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Abstract. The multifractal nature of the rainfall field is
analysed using the methodology of singular measures. The
analysis is applied to a long time series (54 years) of
hourly rainfall intensities recorded at Valentia on the
South-West Coast of Ireland. The empirical probability
distribution function suggests a hyperbolic intermittency
with the divergence of the statistical moments being higher
than the second order. The latter is in agreement with
findings of other authors for similar climatic regions (e.g.
Sweden). The Fourier transform statistics of the data are
used to obtain the scaling range in which the data obey a
power law with a coefficient of ~0.5. The scale invariance
as identified by the spectral power law, ranges from 2
hours to about 24 hours. This is a narrower range than has
been found for similar studies using continental sites
whemﬂlemngewasfoundtobefmmZhoursto about 3
days. Studies of Valentia rainfall using conventional
statistics suggest that two distinct periods, (1940-1975 and
1976-1993) are clearly present. The second period is
characterised by a greater annual rainfall depth than the
first, and the increased depth was found to be concentrated
primarily in the months of March and October. The
intermittency analysis of the rain field of the two periods
reveals two different K(g)-functions. The curvature of the
K(g) convexity has been found to be larger for the second
period suggesting lower intermittency or more frequent
rain events. The intermittency function C, for the period
1976-1993 is shown to be quantitatively less than C, for
the period 1940-1975, for the annual, March and October
time series verifying increasing precipitation since 1975.
© 1999 Elsevier Science Ltd. All rights reserved.

1. Imtroduction.

The fundamental source term driving hydrological
runoff process and hence river flow fluctuations is the rain
field. The scaling properties of this field and many other
geophysical fields (e.g. liquid water in clouds) have been
the subject of considerable investigation over the past 15
years. At first, several attempts were made to estimate the
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fractal dimension (presumed monofractality) of rainfall
(Lovejoy and Mandelbrot, 1985). However, during the
1980's it became clear that the appropriate framework for
hydrological and precipitation analysis should be
multifractal (Schertzer and Lovejoy, 1985, Rodriguez-
Iturbe and Rinaldo, 1997).

Precipitation fluctuations in time (and space) are due to
a wide range of physical processes which range from
climate dynamics to water droplet formation. The
dynamics of rainfall and river runoff phenomena may be
characterised by a wide range of scales which exhibit scale
invariance, i.e., fluctuations at small scales are related to
fluctuations at larger scales by the same scaling law. The
scaling behaviour within a frequency range may be useful
to characterise the time scale of the rainfall and runoff
phenomena and may be examined using spectral analysis.
Information on spectral peaks is trivial and does not
provide as much detail as does the characterisation of
geophysical phenomena by spectral scaling laws over a
range of scales.

In the past two years there is a growing interest in
rainfall parameterisation through multifractal approaches
(Tessier et al., 1996; Svensson et al., 1996; Olsson and
Nimczynowicz, 1996; Harris et al., 1996; Veneziano et
al, 1996; Schmitt et al., 1998). In this paper, scaling
methods are applied to a precipitation time series to
identify its scaling behaviour. We apply a multifractal data
analysis technique, recently proposed by Davis et al.,
(1994) to study complex non-linear geophysical processes
observed over a large range of space and time scales. The
technique is aimed at investigating non-stationarity and
intermittency as two complementary features of the
geophysical data.

In this presentation we examine (i) the scaling
behaviour through spectral analysis and (i)
parameterisation of the rainfall based on the study of its
main peculiarity, that of intermittency.

2. Rainfall Data
The database comprises 54 years of hourly rainfall from

1940 to 1993 at the Valentia meteorological station on the
South-West coast of Ireland (51°52°N, 10°23'W and 9m



782 G. Kiely and K. Ivanova: Multifractal Analysis of Hourly Precipitation

above sea level). The data were collected by the Irish
meteorological service who advise that there has been no
change in rain gage surroundings over the period of record.
The climate on the west of Ireland is temperate maritime
moderated by the warm Gulf Stream. The prevailing wind
direction is from the South-West, and these winds tend to
bring rain from the Atlantic. The annual rainfall is about
1400mms, with rainfall in all months. In summer the

monthly amounts are about 75mms while in the winter
they are about 150mms.

