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Abstract. An operational framework is presented for assimilating surface soil moisture
remote sensing measurements into a soil-vegetation-atmosphere-transfer (SVAT) model
for the robust prediction of root zone moisture time series. The proposed approach is
based on analytical treatment of the dynamical equations coupling surface and deeper soil
reservoirs. The resulting framework uses biases between observed and modeled time rates
of change of surface soil moisture to quantify biases between modeled and actual root
zone average soil moisture contents. The approach is based on the popular interactions
between soil-biosphere-atmosphere (ISBA) force-restore SVAT model. An experimental
data set, collected near Cork, Ireland, is analyzed both for a long data series of 183 days
and four short periods that were selected to focus on different hydrometeorological
conditions. The results demonstrated that the proposed framework performs uniformly
robust over 3 orders of magnitude of misspecification of saturated hydraulic conductivity.
In the presence of uncertain initial conditions, the results demonstrated a marked increase
in model skill (over the original ISBA model) for periods when average precipitation was
less than average potential evaporation.

1. Introduction

The exchange of heat and moisture between the land surface
and the atmosphere drives weather and climate systems. The
states of the surface and root zone soil moisture reservoirs are
key variables controlling surface water and energy balances.
Consequently, there is a need for accurate spatial and tempo-
ral representation of soil moisture in models of hydrologic
(flood forecasting, irrigation, and agriculture) and atmospheric
processes. Soil-vegetation-atmosphere-transfer (SVAT) mod-
els have been developed to simulate these mass and energy
transfers and to update the soil moisture and thermal condi-
tions through time from the solution of surface moisture and
energy balance equations [e.g., Noilhan and Planton, 1989;
Famiglietti and Wood, 1994; Wigmosta et al., 1994].

The accuracy of the land surface flux estimates is often
limited by the accuracy of the soil moisture predictions [Koster
and Milly, 1997]. Soil moisture model skill is typically limited by
a combination of uncertainty in the initial conditions of the
state variables and uncertainty in model physical and biological
parameters. These problems are even more pronounced when
attempting to model a large spatial domain. To compensate for
these uncertainties, there has been a heightened effort at data
assimilation, seeking to guide models with periodic observa-

tions of certain state variables, such as surface soil moisture.
This merger of measurements and models through data assim-
ilation is intended to provide optimal estimates of the state of
the natural environment in the face of uncertain initial condi-
tions and incomplete knowledge of soil and vegetation prop-
erties. Since the models are applied to provide spatially dis-
tributed predictions, the data sets used in the assimilation
should have similar geographic coverage. The only general
hope of obtaining such distributed observations of large-scale
spatial fields of land surface variables is from remote measure-
ment platforms [McLaughlin, 1995].

Ottlé and Vidal-Madjar [1994] used visible and thermal in-
frared remotely sensed data to constrain the surface soil mois-
ture simulated by a catchment scale hydrological model, with a
surface energy balance providing the link between moisture
status and the radiative brightness temperature of the surface.
While these preliminary results are encouraging for remote
sensing applications, the comparison with data suggests sig-
nificant room for improvement. Houser et al. [1998] updated
surface soil moisture state observations in the three-layer
topographically based land-atmosphere transfer scheme
(TOPLATS) model [Famiglietti and Wood, 1994] through a
range of techniques with mixed results regarding the root zone.
They concluded that assimilation methods of moderate com-
plexity are preferable to more complex techniques.

While passive and active microwave sensors have been use-
ful for estimating spatial fields of soil moisture [Jackson, 1997;
Giacomelli et al., 1995; Altese et al., 1996; Bolognani et al., 1996;
Mancini et al., 1999], these measurements typically probe only
the thin surface soil layer (5–10 cm). However, hydrologic and
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meteorological models require information about the soil
moisture content in the full root zone. The possibility of esti-
mating the root zone soil moisture from knowledge of the
surface soil moisture status has been addressed by several
authors, with approaches ranging from an empirical linear
regression [Arya et al., 1983] to knowledge-based approaches
that use a priori information about the soil hydrologic proper-
ties and assumptions regarding the hydrodynamic status [Jack-
son, 1980; Camillo and Schmugge, 1983; Newton et al., 1983].
Jackson [1980] demonstrated that the soil moisture profile can
be estimated reasonably with an assumption of vertical hydrau-
lic equilibrium (i.e., hydrostatic) on a daily time step. Camillo
and Schmugge [1983] retrieved root zone soil moisture esti-
mates from surface measurements for dry soils with fully grown
roots using a linear relationship between moisture contents in
the two soil layers based on a simple solution of Richards
equation.

