org/
http://www.fluxdata.org/
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Table  1
The number of sites belonging to each PFT × climate group. Climate group is defined according to aggregated Köppen–Geiger classification.

Climate group/PFT GRA CRO BoENF TeENF TeEBF TeDBF TrEBF

Boreal 2 0 18 0 0 1 0
Temperate 14 5 0 10 2 5 0
Temperate-continental 4 6 0 9 0 10 0
SubTropical-Mediterranean 5 4 0 9 4 9 0
Tropical 0 0 0 0 0 0 8
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RA: grassland; CRO: cropland; BoENF: boreal evergreen needleleaf forests; TeENF
eDBF:  temperate deciduous broadleaf forests; TrEBF: tropical evergreen broadleaf

s displayed in Table 1, and their spatial distributions are shown in
ig. 1. In this study, shrublands and wetlands are not considered
ecause ORCHIDEE do not have the corresponding PFT and related
odel parameterizations.

.2. Simulation protocol

The ORCHIDEE model is driven with site meteorology. Our site
election criteria allow gaps in meteorological data (Section 2.1), so
ap-filling algorithms (Appendix A) are applied to create continu-
us forcing data for model simulations.

The PFT for each site is prescribed in the model by using param-
ters that most closely represent the site vegetation and climate
Table B1). The soil and biomass carbon pools at each site are
rought to the steady state by recycling the meteorological data.
ite history in terms of management is not prescribed in the simu-
ations.

.3. Analysis methods

.3.1. Singular system analysis (SSA)
Observed and modeled time series can be described as sets

f subsignals, based on the assumption that these subsignals are
ominated by characteristic scales of variability. Any time series is
hus described as sets of additively superimposed subsignals
 =
F∑

f =1

Xf (1)

-120 -60 0 60 120 180

-90

-60

-30
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30
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90

GRA CRO BoENF TeENF TeEBF TeDBF TrEBF

ig. 1. Spatial distribution of the chosen sites colored by their respective plant
unctional types.
erate evergreen needleleaf forests; TeEBF: temperate evergreen broadleaf forests;
s.

where f is the index over the characteristic frequencies. “Singular
system analysis” (SSA, Golyandina et al., 2001; Ghil et al., 2002)
is used to extract subsignals Xf. It has already been employed to
explore daily eddy covariance ecosystem-biosphere fluxes (e.g.
Mahecha et al., 2007, 2010a). The SSA method is used given that it
could be easily applied to time series with gaps (Kondrashov and
Ghil, 2006) and, other than many other methods, does not make
any assumption on the shape of the subsignals. Here, the two steps
of SSA are only summarized, while technical details can be found
in the Appendix B of Mahecha et al. (2010a).

The decomposition of the time series comes as a first step. The
idea is to embed the time lagged windows of the time series in its
trajectory space. This embedding space can be decomposed into
a set of empirical orthogonal functions and associated principal
components (Ghil et al., 2002). Each component is characterized
by one single oscillatory mode, and has a simple representation in
the frequency domain.

The second step is the reconstruction of the time series through
the principal components in the frequency domain. The original sig-
nal can be fully or partially reconstructed. This is a selective step,
and the user has to decide which principal components are com-
bined so that one can obtain a meaningful combination of principal
components. It then promotes the concept of frequency binning.

In this study, we  are interested in three prominent tempo-
ral patterns: diurnal, seasonal–annual and interannual. In order
to reconstruct their respective variations, a fine resolution of the
frequency binning scheme comprising 10 bins is firstly chosen a
priori (Table 2). It should be noted that the chosen bin widths in
this fine binning frequency scheme are sufficiently coarse to avoid
misinterpretations due to inaccuracies occurring in the frequency
assignments to the SSA modes (Mahecha et al., 2007). In this study,
we considered diurnal variability as the sum of the principal com-
ponents with dominant frequencies in the range of 7.9–41.6 h (Bin
A), seasonal–annual as those in the range of 130–514 days (Bin B),
and interannual as the sum of those with lower frequency (Bin C).

The hourly time series is used to reconstruct the diurnal variabil-
ity. To improve computational efficiency of applying SSA, the full
hourly time series is split into subsets with each one containing 60
days and a “local SSA” (Yiou et al., 2000; Table 2) is then applied to
retrieve diurnal variability in each subset. It can be summarized as
follows:

• Define continuous windows of length W � N (W = 1440, covering
60 days) on the full hourly time series. The windows are centered
on 0.5W,  1.5W,  . . .,  N − 0.5W.

• Apply SSA on each window separately, and identify the diurnal
component in each window based on Bin A (Table 2) and ignore
the rest, such that it contains the diurnal variability.

• The local results are merged together.
For the characterization of seasonal–annual and interannual
variability, a global SSA (Table 2) is performed on the daily time
series aggregated from the hourly data. The reconstructions of
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Table 2
Limits of the applied timescale binning schemes.

Global SSA Local SSA

Upper limit (day) Lower limit (day) Upper limit (h) Lower limit (h)

Bin C
Maximum 513.7 Maximum 218.8
Bin  B
513.7 259.3 218.8 125.7
259.3 130.9 125.7 72.4
130.9 66.1 72.4 41.6

Bin A
66.1 33.4 41.6 23.9
33.4 16.9 23.9 13.8
16.9 8.5 13.8 7.9
8.5 4.3 7.9 4.6
4.3  2.2 4.6 2.6
2.2 Minimum 2.6 Minimum

The discretization for both global and local SSA is approximately equidistant in the
log  domain. Bin A, Bin B, and Bin C are used to reconstruct the time series character-
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zed by diurnal, seasonal–annual and interannual variability, respectively. The bin
oundaries (given in bold) could be decimal since they are approximately equally
paced over the logarithm of the frequencies.

easonal–annual and interannual variability are based on Bin B and
in C (Table 2), respectively.

Our site selection criteria allow limited data gaps in observed
uxes (maximum 30% gaps), but simulated fluxes are continuous.
he data gap in both hourly and daily flux time series is filled by the
SA gap-filling procedure (c.f. Appendix B in Mahecha et al., 2010a).
ote that the SSA gap-filling procedure would not be performed on

he time series if its gap fraction is above 30%.