Figure 1 shows the hourly rainfall for a typical year
(1949). In winter the wet hours per month are as high as
80% of the time, while in summer as much as 50%.
Rainfall intensities rarely exceed 10mms/hour while winter
hourly intensities are typically 2-4mms/hour. From Figure
1, it is clear that rainfall is an all year round phenomena
with increased intermittency in the summer months.

10 —r —

N @ o
T T T

[
-+

&
o=

o

Hourly rain intensity, mmihe

LY

-

150

Figure 1. A typical year (1949) of hourly rainfall at Valentia.

3. Methodology.
3.1 Scaling tests.

The hourly rainfall data exhibit fluctuations at a large
variety of scales. The simple scaling properties of the
rainfall data are examined using two standard techniques:
the power spectrum and the empirical probability
distribution. The power spectrum is of the form:

E(f)< f* Mm

and is obtained as a Fourier transform of the data and
suggests the range in which scaling exists. The value of
the spectral exponent B provides information on the
stationarity of the signal. If 0< B <1 the data series is said
to be stationary. If B >1 the signal is said to be non-
stationary and if B <3 the signal is non-stationary with
stationary increments (Monin and Yaglom, 1975). In the
latter case, it is essential to conduct the analysis over the
small-scale gradient field (Davis et al., 1994, Ivanova and
Ackerman, 1998).

The empirical probability distribution function
describes the scaling of the intensity fluctuations at a given
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scale, usually equal to the resolution of the data (Fraedrich
and Larnder, 1993). The probability density function

Pr (X > x) defines the probability of observed intensities
exceeding a fixed threshold x. If the signal is
characterised by hyperbolic intermittency (Lovejoy and
Mandelbrot, 1985) the tail of the pdfis scaled as

Pr(X > x)c x™% )

Equation (2) defines the critical order value of gp after
which the statistical moments diverge (Schertzer and
Lovejoy, 1987). This is interpreted for orders lower than
the critical order ¢ = qp for all values of the time series
that contribute to the average moments. For g>¢p only the
extreme (maximum) events influence the moments.

3.2 Analysis for Intermittency through 'singular
measures

The singular measure analysis of the small-scale
gradient field obtained from the data set,

@(x;), i=0,.,A, is performed to account for the
intermittency. The procedure includes: (i) taking the small-
scale differences
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AL =p(x,,))~o(x;), i=0,.,A-1 ()

(ii) applying absolute values; and (iii) with some optional

normalising we then end up with
|Ae(1; 1)
e )=, x=0,.,A-1 )
(A D))
where (|Aq:(l;l)|> = %2|A¢(l;l)| (5)
1=0

The procedure continues with coarse screening of data by
performing spatial averages. We derive a series of ever
more coarse screened values and, therefore, ever smaller
fields gr;l) averaged over r sized boxes for r=1,2,..,4
= 2™ (The assumption of the size being an integer power
of 2 is not essential for the outcome.)

1 H4r-1
e(r)=- 2 e(Ll),
r

=1

x=0,..,A-r 6)

After each step in » an ensemble average is taken and
the result is denoted by <e@;)>. Then the scaling
properties of this new quantity are studied with respect to
r. Furthermore, not only the first order statistical moments
but arbitrary gth order statistics <&;))? > can be derived.
Their power law behaviour with respect to  is also sought
to behave like

(e(r;l)") oc (r)"K("),q 20 )

The method continues to calculate both a (non-decreasing)
function C(g)=K(g)/(q-1) and a (non-increasing) function
D(g)=1-C(q). The latter is the hierarchy of the so-called
generalised dimensions studied by  Hentschel and
Procaccia (1983) and by Grassberger (1983) along the
lines of deterministic chaos theory. Dy is the usual box-
counting fractal dimension and has meaning only for self-
similar fractals. Dy is the information dimension
stemming from the definition of entropy in the information
theory. D, is the correlation dimension and measures the
scaling of the correlation function (Hentschel and
Procaccia 1983, Grassberger, 1983, McCauley, 1990). If
D(g) varies with g, a multifractal behaviour exists. We
restrict our considerations to the information dimension
Dy.