More recently, Entekhabi et al. [1994] demonstrated a solu-
tion of the inverse problem for the retrieval of soil moisture
and temperature profiles from remotely sensed observations of
multispectral irradiance using the extended Kalman filter. The
Kalman filtering algorithm, which is based on the linearization
of the state and measurement equations, is widely used for
data assimilation in meteorology and hydrology because it per-
mits a rigorous treatment of the fundamental sources of un-
certainty from measurement error, model error and parameter
variability [McLaughlin, 1995]. Galantowicz et al. [1999] tested
the one-dimensional (1-D) assimilation methodology intro-
duced by Entekhabi et al. [1994] to retrieve the soil moisture
profile from periodic radiobrightness data for an 8 day field
experiment and a 4 month synthetic study. Walker et al. [2001]
used a Kalman filter-based assimilation to retrieve (estimate)
the soil moisture profile directly from synthetic surface soil
moisture observations. Assimilation of active microwave ob-
servation data into a model of the unsaturated zone for esti-
mation of the soil moisture profile status for bare soils was
recently conducted by Hoeben and Troch [2000], using the
extended Kalman filter and a one-dimensional implementation
of Richards equation. Hoeben and Troch [2000] reported ex-
cellent performance in the presence of known soil hydraulic
properties and a high-resolution implementation of Richards
equation for frequency of assimilation of at least 1 day�1.

From an operational point of view, there remains a need for
a robust integration of periodic surface remote sensing infor-
mation into a dynamic soil water balance model to improve the
simulation of root zone soil moisture [Ragab, 1995]. Moreover,
there is need for a system that is both applicable over a wide
range of conditions, where the vertical profile may not be
hydrostatic, and computationally simple for application over
large distributed domains. The availability of high-quality re-
mote sensing data will often be limited to a daily frequency,
while a dynamic SVAT model typically runs at temporal res-
olutions of 1 hour or finer. SVAT models typically include a
thin surface soil layer and one or more thicker layers compris-
ing the remainder of the root zone. The surface layer is the
region that may be observed, or partially observed, by remote
microwave sensors. However, this represents a small part of
the entire root zone. Attempts are now focusing on assimilat-
ing surface remote sensing observations to improve predictions
in the entire root zone. For the two soil compartment (thin
surface layer and total root zone) SVAT models (e.g., interac-
tions between soil-biosphere-atmosphere (ISBA) model of
Noilhan and Planton [1989]) a vertical Kalman filter algorithm

does not seem appropriate. The filter is more attractive for
fine-resolution profiles, where error-covariance matrices are
most appropriate and useful [Walker et al., 2001].

Approaches that update only the state of the observed layer
typically do not improve model skill in the bulk of the root
zone [Li and Islam, 1999]. Consequently, it seems reasonable
to conclude that an operational assimilation of remotely
sensed near-surface data into a SVAT model must include the
ability to update the root zone status as well as the surface
status. Wigneron et al. [1999] used the ISBA model and the
results of Mahfouf [1991] and Calvet et al. [1998] in a study
using the surface moisture estimates to retrieve the initial
value of the root zone soil moisture for two long data sets over
soybean crops. This retrieval algorithm estimates the initial
conditions of the root zone soil water content by minimizing
the root-mean-square error (RMSE) between daily measured
and simulated surface soil moisture. Wigneron et al. [1999]
highlighted the necessity for an integration period of at least
20–30 days for acceptable estimation of the initial root zone
status. The approach performed well; however, the “hindcast-
ing” nature of the statistical inversion is not particularly well
suited for an operational system.

In this paper we derive and apply an operational assimilation
protocol that incorporates periodic surface moisture observa-
tions to dynamically constrain the root zone soil moisture. We
base the protocol development on the ISBA force-restore
method [e.g., Noilhan and Planton, 1989; Noilhan and Mahfouf,
1996] with modifications developed for a stratified soil [Mon-
taldo and Albertson, 2001]. We assess the predictive skill using
a long time series of meteorological and soil moisture data
available for a site in Cork, Ireland [Albertson and Kiely, 2001].
The in situ surface soil moisture observations are used as a
proxy for the remote sensing information and measurements
errors are not explicitly considered. We use the term “data
assimilation” here in a broad sense, where data is assimilated
(however crudely) into a model. Future work would be re-
quired to cast the work presented here in a more formal as-
similation context, where measurement and model errors
could be treated simultaneously and even optimally, such as
with the extended Kalman filter.

2. Theoretical Development
In this section we describe briefly the SVAT model as mod-

ified to handle stratified soils, and we present the analytical
basis for the assimilation of surface moisture observations into
the root zone simulation.

2.1. Force-Restore SVAT Modeling Approach

The evolution of the surface thermal status is based on a
“forcing” by the net energy exchange with the atmosphere (i.e.,
net radiation–sensible heat flux–latent heat flux) and a “restor-
ing” action drawing the surface temperature toward the deep
(or average) soil temperature [Bhumralkar, 1975; Blackadar,
1976; Deardorff, 1978]. The force-restore approach has been
extended, by analogy, to simulate soil moisture content [Dear-
dorff, 1978]. On the basis of its parsimonious parameterization
and reasonable skill, this approach is widely used in practice
[e.g., Noilhan and Planton, 1989; Hu and Islam, 1995; Noilhan
and Mahfouf, 1996; Lo Seen et al., 1997; Albertson and Kiely,
2001] and, consequently, provides a sound and practical basis
for the development of an operational assimilation protocol
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[Mahfouf, 1991; Calvet et al., 1998; Wigneron et al., 1999; Ragab,
1995; Li and Islam, 1999].

