

Nitrous Oxide from South West Irish grasslands and its relationship with important parameters

Rashid Rafique*, Ger Kiely, Paul Leahy, Dong-Gill Kim,

Contact Information: r.rafique@student.ucc.ie, + 353 21 4903816 (www.hydromet.org/)

Department of Civil and Environmental Engineering, University College Cork, Ireland

Introduction

The emission of the greenhouse gas (GHG), nitrous oxide (N_2O) from human activities are contributing to global climate change. An estimated 29% of Ireland's GHG emissions are from the agricultural sector and N_2O make half of these [1]. Soil microbes produce and consume N_2O during the process of nitrification and denitrification [2]. The interplay between the amount of nitrogen cycling, soil environmental conditions and climatic parameters govern microbial processes. This study shows the current N_2O emission from South West part of Ireland and also shows the relationship of different N_2O controlling players with N_2O emissions.

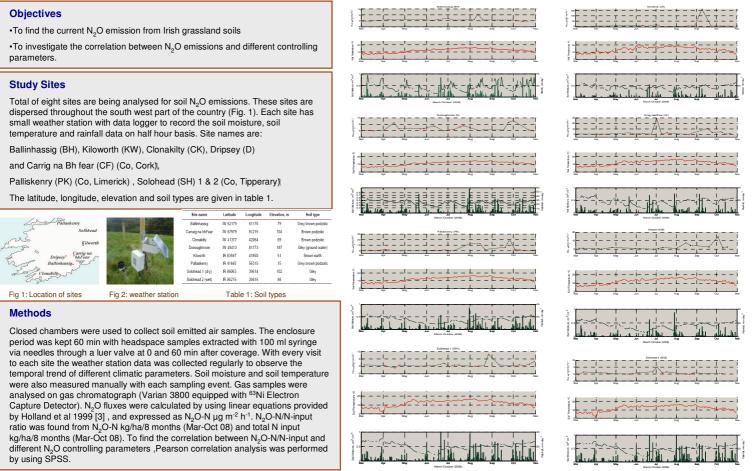
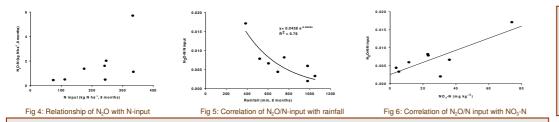



Fig 3: Temporal variation of N2O flux, soil moisture, rainfall and soil temperature over the period of 8 months

Results and discussion: The temporal variation of N_2O flux, soil moisture contents, rainfall and soil temperature from all sites are shown in the fig 3. Three sites BH, SH1 and SH2 showed both positive and negative fluxes while all other sites gave positive flux. The total N_2O emissions, N input, N_2O/N input, soil properties and cumulative rainfall are given in table 2. Fig 4 shows a very week relationship between N_2O emission and N-input. The correlation between N_2O/N -input with other few controlling parameter i.e. % C, % N, pH, Organic matter, NO_3 -N, NH_4 -N, bulk density, porosity, WFP % and rainfall was also checked. We found a significant relation with rainfall and NO3-N contents as shown in table 3. Rainfall gave negative correlation while NO_3 -N contents gave a positive relationship as shown in fig 5 and fig 6. NO_3 -N positve correlation shows that the N_2O emission is manily from denitrification.

Table 2: Total N2O flux, N input, soil properties, WFPS %, cumulative rainfall over the period of 8 months from all sites													Table 3: Correlation analysis of N2O-N/N-input with important parameters			
Site names	N ² O (kg ha ⁻¹	N input (Kg/ha)	N ² O-N/N input ratio	% C	% N	ph	Organic matter	NO3-N ppm	NH4-N ppm	Bulk density (g/cm ⁻³)	Porosity	WFPS % (% of data with 60-80%	Rainfall mm	Parameters	Correlation co-efficient (r)	Significance value (p)
	year")	(P.P		(g)		WFPS)		%C	0.24	
BH	0.49	111.64	0.004	3.42	0.39	5.8	7.24	3.7	50	1.04	0.61	26.67	693.9	96 N	0.37	
CK	5.7	333.4	0.017	4.77	0.57	5.9	9.22	74.05	35.4	0.99	0.63	50	385	pH	0.24	
D	1.11	335.58	0.003	4.5	0.35	6.7	8.45	5.3	46.1	1.02	0.62	17.65	1051.2	Organic matter	0.24	
CF	1.6	241.65	0.007	5.67	0.64	6.4	9.9	36.1	60.35	0.88	0.67	57.14	604.6	NO3-N ppm	0.83	0.05
PK	2.02	246.68	0.008	4.84	0.56	5.4	9.62	22.9	53.05	1.05	0.6	22.22	755	NH4-N ppm	0.24	
KW	1.37	174.76	0.008	4.17	0.49	57	7.87	23.2	19.65	1.08	0.59	35.71	520.2	Bulk density	0.04	
				4.73		6.0								Porosity	-0.04	
SH1	0.48	243.49	0.002		0.57	6.3	8.48	30.6	14.55	0.99	0.63	47.06	980	WFPS %	0.35	
SH2	0.44	74.18	0.006	7.82	0.97	6.5	14.77	11.45	30.6	0.85	0.68	45.45	980	Rainfall	-0.8	0.05

Conclusion: CK, PK and KW are giving the high emission as compare to all other sites. BH, SH1 and SH2 are giving lowest emissions. 3 sites out of 8 are giving both positive and negative fluxes. There was nor significant relatioship beteen N_2O emission and N-inputs. N_2O /N-input showed a significant positive correlation with NO₃-N contents and a negative correlation with randall.

References

[1] Ireland`s Environment 2008, report, Environmental Protection Agency, 2008.

[2] Williams, EJ., Hutchinson, G.L., Fehsenfeld, F.C., 1992. NOx and N2O emissions from soil. Global Biogeochemical Cycles 6, 351-388

[3] Holland, EA., Robertson, G.P., Greenberg, J., Groffman, P.M., Boone, R.D., Gosz, J.R., Standard soil method for long term ecological research.

Acknowledgement: Project is funded by the Department of Agriculture under Research Stimulus Fund Programme (grant # RSF 06 372). Thanks also to all the landowners who allowed the use of their grasslands for this project.