L'Hospital's rule in the limit of ¢~/ provides a
straightforward measure of the in-homogeneity of the field
that defines the intermittency parameter C,. The
sparseness of the signal is characterised by C;. A large C,

value describes a high level of intermittency and
spikeness and therefore small values of information
estimated through D,. However, C; is not fully sufficient
to describe the multifractal properties of a signal. This is
obtained by the entire spectrum of K(g) values.

4. Data Analysis and Results.

4.1 Simple scaling and order of divergence of
moments.

The scaling properties of the rainfali data are first
examined. Previous studies by Kiely et al. (1998) of the
same data using conventional statistics identified two
periods (1940-1975 and 1976-1993) with distinctly
different summary statistics. The post 1975 period has an
annual rainfall 10% greater than that of the pre-1975
period. Furthermore this increase is mostly contained in
the months of March and October. The increase is due to
increasing frequency of westerly rain bearing winds as
seen in the changes to the North Atlantic Oscillation
(Kiely, 1999). We compute the power spectrum for the
full period 1940-1993 and for the two sub periods (pre and
post 1975). Figure 2 shows the power spectrum for the
full period.

From the spectral plot we see clear spectral peaks at
one year and at six months indicative of intrinsic
periodicities of the annual and half annual cycle.

There are several distinct scaling regions in the spectral

plot.
(a). I month to > 1 year. This region exhibits a flat or
spectral plateau with a spectral exponent of A=0. This
region governs inter-seasonal and  intra-seasonal
variability.

(). I day to 1 month. It may be considered as a transition
region between region (a) and (c) with a scaling exponent
of §=0.12 £ 0.03

(c). 2 hours to 1 day. This region governs frontal weather
systems. The main characteristic of this region of the
spectra is in the scaling of this high frequency end with an
exponent of #= 0.52¢ 0.01. This value of the exponent
indicates stationarity of the rainfall events. The range in
which the scaling properties holds, spans from twice the 1
hour discretization interval to ~lday. Fraedrich and
Larnder (1993) reported an upper scaling limit for frontal
systems of approximately 3 days from a rainfall series
from various European stations. Scaling up to three days
is reported also for high resolution (~8min) rainfall data
from Sweden (Olsson, 1995). We interpret our findings of
an upper scaling region of ~1day to be specific to the local
maritime climate characteristics at Valentia. The west of
Ireland is a first landfall point for Atlantic frontal systems
from the south-west.

The data used is hourly observations so the spectra do
not enter the very high frequency range (less than 1 hour).
Downscaling from houwrly to 5-minute storms is an
exercise yet to be undertaken,
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Figure 2. Power spectrum of the hourly rainfall. The power is averaged over logarithmically spaced frequency intervals.
The straight lines represent the linear fits of £(f) oc ™7 with the exponent $=0.5 from 2hrs to 1 day and an exponent

of 0.12 from 1 day to 1 month. The exponents are the same for the full period (1940-1993) and for the two sub periods
(1940-1975 and 1976-1993
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Figure 3. Empirical probability density function (normalised) Pr(X>x) for the two periods. The linear fit of the tail of
Pr(X > x) oc x™ % defines the largest order gp=4 after which the moments will diverge.
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In analysing the power spectra and the empirical
probability density Pr(X>x) we consider the entire length
(including hours of zero rain) of the rainfall series for each
period (pre and post 1975). In Figure 3 the (normalised)
probability density functions for the two periods are
drawn. The linear fit of the fail of the distributions

LELGERY) SR 1 L =L LR ) S pLLLEL L) L

represented by (the same) straight lines for both cases of
interest defines the largest order after which the moments
will diverge, that is gp=+4. Therefore, the multifractal
analysis should be performed for orders of moments for
q4.