We start with the ISBA force-restore model, which is well
described elsewhere [Noilhan and Planton, 1989; Noilhan and
Mahfouf, 1996]. For context, we present the soil moisture evo-
lution equations here. The model considers the near-surface
and total root zone soil layers of depths d1 and d2 and volu-
metric water contents �g and �2, respectively, which evolve
according to

��g

�t �
C1

�wd1
�Pg � Eg� �

C2

�
��g � �geq� 0 � �g � � s (1)

��2

�t �
1

�wd2
�Pg � Eg � Etr � q2� 0 � �2 � � s, (2)

where Pg is the precipitation infiltrating into the soil, Eg is the
bare soil evaporation rate at the soil surface, Etr is the tran-
spiration rate from the root zone (d2), q2 is the rate of drain-
age out of the bottom of the root zone, �w is the density of the
water, �s is the saturated soil moisture content, C1 and C2 are
the force and restore coefficients for soil moisture, and �geq is
the equilibrium surface volumetric moisture content describing
the hypothetical reference moisture value for which gravity
balances the capillary forces such that there is no vertical water
flow crossing the base of the thin surface layer of depth d1

[Noilhan and Planton, 1989]. We adopt the unit gradient as-
sumption of gravity drainage from the root zone, so that q2 �
k2 (where k2 is the hydraulic conductivity of the root zone at
�2) [Albertson and Kiely, 2001]. The C1, C2, and �geq formu-
lations are centrally important to the assimilation approach
proposed here because they impact the evolution of �g, and it
is our intent to make use of discrepancies between the ten-
dency (i.e., time rate of change) of modeled and observed �g

values to adjust the course of �2. For this reason, we review
briefly the modification employed for the restoring term in (1)
[Montaldo and Albertson, 2001].

The value of �geq was originally presented to be a function of
�2 and the soil profile’s hydraulic properties, derived from an
approximate solution of Richards equation [Noilhan and Plan-
ton, 1989],

�geq � �2 � a� s � �2

� s
� p� 1 � � �2

� s
� 8p� , (3)

with parameters a and p adjusted according to soil texture,
accounting effectively for soil hydraulic properties. The rela-
tionships between soil moisture �, hydraulic conductivity k ,
and matric potential � are described by

� � � s � �

� s
� �b

(4)

k � ks � �

� s
� 2b�3

, (5)

where ks is the saturated hydraulic conductivity, �s is the air
entry potential, and b is the slope of the retention curve in
logarithmic space [Clapp and Hornberger, 1978]. Finally, the
force and restore coefficients C1 and C2 are described by their
original formulations:

C1 � C1sat � � s

�g
� b/ 2�1

(6)

C2 � C2ref � �2

� s � �2 	 � l
� , (7)

where C1sat and C2ref are parameters capturing effects of soil
texture and � l is a small numerical value that constrains C2 as
�2 approaches �s [Noilhan and Planton, 1989].

In stratified soils, where the soil hydraulic properties and
textural characteristics differ from the surface layer to the deep
soil, (3) does not provide a reasonable approximation to the
Richards equation [Montaldo and Albertson, 2001]. In fact, for
certain soil profiles it is common to have upward soil water flux
when the soil moisture decreases with depth (and vice versa)
because of the different mapping by (4) along the vertical.
Montaldo and Albertson [2001] developed and tested a simple
approach for rescaling the root zone soil moisture to an “equiv-
alent” root zone soil moisture that more accurately reflects (in
evaluation against �g) the vertical water flow status for arbi-
trarily stratified soils. The rescaled root zone moisture status is
given by

�̂2 � � s,g � �2

� s,2
� b2/bg� � s,2

� s,g
� �1/bg

, (8)

where the subscripts g and 2 indicate the soil parameters of the
surface layer of depth d1 and the total root zone of depth d2,
respectively. In this way, the values of �̂geq from (3) and C2

from (7) are calculated using �̂2, such that the restoring term of
(1) more accurately reflects the drainage and recharge fluxes
across the bottom of the surface layer ( z � d1). For simplicity
we drop the circumflex in the remainder of the paper. All the
model runs in this paper employ this solution for stratified
soils. We note, for context, that the SVAT model is integrated
with a time step of �t1 (e.g., hourly), and we progress to
introduce the assimilation of observations on a coarser time
step �t2 (e.g., daily).

2.2. Data Assimilation

This section presents the analytical support for the proposed
1-D soil moisture assimilation protocol for updating both the
near-surface moisture �g and the root zone soil moisture con-
tent �2 from �g observations in a manner that compensates for
both inaccurate initial conditions and potential model bias
resulting from imperfect model parameter estimates. The mo-
tivation is to improve on earlier efforts that either simply
updated near-surface soil moisture without regard to �2 or
updated �2 on the basis of a priori assumptions about the
instantaneous relationship between �2 and �g.