.3.2. ANN error model
The ANN techniques are well adapted to solve nonlinear prob-

ems and are designed to capitalize on the inherent statistical
elationships among the input and output variables. The type of
NN applied here is the feed-forward multilayer perceptron (MLP,
umelhart et al., 1986) that allows for nonlinear mapping of sets of

nput data to a set of appropriate output. The nonlinear mapping
odel consists of nodes that are organized in three or more layers

an input layer and an output layer with one or more hidden lay-
rs). Any nodes, i and j in two consecutive layers are connected with
ynaptic weights wij determined by training the system (Melesse
nd Hanley, 2005). For each node in the hidden layer, it calculates a
eighted sum of all of its inputs zi following Eq. (2) and then uses a

ransfer function (hyperbolic tangent function f (x) = tanh(x) rang-
ng from −1 to 1) to produce the output zj of node j in the hidden
ayer following Eq. (3).

j =
∑

i ∈ Inputs(j)

wij · zi (2)

j = f (xj) = f

⎛
⎝ ∑

i  ∈ Inputs(j)

wij · zi

⎞
⎠ (3)

or the nodes in the output layer, the linear transfer function is used
o calculate the output value.

In this study, we choose two hidden layers, each with five nodes.
his choice is made to yield an accurate approximation of represen-
ations of state-dependent errors that may  contain several “hills
nd valleys”, and two hidden layers with only several nodes have
een proposed to work well compared to a single hidden layer
equiring a large number of nodes (Chester, 1990; Zhang et al.,

998).

The target of ANN error modeling is ORCHIDEE errors, defined by
he differences between modeled and observed fluxes, resulting in

 vector containing hourly data. Training and evaluation of the ANN
elling 246 (2012) 11– 25

is performed on ORCHIDEE errors (Fig. 2). The training phase deter-
mines the weights through establishing empirical relationships
between ORCHIDEE errors and a combination of input predictors,
including meteorological drivers and simulated ORCHIDEE flux. The
parameterized ANN model with fixed weights after training is refer-
enced to ANN error model. The evaluation phase uses these weights
(or ANN error model) to predict ORCHIDEE errors from the input
predictors within a subset of the data (an evaluation dataset) that
is not used for the training phase. In the evaluation dataset for each
flux, the root mean square error reduction (RMSE-R), a metric to
measure the transferability of state-dependent model bias (or error
transferability), is then defined as:

RMSE-R = 1 −

√∑n
i=1ε2

ANN√∑n
i=1ε2

Ori

(4)

where εANN and εOri are ORCHIDEE errors with and without ANN-
modeled, respectively.

In addition, all variables in both the input and output layers
of ANN have been rescaled into a [−1, 1] interval, and then the
variable in the output layer has been scaled back to its original
units before performing error calculations. ANN is not a robust
extrapolation tool, for example, an ANN error model trained on the
variable with one order of magnitude (e.g. interannual timescale)
could be problematic in data extrapolation of another variable in
an evaluation dataset with a higher order of magnitude (e.g. diur-
nal timescale). Multiple linear regression approach relating the
ORCHIDEE errors to input predictors is also adopted to test error
transferability between timescales.

The training procedure, which adjusts the connection weights of
the network through error back-propagation based on the steep-
est descent method, is recognized as a crucial step in ANN error
model framework. To avoid over-fitting, a 20% subset of the training
dataset (the test dataset) is retained and used to assess the per-
formance of the ANN training process at every stage of learning
(Scardi, 2001). Training is stopped when the error within the test
dataset begins to increase, i.e. the model starts to lose prediction
or generalization ability by overtraining. The training procedure is
also sensitive to how the training dataset is built and initial weights
linking the nodes between the input layer and the first hidden layer
(Abramowitz et al., 2007; Morshed and Kaluarachchi, 1998). To
overcome these, we  divide each variable (or node) in the input layer
into different value ranges (or classes) according to its respective
data distribution (e.g. van Wijk and Bouten, 1999), and then build
the training set in such a way  that it would randomly select the data
from each class. 10 training sets are created in this way, and for each
of 10 training sets, the ANN has been trained 5 times starting from
different initial weights. In total, 50 ANNs have been trained and
the mean ensemble is used.

2.3.3. Configurations of ANN error modeling
The original and reconstructed time series on three different

characteristic timescales (diurnal, seasonal–annual and interan-
nual) are used in the ANN error modeling. The ORCHIDEE errors
from both original and reconstructed time series are then modeled
by the ANN as a function of the drivers in their respective original
and reconstructed forms. Note that the main purpose of this study
is not to quantify the absolute value of state-dependent model bias
but to understand the state-dependent model bias transferabil-
ity in both spatial and temporal domains. Moreover, the choice
of explanatory variables is constrained by the fact that a vari-

able must be available at all EC sites. Thus, ANN inputs consist
of three meteorological drivers (Ta: air temperature, VPD: vapor
pressure deficit, Rg: incoming shortwave radiation) and the simu-
lated ORCHIDEE flux. We  use three instantaneous meteorological
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Fig. 2. The conceptual diagram of ANN operation. Two  steps are involved in the ANN error modeling. (a) The training phase is to find a parameterized ANN error model
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Case S3:  We  train an ANN error model on the entire time series
using all sites belonging to a class consisting of a specific PFT (e.g.
grassland) and a specific climate group (e.g. temperate), and then

Table 3
Configurations of error transferability.