4.2 Multifractal properties.

The multiscaling properties of the rainfall field were
examined using the K(g) spectrum for positive moment
orders g smaller and equal to g The results for g<0 lead
to large uncertainties so that the numerical analysis is
somewhat less relevant in this part of the spectrum. The
same implies to the H(g) spectrum which characterises the
structure functions (Vandewalle and Ausloos, 1998).

For each year the <g;/)?> measure is calculated for

fixed value of g /0.1, 4]. Then for each q the ensemble

average is calculated over the first (1940-1975) period and
the second (1976-1993) period. The scaling properties of
the averaged singular measures are tested using Equation
(7). By fitting with a line of <gr;)*> vs. r in a log-log

slot we ghtain the values of the Kva) function for fived o
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Farvwe iy

'I‘l\eK(q)wrvelspresentedengne4forthetwo
periods. The error bars indicate the linear fitting precision.

It should be noted that the increasing behaviour of X(g)
is unlike the minimum containing curve for 0<q<1
obtained when analysing other atmospheric such
as liquid water in clouds (Davis et al., 1994; Ivanova and
Ackerman, 1999). Thediffcrenoeisduetoﬂnefactllntwe
analyse the raw rainfall data. If we modified the data by
extracting the dry hours, i.e. zeros of the time series, then
the K(g) function would possess a minimum for ¢ in the
intetval 0<g<l (Schmitt, 1998). Our result is in
agreement with Olsson's (1995) findings for K(g) rainfall
scaling. Tbeabovedlscrepancydoesnotalmﬂ\eovemll
non-linear behaviour of the K(g) spectrum. It is the
convexity of this characteristic exponent that determines
the multifractality of the rainfail field
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Figure 4. The characteristic intermittency exponent K(g) as defined by <€(r;l )q> o p K@ s

q2>0. The empty

circles apply to the period 1976-1993 and the open triangles are for the period 1940-1975.
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4.3 Intermittency (C; ) results.

We examine the two periods for intermittency C;. In
Table 1 the C, parameter is shown for the annual series. It
is seen that the intermittency is higher in the early period
(1940-1975). This suggests increased rainfall in the second
period. When we compute C, for the March and October
time series we find similar results, i.e. increasing rain in
the post 1975 period. However when we compute the
intermittency for the month of May, there is little
difference in C, for the pre and post 1975 periods.

S. Discussions and Conclusions.

We have analysed 54 years of hourly rainfall data at a
coastal site on the south-west of Ireland using multifractal
techniques. Analyses included investigations of the power
spectra for scaling behaviour and investigations of
intermittency using the concept of singular measures for
quantifying differences between two periods. Further
work is to do spectral analysis of two years of 5 minute
data with the view to scaling in the storm or sub 1 hour
range.

Table 1. INTERMITTENCY (C1) parameters for the
period I (1940-1974) and period II (1975-1993)
for the Annual, March, May and October,
hourly rainfall time series at Valentia, Ireland.

Season C1 Cl AC1
Period 1 Period 2 Period 1-
1940-1974 1975-1993 Period 2
Annual 0.344 0.303 0.041
March 0.372 0.338 0.034
May 0.403 0.390 0.013
October 0.373 0.353 0.020

The analysis showed that scaling of the power spectra at
the high frequency end has an exponent B of 0.52
corresponding with a range of 2 hours to 24 hours. This
temporal range and exponent holds for the full period
1940-1993 and for the two distinct periods, 1940-19975
and 1976-1993. This upper end of the scaling range of 1
day is lower than that the 3 days found by other authors.

Analysis of K(q) scaling verify that this rainfall data
set is multifractal.

Analysis of intermittency (C,) for the two periods (pre
and post 1975) indicates a substantial reduction in
intermittency from pre to post 1975 periods. This is also
highlighted in the specific months of March and October.
The results from the multifractal analysis correlates with
results found earlier using conventional statistics that

Valentia has experienced increased rainfall since 1975.
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