We begin by writing the surface moisture balance once for
model variables and separately for observed or actual vari-
ables. It is reasonable to expect (1) to be valid for each set of
variables. Hence, indicating the model variables with the su-
perscript m and the corresponding values that could be ob-
served (i.e., actual) with the superscript o , we have

��g
m

�t �
C1

m

�wd1
�Pg

m � Eg
m� �

C2
m

�
��g

m � �geq
m � (9)

��g
o

�t �
C1

o

�wd1
�Pg

o � Eg
o� �

C2
o

�
��g

o � �geq
o � . (10)
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With only a minor loss of generality, we assume for this dem-
onstration that C1

o � C1
m � C1 and C2

o � C2
m � C2, such that

we may subtract (10) from (9) and arrive at a description of the
difference between modeled and observed time rates of change
of surface soil moisture:

��g
m

�t �
��g

o

�t �
C1

�wd1
�Pg

m � Pg
o� �

C1

�wd1
�Eg

m � Eg
o�

�
C2

�
��g

m � �g
o� 	

C2

�
��geq

m � �geq
o � . (11)

This shows how the array of possible biases between modeled
and actual (or observed) terms combine to yield a bias in the
tendency of �g.

Because �geq is a function of �2 from (3), a bias between �2
o

and �2
m will map directly into a bias between �geq

o and �geq
m ,

which will act, through the last term of (11), to create bias
between the temporal derivatives of �g

o and �g
m. We assume,

for this first demonstration, that Pg
m � Pg

o and Eg
m � Eg

o, with
the understanding that biases in surface soil moisture would
also inject biases in bare soil evaporation, but that these biases
will be minor in (11) relative to the direct influence of the
moisture differences (�g

m � �g
o) and (�geq

m � �geq
o ). With this

assumption and the rearrangement of (11) we arrive at an
estimate of the actual value of �geq,

�geq
o � �geq

m �
�

C2
� ��g

m

�t �
��g

o

�t � � ��g
m � �g

o� . (12)

This value of �geq is defined so as to provide a rate of water
exchange across the bottom of the surface soil layer, such that
the temporal tendency of the modeled �g matches the ten-
dency of the observed value. In practice, we define a �t2

update interval (e.g., daily), and the finite difference expres-
sion of (12) provides the update value of �geq as

�geq
o �t i� � �geq

m �t i
�� �

�

C2
� �g

m�t i
�� � �g

m�t i�1
� �

�t2

�
�g

o�t i� � �g
o�t i�1�

�t2
� � ��g

m�t i
�� � �g

o�t i�	 , (13)

where the time is discretized as t i � t i�1 � �t2, the super-
script minus indicates the state variable value before the up-
dating, and the superscript plus indicates the value after the
updating at time t i. In Figure 1 a schematic of this assimilation
methodology is shown, with �g

m (solid line) being modified to
match �g

o (dotted line) every �t2 and the different slopes owing
to a bias in �geq. Noting that �g

m(t i
�) � �g

o(t i), (13) reduces to

�geq
o �t i� � �geq

m �t i
�� � ��g

m�t i
�� � �g

o�t i�	 � �

C2�t2
	 1� . (14)

Finally, from �geq
o and an inversion of (3) it is possible to

estimate the corresponding root zone soil moisture value �2
o,

and adjust periodically (e.g., each day) the simulated root zone
soil moisture �2

m to match this value.
In summary, the proposed assimilation procedure is trig-

gered by the availability of state variable observations at a time
increment of �t2 and is executed through updating (1) the
surface soil moisture �g

m to match the observation �g
o and (2)

the root zone soil moisture �2
m using �2

o given by the dynamic
retrieval of (14) and (3).

To limit the possible effect of measurement error (or noise)

in �g
o inducing lasting shocks in the time series of �2

m, we limit
the allowed percent change to �2

m at any single assimilation
step to 10% of the modeled value of �2

m. Future work will deal
more formally with measurement errors. We explore the per-
formance of this assimilation protocol in the context of in situ
field data collected at an experimental catchment in southern
Ireland.

3. Field Data
3.1. Experimental Site

The 15 Ha hillslope research field is at the headwater of the
98 km2 Dripsey catchment 25 km northwest of the city of Cork,
Ireland. The research field is an agricultural grassland at an
elevation of 200 m above sea level (masl), with a gentle slope
of 3% grade. The soil profile includes a top layer (5–10 cm
thick) that is heavy in organic material (hummus) overlaying a
sandy loam subsoil layer of 45 cm thickness. The grass heights
vary through the year from 5 to 40 cm [Albertson and Kiely,
2001]. The local climate is temperate and humid, moderated by
the warm influence of the Gulf Stream. Mean annual precip-
itation in the Cork region is 
1200 mm. The rainfall regime is
characterized by long duration events of low intensity (typically
less than 
3 mm h�1) throughout the year. Less frequent,
short-duration events of high intensity (O(101) mm h�1) oc-
cur mainly in summer.