Case type Full type name Num. of classes

Case WT Transferability within a timescale 125
Case CT Transferability between timescales 125
Case S1 Spatial transferability within a PFT and a climate

group
15

Case S2 Spatial transferability within a PFT and between
climate groups

24
ith  fixed weights (or nonlinear regression parameters) that characterize the relat
valuation phase is to apply this ANN error model to compute ANN-modeled error 

nputs (Ta, VPD and Rg) because they explain the majority of the
ariation in modeled instantaneous carbon and water fluxes (van
ijk and Bouten, 1999, Moffat et al., 2010). However, this choice

s arbitrary, and a systematic sensitivity study will be necessary
o determine the optimal set of ANN inputs (Abramowitz et al.,
007), which should be explored in the future study. Other vari-
bles, such as diffuse PPFD, soil temperature and soil moisture
re not considered because they are not available for all sites.
n addition, the soil depths at which soil temperature and mois-
ure measurements have been made are not uniform across sites.
o avoid any bias due to data gap filling methods by La Thuile
LUXNET data processing system (c.f. www.fluxdata.org) in com-
uting ORCHIDEE errors, only time steps with actual measurements
re used in the construction and the evaluation of the ANN error
odel.
The errors on five flux variables are investigated: sensible heat

ux (H), latent heat flux (LE), gross primary productivity (GPP),
cosystem respiration (Reco) and net ecosystem exchange of CO2
NEE). Note that GPP and Reco are not measured directly. Reco is mod-
led using the method of Reichstein et al. (2005) and GPP is then the
bsolute sum (NEE + Reco). Therefore, any systematic errors in the
ux-partitioning algorithm of Reichstein et al. (2005) could con-
ribute to ORCHIDEE errors for these two gross fluxes. The ability
f the ANN driven by meteorological variables and by the simulated
RCHIDEE flux to estimate RMSE-R for the following 8 configura-

ions is examined:
Case WT: Transfer of ANN-modeled error within a timescale at

ach site. For example, at each site, using reconstructed time series
n diurnal timescale, we train an ANN to model error on selected
ata from half of the time series and then use this error model to
stimate RMSE-R in the remaining half. This is also performed upon
he original time series. The number of sites is 125.
Case CT:  Transfer of ANN-modeled error across timescales at
ach site. For example, at each site, using the reconstructed time
eries on diurnal timescale, we train an ANN error model on the
ntire time series, and then use this error model to estimate RMSE-R
ips between ANN inputs and ANN output presented in training dataset and (b) the
MSE-R in the evaluation dataset.

on the entire reconstructed time series on both seasonal–annual
and interannual timescales. The number of sites is 125.

Case S: Transfer of ANN-modeled error on the spatial scale
(Table 3, climate group/PFT with at least 3 sites is considered).

Case S1:  We  train an ANN error model on the entire time series
using two-thirds of the sites belonging to a class consisting of a
specific PFT (e.g. grassland) and a specific climate group (e.g. tem-
perate), and then apply this error model to estimate RMSE-R on the
entire time series of the other one-third of the sites from the same
class. This is a test of error spatial transferability within a PFT and
a climate group. The number of classes is 15.

Case S2:  We  train an ANN error model on the entire time series
using all sites belonging to a class consisting of a specific PFT (e.g.
grassland) and a specific climate group (e.g. temperate), and then
apply this error model to estimate RMSE-R on the entire time series
of all sites belonging to a class consisting of the same PFT (e.g. grass-
land) but a different climate group (e.g. tropical). This is a test of
error transferability within one PFT and between climate groups.
The number of classes is 24.
Case S3 PFT spatial transferability within a climate group 44
Case S4 Both PFT and climate group spatial transferability 210
Case S5 Spatial transferability within a PFT 7
Case S6 PFT spatial transferability 42

http://www.fluxdata.org/
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Fig. 3. The histogram of RMSE-R on the original time series (a: O-O), at three timescales (b: D-D, c: A-A and d: I-I) and across timescales (b: D-A and D-I; c: A-D and A-I;
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timescale has the intermediate values (17–44%). This suggests that
:  I-D and I-I) for H, LE, GPP, Reco and NEE. O is the original time series, and D, A an
imescales, respectively. An ANN error model is trained on one timescale (e.g. D) an
n  the graph represents the median value of the histogram of RMSE-R from 125 sit

pply this error model to estimate RMSE-R on the entire time series
f all sites belonging to a class consisting of a different PFT (e.g.
ropland) but the same climate group (e.g. temperate). This is a
est of PFT spatial transferability within each climate group. The
umber of classes is 44.

Case S4:  We  train an ANN error model on the entire time series
sing all sites belonging to a class consisting of a specific PFT (e.g.
rassland) and a specific climate group (e.g. temperate), and then
pply this error model to estimate RMSE-R on the entire time series
f all sites belonging to a class consisting of a different PFT (e.g.
ropland) and a different climate group (e.g. tropical). This is a test
f both PFT and climate group spatial transferability. The number
f classes is 210.

The error spatial transferability for the above four cases is
nvestigated on both original and reconstructed time series with
hree characteristic timescales. In addition, we also investigate two
dditional cases of error spatial transferability based on the sites
lassified by PFT using the original time series.

Case S5:  We  train an ANN error model on the time series from
wo-third of all sites belonging to a specific PFT (e.g. grassland) and
hen apply this error model to estimate RMSE-R on the time series
f the other third of sites from the same PFT. This is a test of spatial
ransferability within a PFT.

Case S6:  We  train an ANN error model on the entire time series
rom all sites belonging to a specific PFT (e.g. grassland) and then
pply this error model to estimate RMSE-R on the entire time series
f all sites from different PFT. This is a test of PFT spatial transfer-
bility.

ANN-modeled error in this study not only contains the errors
riginating from the model itself (or state-dependent model bias)
ut also include other systematic errors related to the flux mea-
urements and data processing (e.g. Billesbach, 2011; Vickers et al.,
009, 2010). One of the potential sources of the error comes from a
eneral lack of energy balance closure (Wilson et al., 2002; Foken,

008; Leuning et al., 2012) at eddy covariance sites, where the
bserved turbulent fluxes of H and LE do not sufficiently account
or the measured net available energy at the surface. Given that
resent the reconstructed time series on diurnal, seasonal–annual and interannual
 evaluated on another timescale (e.g. A) to get RMSE-R in A from D (D-A). The value

the magnitude and causes of the failure to close energy balance
varies among sites and timescales (e.g. Barr et al., 2006; Wilson
et al., 2002; Foken et al., 2011), no corrections to the LE and H mea-
surements are applied, in contrast to those performed in Jung et al.
(2011). Fortunately, the data from the La Thuile FLUXNET dataset
used in this study underwent a standardized preprocessing based
on a friction velocity (u*) filter and despiking of half hourly flux
data (Papale et al., 2006). This procedure removes some system-
atic errors such as the ones which occur during calm nocturnal
periods (Goulden et al., 1996). The errors related to the energy
imbalance are therefore not necessarily the major source of the
ANN-modeled errors. Richardson et al. (2007) have shown that ran-
dom errors persist after this standardized preprocessing. However,
this would not affect this analysis since our ANN-modeled errors do
not contain any random errors. Thus, we  might conclude that our
ANN-modeled error can be mainly attributable to the model itself
rather than to the observations. Such an assumption has also been
supported by Abramowitz et al. (2007).  However, the residual sys-
tematic errors from the observations cannot be easily disentangled
from the ANN-modeled errors.