3.2. Data Set

Hydrological and meteorological variables were measured
continuously at this site for a 183 day period commencing early
in 1998. Rainfall, air temperature, humidity, wind speed and
direction, net radiation, soil heat flux, and soil temperature
measurements were recorded on a 20 min averaging period.
Soil moisture was monitored with time domain reflectometry
(TDR) probes (Campbell CS615) installed horizontally at the
depths of 2, 10, 20, 30, 40, 50, and 60 cm, with calibration based
on intermittent gravimetric soil moisture measurements.

Figure 1. Schematic of the assimilation procedure. The mod-
eled surface soil moisture �g

m is shown as a solid line, and the
observed surface soil moisture �g

o is shown as a dotted line. The
superscript minus indicates the modeled state before updating,
and the superscript plus indicates the state after the updating.
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3.3. SVAT Parameters

The stratified soil profile is modeled [Montaldo and Albert-
son, 2001] using different soil parameters for each layer (Table
1). The saturated hydraulic conductivity of the surface layer
was measured using a double-ring infiltrometer. The remaining
soil parameter values were derived from literature data [Clapp
and Hornberger, 1978; Rawls et al., 1982] on the basis of mea-
sured soil texture for the profile. The root zone depth (d2) was
estimated at 0.4 m on the basis of visual inspection of soil
cores, and d1 was taken to be 10 cm. In Figure 2a the measured
soil moisture data in the surface and root zone layers (with
appropriate depth averaging across probes) are reported along
with the rainfall time series. Figure 2b shows the comparison

between observed and simulated soil moisture values using the
model (no assimilation) with the parameters of Table 1. Using
a ks ,2 of 10�7 m s�1 in the original (no assimilation) model
provides the lowest RMSE for �2 over the entire data set
(RMSE of 0.028), including reasonable performance during
the dry excursions. Note that a fraction of the analysis that
follows makes use of these “best estimate” parameters, while
the remainder injects deliberate error into soil hydraulic prop-
erties. In all cases, explicit mention in made of the parameters
being used.

The proposed assimilation scheme is tested both for the
entire data set of 183 days and for four shorter periods of 30
days each, which were selected to explore the assimilation skill

Table 1. Parameter Values Used in the SVAT Model for the Cork Experimental Site

Parameter Description Value Sourcea

Ks,2 whole soil depth average value of the
saturated hydraulic conductivity

10�7 m s�1 cal.

�s,2 whole soil depth average value of the
saturated soil moisture content

0.50 obs.

��s,2� whole soil depth average value of the air
entry soil tension

0.30 m R1982

b2 whole soil depth average value of the slope
of the retention curve in logarithmic space

4.90 C1978

Ks,g surface layer value of the saturated hydraulic
conductivity

2.4 � 10�5 m s�1 obs.

�s,g surface layer value of the saturated soil
moisture content

0.52 obs.

��s,g� surface layer value of the air entry soil
tension

0.36 m R1982

bg surface layer value of the slope of the
retention curve on logarithmic profile

5.39 C1978

�wilt wilting point 0.13 D1977
� fc field capacity 0.20 D1977
fv fraction of vegetation 1.00 A2001
rs,min minimum stomatal resistance 150 s m�1 A2001
LAI leaf area index 2 m2 m�2 A2001
zom roughness length for momentum 0.03 m A2001
zos roughness length for scalars zom/7.4 m B1982
d2 depth of root zone 0.40 m obs.

aSources are defined as follows: obs., approximate value from field observations; cal., value from model calibration; A2001, Albertson and Kiely
[2001]; D1977, Donahue et al. [1977]; B1982, Brutsaert [1982]; R1982, Rawls et al. [1982]; C1978, Clapp and Hornberger [1978].

Figure 2a. Measured surface (�g) and root zone (�2) soil moisture and recorded rainfall time series from
March 1, 1998. Four short 30 day periods that are the focus of certain analyses are marked (P1–P4) and
defined in Table 2.
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in distinctly different hydrometeorological conditions. The
four short periods (P1, P2, P3, and P4) are described in Figure
2a and in Table 2.

4. Long-Term Assimilation Results
The availability of such a long data set (183 days) permits a

broad test of the reliability of the proposed operational assim-
ilation system. Taking the TDR measurements of � in the top
10 cm as a proxy for the remote sensing observed surface soil
moisture, the assimilation scheme consists of updating �g

m with
�g

o and updating �2
m with the �2

o obtained from (12), subject to
the operational adjustment limit described above to limit the
shocks from possible measurement errors.

4.1. Evaluation Relative to the Hydrostatic Assumption

The presence of particularly wet hydrometeorological con-
ditions (precipitation �� evaporative demand) during the ob-
servation period (Figure 2a) suggests that the hydrostatic hy-
pothesis may be suitable to this data set for the retrieval of root
zone soil moisture [e.g., Jackson, 1980]. The reliability of the
hydrostatic hypothesis for the Cork data set is supported by
Figure 3, where the measured root zone moisture content
(points) and the hydrostatic estimates (line) are plotted against
the measured surface moisture values. Note that the hydro-
static root zone values are lower than the corresponding sur-
face layer values under dry conditions because of the vertical
inhomogeneity of the soil hydraulic properties (taken into ac-
count in the hydrostatic calculations). From Figure 3 it is
apparent that the hydrostatic assumption is reinforced by the
measured data over a range of surface moisture values
(0.37  �g  0.47) that brackets a large fraction of the
observational period (see Figure 2a). For the few short events
with �g � 0.47 the hydrostatic assumption overestimates �2,

and for low �g values it underestimates �2. So, while there is
good reason to expect the hydrostatic approach to work well
under these conditions, there is also reason to believe that
under significantly drier conditions than those encountered
here, with logically large matric potential gradients in the ver-
tical, the hydrostatic approach will fail.

A preliminary evaluation of the proposed assimilation pro-
tocol performance is performed by comparing its predictive
skill to the simple retrieval based on the hydrostatic assump-
tion. To avoid confusion between assimilation (or retrieval)
performance and the general SVAT model performance, we
employ here a “synthetic case” in which synthetic observations
of surface soil moisture values (�g

o) are taken from the simu-
lated values using the model with the best estimate parameters
from Table 1. With this approach we can focus on the relative
abilities of the assimilation approaches to compensate for mis-
specification of hydraulic properties (or initial conditions). Ta-
ble 3 shows the RMSE in �2 simulations for three model
approaches: no assimilation, assimilation of �g by hard updat-

Figure 2b. Comparison of predicted and observed surface soil moisture (�g ,sim and �g ,obs) and predicted
and observed root zone soil moisture (�2,sim and �2,obs) using model parameters from Table 1.

Table 2. Hydrometeorological Characteristics of the Four
30 Day Periods

Period Days
Precipitation,

mm

Potential
Evapotranspiration,

mm

P1 119–149 25 71
P2 180–210 96 63
P3 149–179 139 60
P4 91–121 169 45

Figure 3. The root zone soil moisture �2 values of the mea-
surements (points) and values estimated under the hydrostatic
assumption (solid line) plotted against the measured near-
surface soil moisture (�g ,meas).
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ing and of �2 by the proposed approach using (14), and assim-
ilation of �g by hard updating and of �2 by the hydrostatic
assumption. In all three modeling formulations we used differ-
ent soil parameters for the two layers. For the hydrostatic case
this involved the extrapolation of a hydrostatic matric potential
profile and local conversions to soil moisture based on the local
soil properties of each layer. Of course, when the model pa-
rameters are kept the same as those used to generate the
synthetic data, then the model (without assimilation) provides
perfect agreement to the data (see Table 3). However, if we
inject a two orders of magnitude error in ks ,2 (i.e., 10�9 m s�1),
then the no assimilation approach yields a considerable error
(RMSE of 0.082). As also shown in Table 3, the hydrostatic
assumption injects only a modest error (RMSE of 0.012) for
the correct ks ,2 case, reinforcing the earlier statements that the
vertical profile during this experiment is close to hydrostatic on
average. However, for the biased ks ,2 case the proposed as-
similation approach provides much greater accuracy than the
hydrostatic case, suggesting that even under these wet condi-
tions the proposed model is superior to the hydrostatic assim-
ilation approach for long-term modeling in the presence of
imprecise model parameters.

Motivation for data assimilation stems from a need to con-
strain model drift over long temporal integrations and the
emerging availability of distributed observations of some
model state variables. The aim is to improve model perfor-
mance, especially when the model is a coarse representation of
the underlying physics and is not directly calibrated. For this
reason we progress to analyze the assimilation scheme’s sen-
sitivity to the soil properties, then we explore the influence of
the soil moisture initial conditions, and finally, we explore the
impact of assimilation frequency on predictive skill.

4.2. Sensitivity of the Assimilation Protocol to Errors
in Specified Soil Hydraulic Properties

It is important that the approach be robust in the presence
of uncertain parameters, as is typically the case for operational
applications of distributed models over large regions. Two
model approaches are compared using the field-observed soil
moisture data: (1) no assimilation, and (2) assimilation of �g by
hard updating and of �2 by the proposed approach using (14).
Here we use the measured surface data for assimilation; the
synthetic analysis was limited to section 4.1.

The models are employed first using the soil parameters of
Table 1, which represent our best reasonable estimates, and
then in additional cases using saturated hydraulic conductivity
values for the deep soil, ks ,2, that vary over a wide range. The
assimilation frequency is fixed at 1 day�1 for this soil properties

analysis. The initial conditions of �g and �2 are set equal to the
measured soil moisture values to isolate the effects of soil
properties knowledge on data assimilation importance. Uncer-
tainties in the initial conditions of the state variables are ad-
dressed later.