3. Results and discussion

3.1. RMSE-R on three different time scales (Case WT)

Fig. 3 shows RMSE-R for each flux variable within each timescale
using ANN error modeling. All sites (n = 125) are pooled to gen-
erate the histograms of RMSE-R for each flux at each timescale.
As shown in Fig. 3, the interannual timescale is always associ-
ated with the largest RMSE-R (range of median values: 36–61%;
which means that 36–61% of ORCHIDEE error in the evaluation
dataset has been reduced by an ANN error model), and the diurnal
timescale has the smallest RMSE-R (16–36%) and seasonal–annual
climate-dependent processes controlling fluxes are better repre-
sented by ORCHIDEE for short timescales than for long timescales.
Previous studies have also noticed that land surface models tend to
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ail in replicating interannual variations of carbon and water fluxes
Siqueira et al., 2006; Urbanski et al., 2007; Mahecha et al., 2010a;
eenan et al., 2012a).  Climate has been recognized as an important
river of interannual variation in terrestrial fluxes (e.g. Hui et al.,
003; Sierra et al., 2009; Le Maire et al., 2010), and the model per-
ormance on long timescales would be significantly improved if its
tate-dependent model bias related to three metrological variables
Ta, VPD and Rg) present in ANN error modeling could be removed
y future model refinements.

The small RMSE-R on a diurnal timescale, particularly, for GPP
nd NEE reflects the ability of ORCHIDEE to resolve fast CO2
xchange processes using theories related to canopy turbulent
xchange, largely driven by radiation. On a diurnal cycle, both GPP
nd NEE have a lower RMSE-R than H, LE and Reco. The higher state-
ependent model bias in H can be expected because of the use of

 single energy budget for both vegetation and soil (Krinner et al.,
005). The source of higher state-dependent model bias in Reco can
e related to the fact that the computation of heterotrophic res-
iration in ORCHIDEE is based on daily mean temperature, which
uggests that decomposition rates are not well resolved. Another
ause of concern is the unrealistic representation of soil carbon
tates in natural ecosystems, which is based on soil carbon equilib-
ium hypothesis when initializing soil carbon pools at the site level
Williams et al., 2009; Pietsch and Hasenauer, 2006; Wutzler and
eichstein, 2007; Carvalhais et al., 2008, 2010). However, there also
xists the uncertainty in Reco from La Thuile FLUXNET dataset since
eco is separated from NEE using an empirical model (Reichstein
t al., 2005). The observed high RMSE-R in H and LE could also
e associated with unclosed surface energy balance (Wilson et al.,
002; Foken, 2008) and a general solution to this problem is still
ot available (Foken et al., 2011).

Our results suggest that only considering the state-dependent
odel bias in the original time series (range of median val-

es: 20–45%) can mask relatively large residual state-dependent
odel biases on interannual (36–61%) timescales. Not separating

imescale in model evaluations may  thus lead to an optimistic
ssessment of model behavior on long timescales because of error
ancelation across timescales (Mahecha et al., 2010a), that may
lso translate into flawed estimates of the carbon climate feed-
acks (Wang et al., 2010; Mahecha et al., 2010b).  We  also found that
he distribution of RMSE-R on interannual timescale is much more
pread than other timescales, and one of the possibilities could
e the accuracy of extracted interannual variability by SSA based
n relatively short time series length in the La Thuile FLUXNET
ataset. For example, Mahecha et al. (2010a) explored interan-
ual timescale using the five-year time series of carbon and water
uxes and found that the uncertainty of subsignal separation is
ery large, which did not allow accurate assessment of interan-
ual variability. This emphasized the necessity of continued flux
onitoring for the understanding of the longer-term carbon and
ater flux variability, and the use of other long-term variables

uch as basal area growth from tree ring records (Briffa et al.,
008).

To determine the fraction of state-dependent errors that could
e accounted for by an ANN error model based on original time
eries, we made a comparison between RMSE in the fluxes after
NN error modeling and the random flux errors in a temper-
te deciduous forest site at the Howland temperate evergreen
eedleleaf forest site. The random flux errors were estimated by
omparing the results of two eddy covariance towers installed
ear one another during the year 2000 (Hollinger and Richardson,
005) (Table 4). This comparison shows that the RMSE after apply-
ng an ANN error model remains more than two times larger in
bsolute value than the random flux errors (Table 4). For exam-
le, ANN error modeling can strongly reduce the RMSE of yearly

 (W m−2), LE (W m−2) and NEE (�mol  m−2 s−1) RMSE (to 45.8,
elling 246 (2012) 11– 25 17

43.2 and 3.18). But the residual RMSE is still higher than the
corresponding random flux errors (19.5, 16.5 and 1.5) (Table 4).
This might be related to the fact that considering only climate
drivers as ANN input variables is inadequate. Other variables
could be important, such as delayed response to external forcings
(e.g. van der Molen et al., 2011), or soil moisture and manage-
ment activities (crop rotations, irrigation, fertilization) for crops
and managed forests (e.g. Jaksic et al., 2006; Peichl et al., 2011;
Smith et al., 2010). In Howland, for example, the inclusion of
soil temperature as another ANN driver, an input recognized as
an important regulator of carbon exchange during soil thaw-
ing in that forest ecosystem (Hollinger et al., 1999), can further
reduce the RMSE in NEE by 5% (Table 4). It should be noted
that the random flux errors could vary between sites, such that
the fraction of systematic errors accounted for by the ANN error
model is site-dependent. But the state-dependent model bias
removed in this study might be beyond the random flux errors
on most of EC sites, since ANN input drivers could be limited by
both data availability and our understanding of the underlying
processes.