As an example of the temporal results from the two model
formulations, the case with a low value of ks ,2 (� 10�8 m s�1)
is shown in Figure 4. With this erroneously low ks ,2 value we
note that the base model predicts moistures that are consis-
tently wetter than the measurements, as the drainage is under-
estimated. The proposed dynamic assimilation approach pro-
vides marked improvement to the model performance. The
comparison of the simulated and observed �2 values is reported
through scatterplots in Figure 5. The average bias in the pre-
dictions (i.e., shift along vertical axis) is removed by the pro-
posed approach, with an error in the slope resulting from the
effect of the inexact soil parameters on the retrieval algorithms
(e.g., through errors in C2). The bulk of the data points are in
the range where agreement is excellent, leading to the low
RMSE of 0.034.

The results of the sensitivity analysis of the proposed imple-
mentation to misspecification of ks ,2 are summarized in Figure
6. Recall that our best estimate for conductivity is ks ,2 � 10�7

m s�1. We vary the value of ks ,2 over five orders of magnitude
in a series of model runs. As expected, the basic model (with-
out assimilation) performance deteriorates significantly for
even moderate errors in ks ,2. When the soil parameters and
initial conditions are correctly specified, the assimilation offers
no real improvement in model skill. However, the assimilation
approach is much more robust than the original model with
respect to misspecification of ks ,2, providing low values of
RMSE (0.04) for a wide range of values of ks ,2. Interestingly,
the assimilation skill is more robust for large underestimation
than for overestimation of ks ,2. This is because the dynamics of
�2 resulting from drainage are fast for the high ks ,2 cases,
resulting in large errors for the time periods between assimi-
lation steps (i.e., within �t2). In summary, the assimilation
improves performance over the base model for all but a narrow
range of ks ,2 values around the correct value, suggesting that
the assumption that modeled and real C1 and C2 are equiva-
lent (leading up to (14)) is not too deleterious.

4.3. Sensitivity of the Assimilation Protocol to Errors
in Soil Moisture Initial Conditions

A sensitivity analysis of the proposed assimilation approach
to the soil moisture initial conditions is performed and re-
ported in Figure 7. The assimilation performance is measured
for soil moisture initial values equal to 30, 50, 75, and 100% of
the initial observed values, using four values of ks ,2 (5 � 10�4,
5 � 10�5, 5 � 10�7, and 5 � 10�9 m s�1). The sensitivity
analysis shows that the long-term model performance (with
and without assimilation) is only slightly sensitive to initial
conditions. This result is due to the combination of a long
analysis period and plentiful precipitation. The frequent rain
events tend to reset �2 to �s ,2, thus removing the memory of
the inaccurate initial conditions. We explore this topic further
in section 5 using short analysis periods representing different
prevailing hydrometeorological conditions.

4.4. Sensitivity of the Assimilation Protocol
to Assimilation Frequency

The sensitivity of model skill to the assimilation frequency is
performed for the same series of ks ,2 values (5 � 10�4, 5 �

Table 3. Comparison of the Model Results From the
Original ISBA Model (Case 1), Assimilation of �g

o and �2
o

Using the Proposed Approach Based on (12) (Case 2), and
Assimilation of �g

o and �2
o Using the Hydrostatic Equilibrium

Hypothesis (Case 3) (Using “Synthetic” Data)

ks,2 Case RMSE

10�7 1 0.000
10�7 2 0.002
10�7 3 0.012
10�9 1 0.082
10�9 2 0.004
10�9 3 0.013
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10�5, 5 � 10�7, and 5 � 10�9 m s�1). We explore update
intervals of 3, 6, 12, 24, 72, and 120 hours in Figure 8. Sensi-
tivity of the performance to assimilation frequency is noted for
higher hydraulic conductivities, where the dynamics of soil
water are active over short timescales, such that large errors
can be developed between assimilation steps. The robustness
of the model skill across a wide range of assimilation frequen-
cies for an incorrect ks ,2 is encouraging, suggesting that infre-
quent model corrections are sustained by the internal model
dynamics as needed for accurate predictions over long time-
scales.

5. Short-Period Assimilation Protocol Results
An analysis of the soil moisture assimilation system reliabil-

ity is performed here for several shorter periods, each lasting
30 days. The periods (P1, P2, P3, and P4) represent a range of
hydrometeorological conditions, going from a ratio of precip-
itation to potential evaporation (P/PET) of 0.35 for P1, with
progressive increases to a ratio of 3.8 for P4. The characteris-
tics of the periods are listed in Table 2 and referenced on
Figure 2a. A daily assimilation interval and the value of 5 �
10�7 m s�1 for ks ,2 are used for this analysis. Here we perform
a sensitivity analysis to inaccuracies in the specification of soil
moisture initial conditions. Soil moisture initial conditions
equal to 50, 75, and 100% of the observed values are specified
for the model runs. Figure 9 shows the impacts of errors in
initial conditions on the skill of the base model and the pro-
posed assimilation approach for each period. As expected, the
wet conditions of P4 render the simulation skill least sensitive
to errors in the soil moisture initial conditions. Indeed, signif-
icant precipitation events, in particular at the start of the anal-
ysis period, erase the initial conditions such that the model
(without assimilation) is able to simulate correctly the soil

Figure 4. Soil moisture measurements and model predictions for two model approaches, using an inten-
tionally low value of ks ,2 (� 10�8 m s�1). Observed root zone soil moisture �2 is marked with a thick line, and
simulated �2 is marked with a thin line. The top panel is the base ISBA model case, and the bottom panel is
the proposed assimilation approach. The assimilation approaches used reflect a daily update period.