3.2. Error transferability across different timescales (Case CT)

To investigate whether ANN-modeled errors are transferable
across different timescales, we examine whether the ANN error
model constructed at one timescale could be useful to reduce
ORCHIDEE errors on other timescales. Fig. 3b–d shows that it is
not the case. Indeed, there is a near zero or even negative median
RMSE-R (meaning a decrease in the fit of the data to the ANN
error model) (Fig. 3b–d), and also a widening of the frequency of
RMSE-R, indicating different results across sites. This is also con-
firmed if ORCHIDEE errors were related to the input predictors
by multiple linear regression approach rather than ANN (data not
shown). Moreover, poor error transferability across timescales has
been documented in other studies. For example, Siqueira et al.
(2006) demonstrated that the model employed for resolving fast
CO2 and H2O exchange processes using theories related to canopy
turbulent exchange could not necessarily translate into improved
predictive skills for long timescales. Mahecha et al. (2007) also
showed that a clear hysteresis between seasonal–annual com-
ponents of NEE (photosynthesis, autotrophic and heterotrophic
respiration) and air temperature is significantly affected by adding
the interannual component to the seasonal–annual cycle. This
leads potentially to a different response of NEE to temperature on
different timescales. Poor cross-timescale transferability of state-
dependent model biases for ORCHIDEE found in this study also
implies that this model can capture most of timescale-independent
behaviors in ecosystem flux simulations (Baldocchi et al., 2001;
Katul et al., 2001; Stoy et al., 2009) or that there is little interac-
tions between timescales for the state-dependent model biases,
though large RMSE-R still existed when transferring errors within
seasonal–annual or interannual timescales as mentioned in Section
3.1.

3.3. Error spatial transferability (Case S)

3.3.1. Original time series
In Abramowitz et al. (2007),  only two  different PFTs and 13 eddy

covariance sites were used to investigate the spatial transferabil-
ity of ANN-modeled errors. In this study, this approach is extended
through involving 125 sites distributed across 7 PFTs. For different
fluxes, the median RMSE-R from all classes in both Case S5 (spatial

transferability within a PFT, n = 7) and Case S6 (PFT spatial transfer-
ability, n = 42) are displayed in the diagonal and non-diagonal terms
of the matrix in Fig. 4, respectively. Case S5 analysis suggested that
the median RMSE-R in H (W m−2), LE (W m−2), GPP (g C m−2 d−1),
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Table 4
Measurements of random flux errors, RMSE (root mean square error) of simulated ORCHIDEE flux variables and their ANN-modeled values during the year 2000 in Howland
forest.

Flux variable Howl. 2 tower ORCHIDEE ANN1 ANN2 (ANN1 − ANN2)/ANN1 (%)

H (W m−2) 19.5 129.1 45.8 45.3 1.1
LE  (W m−2) 16.5 73.9 43.2 42.1 2.5
NEE  (�mol m−2 s−1) 1.5 4.93 3.18 3.02 5.0
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owl. 2 tower data from the experiment reported by Hollinger and Richardson (200
owers  separated by around 775 m.  ANN1 is the root mean square error of the ANN 

s  drivers; ANN2 is the same with ANN1 but with soil temperature in surface layer

eco (g C m−2 d−1) and NEE (g C m−2 d−1) is of 36, 32, 18, 43 and 19%,
espectively. For GPP and NEE, cropland (32 and 34%) and BoENF
33 and 27%) have the highest RMSE-R in Case S5. For the cropland
hich covers any kind of cultivated species, this can be expected

ince the parameterization used for crop in ORCHIDEE is similar
o the one used for herbaceous vegetation, and does not account
or management practices and crop variety-dependent parameters
Smith et al., 2010; Li et al., 2011). Case S6 analysis (PFT spatial
ransferability) suggests that most of RMSE-R in H, LE and Reco

cross PFTs are positive (Fig. 4), indicating that ANN error model-
ng does improve the prior ORCHIDEE model simulation. This was
lso found by Abramowitz et al. (2007) when comparing H and LE
cross grassland and conifers for all of the land surface models they
onsidered. By contrast, the picture of RMSE-R between PFTs in GPP

nd NEE is different. For example, based on the constructed ANN
rror model in TrEBF, ANN produces a marginal or negative RMSE-R
n GPP for the other PFTs (Fig. 4; that is degradation from the prior
RCHIDEE simulation).

ig. 4. Matrix of the median RMSE-R from all classes in both Case S5 (diagonal) and Case S
ertical  PFT (e.g. CRO) and then evaluated on the horizontal PFT (e.g. TeENF) to get RMSE
ere random errors are estimated using simultaneous measurements from two flux
l with air temperature, global radiation, vapor pressure deficit and modeled output
ther driver.

3.3.2. Different timescales
As shown in the whisker boxes of Fig. 5, the median RMSE-R

from all classes in Case S1 (spatial transferability within a PFT and
a climate group, n = 15) is always positive at all timescales for each
flux variable. The comparison between Case S1 on the Y-axis and
other cases on the X-axis (Case 2: n = 24, Case 3: n = 44 and Case 4:
n = 210) is also shown in Fig. 5. The 1:1 line (Fig. 5) showed that
the median RMSE-R in Case S1 (n = 15) is larger than those from
other cases on each timescale. The RMSE-R is often negative (that
is the model misfit increased after applying the ANN error model)
or near zero on seasonal–annual and interannual timescales in all
cases except Case S1. On the diurnal timescale, the median RMSE-
R of all classes within each case is positive for all flux variables.
This is comparable to the ANN error model applied on the original

time series (Fig. 5). This can be expected due to the fact that diurnal
timescale carries the largest spectral power among the three char-
acteristic timescales and most of the variability in the original time
series can be accounted for by the diurnal timescale part.

6 (non-diagonal) for H, LE, NEE, GPP and Reco . An ANN error model is trained on the
-R in TeENF from CRO.
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range of temporal scales. This analysis showed that model improve-
ime series at diurnal, seasonal–annual and interannual timescales, respectively. The
hisker box is consisted of median value (solid line), 25 and 75% of the data.