Figure 5. The root zone soil moisture results of Figure 4 as
scatterplots in same order.
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moisture. For the drier periods the assimilation becomes more
important in compensating for poor initial conditions.

The effects of general wetness or aridity on the model skill
improvement from the assimilation protocol is measured by an
assimilation efficiency, which we define as


 �
RMSEo � RMSEa

RMSEo
, (15)

where RMSEo is for the model without assimilation and
RMSEa is with the proposed assimilation approach. In Fig-

Figure 6. Root-mean-squared error (RMSE) of �2 model predictions plotted against assumed value of ks ,2
for the model runs. The lines reflect no assimilation (dotted line and asterisks) and assimilation of �g and �2
using the proposed approach based on (12) (solid line and diamonds).

Figure 7. Sensitivity analysis of the root zone soil moisture assimilation to soil moisture initial conditions
(�2,ic) for several ks ,2 values. The no-assimilation model form is marked with a dotted line and asterisks, and
the assimilation of �g and �2 using the proposed approach based on (12) is marked with a solid line and
diamonds.
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Figure 8. Sensitivity analysis to assimilation update intervals (�update) for several ks ,2 values. The no-
assimilation model approach is marked by a dotted line, and the assimilation of �g and �2 using the proposed
approach based on (12) is marked with a solid line and diamonds.

Figure 9. Comparison of the RMSE of the �2 models with and without assimilation versus the soil moisture
initial condition (� ic/� ic ,obs), using ks ,2 equal to 5 � 10�7 m s�1, for the four periods (P1–P4) defined in Table
2. The no-assimilation model approach is marked by a dotted line and asterisks, and the assimilation of �g and
�2 using the proposed approach based on (12) is marked with a solid line and diamonds.
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ure 10, 
 is shown against the ratio between total precipi-
tation and potential evapotranspiration (PET), P/PET, for
each period for soil moisture initial conditions set to the
50% of the observed values. The 
 efficiency increases dra-
matically with decreasing P/PET.

6. Conclusions
The development of a basis for an operational assimilation

protocol was described and tested. The results demonstrated
that the approach is able to dynamically improve root zone soil
moisture simulations based on the assimilation of near surface
soil moisture observations, such as might be available from
remote sensing platforms. The approach was motivated by the
need to compensate for imperfections in model parameteriza-
tion and specification of initial conditions.

We adopted the simple force-restore SVAT scheme for the
operational assimilation system because it is parsimonious and
reasonably accurate. The updating of only the surface soil
moisture in these models has negligible value to the root soil
moisture accuracy. Moreover, approaches based on a priori
relationships between surface and root zone moisture contents
are not expected to be robust over a wide range of hydrody-
namic conditions, where the a priori relationships are violated
in practice. For this reason, we presented an assimilation ap-
proach that is based on an analytical (and dynamical) relation-
ship between surface and root zone soil moisture. The differ-
ence between observed and modeled time rates of change of
surface soil moisture is analytically tied to a bias in the mod-
eled moisture state of the lower root zone. The proposed
approach is expected to perform well under arbitrary hydrom-
eteorological conditions.

The availability of a long data series for the Cork experi-
mental site permitted demonstration of the approach’s effec-
tiveness for both long periods (where initial states are not very
important but model drift can be) and select short periods

(where initial conditions can be important). An assessment of
the impact of inexact soil hydraulic parameters on the model
skill demonstrated that the proposed assimilation protocol
maintains excellent soil moisture predictions over a three order
of magnitude variability in the assumed hydraulic conductivity.
The sensitivity analysis to the assimilation frequency high-
lighted that the procedure is significantly influenced by the
updating period only under high hydraulic conductivity, such
that the dynamics are fast enough to induce large errors in
between assimilation steps.

Uncertainty in soil moisture initial conditions did not affect
significantly the long-term soil moisture predictive skill for this
wet experimental field. The importance of data assimilation to
improving short-term (30 days) model skill was demonstrated
to depend on hydrometeorological conditions. For periods
with precipitation well in excess of evaporative demand the
memory of initial soil moisture conditions is rapidly lost,
whereas in drier conditions the model has more persistent
memory and the assimilation has greater impact.

Future work is planned to cast the work presented here in a
more formal assimilation context, where measurement and
model errors will be treated simultaneously and optimally. The
dynamical relationship between bias in time rate of change of
surface moisture and bias in root zone status (14) is proposed
to serve as the core of such an assimilation protocol.
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