Firstly, Case S1 analysis suggested that ANN-modeled error
s transferable within a PFT and within a climate group at all
imescales. This means that each PFT/climate group has specific
eatures that the model is not able to reproduce, and thus suggests
hat better model performances could be achievable by improving
he parameterization at the level of PFT/climate group. The result
mplies that model improvement based on specific eddy covariance
ites can indeed enhance the model behavior at other sites within
he same PFT and the same climate group. This is a key result show-
ng the non-local character of eddy-flux point-scale observations
o improve the description of fluxes through process-based mod-
ling. It provides evidence for mapping carbon fluxes, for example,
sing tower flux data in different PFT/climate combinations as pri-
rs in an inverse modeling framework (e.g. Göckede et al., 2010;
ung et al., 2011). Theoretically, the information on error transfer-
bility in a PFT and climate group could also be used to optimize
he future network designed for carbon and water studies through
etter locating the sites for a given model.

Secondly, the ANN-modeled errors are less transferable
etween sites belonging to different climate groups (Case S2

nd S3) and different PFTs (Case S3 and S4) especially on the
easonal–annual and interannual timescales, as shown by the
educed or negative error transferability e.g. in LE and NEE (Fig. 5).
elling 246 (2012) 11– 25 19

This indicates that the method used to discretize vegetation types
in ORCHIDEE cannot fully describe the representation of ecosys-
tem functioning on the long timescale. The ORCHIDEE model would
benefit from accounting for more detailed climate groups in addi-
tion to PFTs for its parameterization. This is similar to results from
field observations on hundreds of plots showing ecoregion (primar-
ily delimited by climate, e.g. seasonal high and low temperatures,
precipitation) differences in forest type productivity, carbon pools,
and recovery from disturbance for a given forest type (Hudiburg
et al., 2009).

Thirdly, between sites (Case S2–S4), positive error transfer-
ability is found on the diurnal timescale and original time series
instead of long timescales. The ANN-modeled errors on the short
timescale are much less sensitive to PFT or climate group than the
errors on the long timescales, which is notably for H,  LE and Reco

(Fig. 5). However, this does not mean that the model has a bet-
ter ability to characterize the main processes driving the fluxes
on long timescales. In fact, larger relative model-observation mis-
match have been observed on long timescales (seasonal–annual
and interannual) compared to short timescales (diurnal). One of
the reasons is that on the diurnal cycle, the processes of pho-
tosynthesis and respiration are largely instantaneous responses
to diurnal climate variability (i.e. solar radiation, air temperature
and humidity) (Baldocchi, 1997). While, the long timescales might
be more affected by climate through site-specific slowly varying
‘biotic’ variables (e.g. phenology, soil carbon, leaf area, carbon allo-
cation) (Richardson et al., 2007; Stoy et al., 2009; Jung et al., 2011;
Dietze et al., 2011; Keenan et al., 2012b), land use and disturbance
history (Law et al., 2004), fertility and delayed responses to envi-
ronmental variations (Schimel et al., 2005). However, we  should be
informed of the inaccuracy of the extracted interannual variabil-
ity by SSA using relatively short time series in La Thuile FLUXNET
dataset (see Section 3.1).

4. Conclusions and outlooks

Our study develops and applies a neural network-based tech-
nique combined with time series decomposition to explore the
transferability of state-dependent model biases in both spatial
and timescale domains. This could enable the land surface mod-
eling community to identify a theoretical bound for the space of
model improvement and model uncertainties reduction. The posi-
tive error transferability is always found on both diurnal cycle and
original time series instead of long timescales (seasonal–annual and
interannual). Meanwhile, processes influencing fluxes vary with
timescales (the carbon allocation, phenology, carry-over effects
from anomalous climate years and disturbances), which can be
characterized by the near-zero or even negative error trans-
ferability across timescales. Our study implies that the model
development aimed to reduce model-observation mismatch using
original time series mostly benefits the short timescale (e.g. diur-
nal cycle) instead of long timescales, because short timescale often
accounts for most of the variability in original time series. Thus,
model evaluation and development should pay particular atten-
tion to the representation of processes across timescales to avoid
state-dependent biases at longer timescales.

Utilizing the global eddy covariance network, our study is the
first to examine the error transferability across sites in a large spa-
tial domain, which is delimited by PFT and climate groups. The flux
data represent ecosystem-scale processes and along with site mete-
orology, provide a means to diagnose model performance over a
ment achieved on the sites in a specific PFT and a specific climate
group could translate into improved model simulations at other
sites belonging to the same PFT and the same climate group. This
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s a non-local character of eddy flux point observations to improve
ux simulations through process-based modeling.

It should be noted that the state-dependent model biases are
nly partially characterized in this study, because ANN inputs
ould be restricted by both data availability and poor under-
tanding of some underlying processes. Meanwhile, long timescale
eparation from the original time series by SSA is unstable, and
ong-term eddy covariance records are thus needed, since they

ould facilitate the improvement of the representation of inter-
nnual variability in current land surface models. As longer records
f fluxes and the measurement of other variables such as mois-
ure become available for large sets of sites (e.g. Zreda et al.,
012), these methods may  be regarded as promising for diag-
osing model weaknesses and prioritizing improvements to the
odels. Our results are built upon ORCHIDEE and it will be inter-

sting to know whether our conclusions on error transferability
re robust across different land surface models in the future
tudy.
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Appendix A. ORCHIDEE climate forcing data gap filling
algorithms

For off-line simulations ORCHIDEE requires continuous half-
hourly incoming shortwave radiation (W m−2), incoming long-
wave radiation (W m−2), air temperature (K), specific humidity
(kg kg−1), wind speed (m s−1), surface pressure (Pa), and precipi-
tation rate (kg m−2 s−1). Before gap-filling, all half-hourly data in
La Thuile FLUXNET synthesis dataset is aggregated to daily values.
Each daily gap present in the climate forcing at eddy covariance site
is replaced by the corrected daily data from ECMWF  ERA-Interim
(IERA) 0.7 × 0.7 degree reanalysis. For all variables, the correction
applied to daily IERA fields was made by performing a linear regres-
sion analysis between daily in situ and IERA data. Since climate
forcing in ORCHIDEE is defined at a half-hourly time step, a diur-
nal cycle for each climate variable should be rebuilt from their daily
values. The following algorithm for disaggregating daily field to the
half-hourly one only applies to the gap-filled daily values.

For air temperature, half-hourly temperature values in gaps are
generated from daily values of maximum and minimum air tem-
perature by using a sinusoidal function assuming that maximum
temperature occurs at 14:00 local time and minimum tempera-
ture occurs at sunrise (Campbell and Norman, 1998). Half-hourly
specific humidity values are given by half-hourly dew point tem-
perature values. The latter is computed from the interpolated air
temperature minus the difference between mean daily dew point
temperature and mean daily air temperature. The diurnal cycle
of incoming shortwave radiation is assumed to fit a second-order
polynomial during daytime with a maximum at noon, and is set
to zero before sunrise and after sunset. The incoming longwave
radiation is computed at a half-hourly time step from air tempera-
ture, air humidity, and incoming shortwave radiation according to
Crawford and Duchon (1999).  Half-hourly wind speed is obtained
by a logarithmic function of both daily value and independent ran-
dom number generated from the normal distribution (Nicks et al.,
1987). For surface pressure, a constant value is assumed throughout
the day. Daily precipitation amounts are converted to half-hourly
by evenly distributing precipitation throughout the day.
Appendix B.

Table B1.
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Table  B1
List of site ID, latitude, longitude, PFT and climate of the sites used in the analysis.

Site ID Latitude Longitude PFT Climate group References

AT-Neu 47.12 11.32 GRA Temperate Wohlfahrt et al. (2008)
AU-Tum −35.66 148.15 TeEBF Temperate
AU-Wac −37.43 145.19 TeEBF Temperate
BE-Bra 51.31 4.52 TeDBF Temperate
BE-Lon 50.55 4.74 CRO Temperate
BE-Vie 50.31 6 TeDBF Temperate Aubinet et al. (2001)
BR-Ban −9.82 −50.16 TrEBF Tropical
BR-Cax −1.72 −51.46 TrEBF Tropical
BR-Ji2 −10.08 −61.93 TrEBF Tropical
BR-Ma2 −2.61 −60.21 TrEBF Tropical
BR-Sa1 −2.86 −54.96 TrEBF Tropical
BR-Sa3 −3.02 −54.97 TrEBF Tropical
CA-Ca1 49.87 −125.33 TeENF Temperate Humphreys et al. (2006)
CA-Ca2 49.87 −125.29 TeENF Temperate Humphreys et al. (2006)
CA-Ca3 49.53 −124.9 TeENF Temperate
CA-Gro 48.22 −82.16 TeDBF Temperate-Continental McCaughey et al. (2006), Pejam et al. (2006), Thomas et al. (2011)
CA-Let  49.71 −112.94 GRA Temperate-Continental Flanagan et al. (2002), Flanagan and Johnson (2005)
CA-Man 55.88 −98.48 BoENF Boreal Dunn et al. (2007)
CA-NS1 55.88 −98.48 BoENF Boreal
CA-NS2 55.91 −98.52 BoENF Boreal
CA-NS3 55.91 −98.38 BoENF Boreal
CA-NS4 55.91 −98.38 BoENF Boreal
CA-Obs 53.99 −105.12 BoENF Boreal
CA-Ojp 53.92 −104.69 BoENF Boreal Kljun et al. (2006)
CA-Qcu 49.27 −74.04 BoENF Boreal Giasson et al. (2006)
CA-Qfo 49.69 −74.34 BoENF Boreal Bergeron et al. (2007)
CA-SF1 54.49 −105.82 BoENF Boreal Mkhabela et al. (2009)
CA-SF2 54.25 −105.88 BoENF Boreal Mkhabela et al. (2009)
CA-SF3 54.09 −106 BoENF Boreal Mkhabela et al. (2009)
CA-SJ1 53.91 −104.66 BoENF Boreal
CA-SJ2 53.95 −104.65 BoENF Boreal
CA-TP2 42.77 −80.46 TeENF Temperate-Continental Peichl and Arain (2007)
CA-TP3 42.71 −80.35 TeENF Temperate-Continental Peichl and Arain (2007)
CA-TP4 42.71 −80.36 TeENF Temperate-Continental Arain and Restrepo-Coupe (2005)
CH-Oe1 47.29 7.73 GRA Temperate Ammann et al. (2007)
CZ-BK1 49.5 18.54 TeENF Temperate-Continental
CZ-BK2 49.5 18.54 GRA Temperate-Continental
DE-Bay 50.14 11.87 TeENF Temperate Staudt and Foken (2007)
DE-Geb 51.1 10.91 CRO Temperate Kutsch et al. (2010b)
DE-Hai 51.08 10.45 TeDBF Temperate Knohl et al. (2003), Kutsch et al. (2010a)
DE-Kli 50.89 13.52 CRO Temperate
DE-Meh 51.28 10.66 GRA Temperate Don et al. (2009)
DE-Tha 50.96 13.57 TeENF Temperate Grunwald and Bernhofer (2007)
DE-Wet 50.45 11.46 TeENF Temperate Rebmann et al. (2010)
DK-Sor 55.49 11.65 TeDBF Temperate Pilegaard et al. (2003)
ES-ES1 39.35 −0.32 TeENF SubTropical-Mediterranean
ES-ES2 39.28 −0.32 CRO SubTropical-Mediterranean
ES-VDA 42.15 1.45 GRA Temperate
FI-Hyy 61.85 24.29 BoENF Boreal Suni et al. (2003b)
FI-Sod 67.36 26.64 BoENF Boreal Suni et al. (2003a), Thum et al. (2009)
FR-Hes 48.67 7.06 TeDBF Temperate Granier et al. (2000)
FR-LBr 44.72 −0.77 TeENF Temperate Berbigier et al. (2001)
FR-Lq1  45.64 2.74 GRA Temperate
FR-Lq2 45.64 2.74 GRA Temperate
FR-Pue 43.74 3.6 TeEBF SubTropical-Mediterranean
GF-Guy 5.28 −52.93 TrEBF Tropical Bonal et al. (2008)
HU-Bug 46.69 19.6 GRA Temperate
HU-Mat 47.85 19.73 GRA Temperate
IE-Ca1 52.86 −6.92 CRO Temperate
IE-Dri 51.99 −8.75 GRA Temperate Byrne et al. (2007)
IS-Gun 63.83 −20.22 TeDBF Temperate
IT-Amp 41.9 13.61 GRA SubTropical-Mediterranean Gilmanov et al. (2007)
IT-BCi 40.52 14.96 CRO SubTropical-Mediterranean Kutsch et al. (2010b)
IT-Col 41.85 13.59 TeDBF SubTropical-Mediterranean
IT-Cpz 41.71 12.38 TeEBF SubTropical-Mediterranean Garbulsky et al. (2008)
IT-LMa 45.58 7.15 GRA Temperate
IT-Lav 45.96 11.28 TeENF Temperate
IT-MBo 46.02 11.05 GRA Temperate Marcolla and Cescatti (2005), Gianelle et al. (2009)
IT-Mal 46.12 11.7 GRA Temperate
IT-Non 44.69 11.09 TeDBF SubTropical-Mediterranean
IT-PT1 45.2 9.06 TeDBF SubTropical-Mediterranean Migliavacca et al. (2009)
IT-Ren 46.59 11.43 TeENF Temperate Montagnani et al. (2009)
IT-Ro1 42.41 11.93 TeDBF SubTropical-Mediterranean Rey et al. (2002)
IT-Ro2 42.39 11.92 TeDBF SubTropical-Mediterranean Tedeschi et al. (2006)
IT-SRo  43.73 10.28 TeENF SubTropical-Mediterranean
JP-Tak 36.15 137.42 TeDBF Temperate-Continental
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Table B1 (Continued)

Site ID Latitude Longitude PFT Climate group References

JP-Tom 42.74 141.51 TeDBF Temperate-Continental
KR-Hnm 34.55 126.57 CRO SubTropical-Mediterranean
KR-Kw1 37.75 127.16 TeDBF Temperate-Continental
NL-Ca1 51.97 4.93 GRA Temperate
NL-Hor 52.03 5.07 GRA Temperate
NL-Loo 52.17 5.74 TeENF Temperate Dolman et al. (2002)
PT-Esp 38.64 −8.6 TeEBF SubTropical-Mediterranean
PT-Mi1 38.54 −8 TeEBF SubTropical-Mediterranean
PT-Mi2 38.48 −8.02 GRA SubTropical-Mediterranean
RU-Che 68.61 161.34 GRA Boreal Merbold et al. (2009)
RU-Fyo 56.46 32.92 TeENF Temperate-Continental Milyukova et al. (2002)
RU-Ha1 54.73 90 GRA Boreal Marchesini et al. (2007)
RU-Zot  60.8 89.35 BoENF Boreal
SE-Fla 64.11 19.46 BoENF Boreal
SE-Nor 60.09 17.48 TeENF Temperate-Continental
UK-ESa 55.91 −2.86 CRO Temperate
US-ARM 36.61 −97.49 CRO SubTropical-Mediterranean
US-Bkg 44.35 −96.84 GRA Temperate-Continental Gilmanov et al. (2005)
US-Blo 38.9 −120.63 TeENF SubTropical-Mediterranean
US-Bo1 40.01 −88.29 CRO Temperate-Continental Meyers and Hollinger (2004)
US-Bo2 40.01 −88.29 CRO Temperate-Continental Meyers and Hollinger (2004)
US-Dk1 35.97 −79.09 GRA SubTropical-Mediterranean
US-Dk2 35.97 −79.1 TeDBF SubTropical-Mediterranean
US-Dk3 35.98 −79.09 TeENF SubTropical-Mediterranean
US-Goo 34.25 −89.97 GRA SubTropical-Mediterranean
US-Ha1 42.54 −72.17 TeDBF Temperate-Continental Urbanski et al. (2007)
US-Ho1 45.2 −68.74 TeENF Temperate-Continental Hollinger et al. (2004)
US-Ho2 45.21 −68.75 TeENF Temperate-Continental
US-IB1 41.86 −88.22 CRO Temperate-Continental
US-IB2 41.84 −88.24 GRA Temperate-Continental
US-LPH 42.54 −72.18 TeDBF Temperate-Continental Borken et al. (2006)
US-MMS 39.32 −86.41 TeDBF SubTropical-Mediterranean Schmid et al. (2000)
US-MOz 38.74 −92.2 TeDBF SubTropical-Mediterranean
US-Me2 44.45 −121.56 TeENF SubTropical-Mediterranean Thomas et al. (2009)
US-Me4 44.5 −121.62 TeENF SubTropical-Mediterranean Law et al. (2001)
US-Ne1 41.17 −96.48 CRO Temperate-Continental Verma et al. (2005)
US-Ne2  41.16 −96.47 CRO Temperate-Continental Verma et al. (2005)
US-Ne3 41.18 −96.44 CRO Temperate-Continental Verma et al. (2005)
US-PFa  45.95 −90.27 TeDBF Temperate-Continental Ricciuto et al. (2008)
US-SP2 29.76 −82.24 TeENF SubTropical-Mediterranean
US-SP3 29.75 −82.16 TeENF SubTropical-Mediterranean
US-Syv 46.24 −89.35 TeDBF Temperate-Continental Desai et al. (2005)
US-UMB 45.56 −84.71 TeDBF Temperate-Continental Gough et al. (2008)
US-Var  38.41 −120.95 GRA SubTropical-Mediterranean Ma et al. (2007)
US-WBW 35.96 −84.29 TeDBF SubTropical-Mediterranean
US-WCr 45.81 −90.08 TeDBF Temperate-Continental Cook et al. (2004)
US-Wi4 46.74 −91.17 TeENF Temperate-Continental
US-Wrc 45.82 −121.95 TeENF SubTropical-Mediterranean
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