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ABSTRACT

Knowledge of the spatial distribution of soil moisture is very important for understanding eco-hydrological processes, but
monitoring of soil moisture over extensive areas remains a challenge because of its high spatial variability and temporal
dynamics. This study, taking an Irish temperate-humid catchment as an example, shows that the backscatter coefficient acquired
from Environmental Satellite (ENVISAT) Advanced Synthetic Aperture Radar (ASAR) Wide Swath (WS) image (150m
resolution) is a good estimator of the surface (top 5 cm) soil moisture, leading us to propose an empirical model for soil moisture
estimation. Statistical analysis of the remotely sensed soil moisture (produced from 35 ENVISAT/ASAR WS images spanning
both wet and dry regimes in 2006) revealed that the spatial variation (standard deviation and coefficient of variance) mainly
decreased with increasing mean soil moisture for this wet catchment. Geostatistical analysis showed that the spatial dependence
of the soil moisture field was moderate with most of the nugget ratios ranging from 45% (25% percentile) to 55% (75%
percentile), and the spatial correlation range was around 554–854m. The exponential model was able to accurately fit the sample
semivariograms and was a reliable estimator of the characteristics of the remotely sensed soil moisture field. This type of analysis
can provide meaningful information for soil moisture monitoring at the catchment or regional scale. Copyright © 2011 John
Wiley & Sons, Ltd.
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INTRODUCTION

Soil moisture plays a fundamental role in the soil–atmosphere
interactions and eco-hydrological processes (Rodriguez-
Iturbe et al., 1995; Albertson and Kiely, 2001; Montaldo
et al., 2001; Bell et al., 2010; Koster et al., 2010; Pumo et al.,
2010; Teuling et al, 2010; Tietjen et al., 2010). Knowledge of
soil moisture at the catchment scale is critical for such
applications as regional resourcemanagement during times of
flood or drought and surface soil moisture is a key forcing
variable in many Soil-Vegetation-Atmosphere-Transfer
models (Moran et al., 2006). However, in situ monitoring
soil moisture at the watershed scale is time-consuming and
costly because of its high spatial variability and temporal
dynamics.
Because of the large scale and frequent coverage, remote

sensing technologies from satellite measurements (e.g.
Advanced Microwave Scanning Radiometer-EOS (AMSR-
E),Advanced Scatterometer (ASCAT) andSoilMoisture and
Ocean Salinity (SMOS)) have been receiving more and more
attention in retrieving and monitoring soil moisture in recent
years, but most of these measurements are still at a coarse
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resolution (25–50 km) and also need more validation
(Jackson et al., 2010). The recent synthetic aperture radar
sensors, such as Environmental Satellite (ENVISAT)
Advanced Synthetic Aperture Radar (ASAR), offer excellent
opportunities to derive land surface parameters (e.g. soil
moisture and roughness) from image data, with high spatial
resolution (hundreds of meters to several kilometers) and
temporal repetition (a few days) covering large areas.
Previous studies (Zribi et al., 2005; Loew et al., 2006; Baup
et al., 2007a,b; Pathe et al., 2009; Mladenova et al., 2010;
Zribi et al., 2010) have shown that the backscatter coefficient
acquired from ENVISAT/ASAR is a fairly good estimator of
surface soil moisture. However, most of these studies
focused on the development of retrieving algorithms, with
few on its application for analysis of the spatial variability of
soil moisture (e.g. Jacobs et al., 2010). The analysis of spatial
variability would not only facilitate checking the applicabil-
ity of the remote sensing techniques but also provide useful
information for designing reasonable ground monitoring
experiments on surface soil moisture so as to calibrate or
validate the existing retrieval models with sufficient in situ
measurements thereby promoting the models’ enhancements
(Jackson et al., 2010). In addition, the knowledge of soil
moisture spatial variability is also helpful in the application
of the eco-hydrological models (Mahanama et al., 2008;
Koster et al., 2010; Tietjen et al., 2010).

This study uses an Irish temperate-humid catchment as
an example, to investigate (1) the applicability of the



W. LIU, X. XU AND G. KIELY
ENVISAT/ASAR in retrieving soil moisture for a wet
environment, and (2) the spatial variability of the remotely
sensed soil moisture at the catchment scale.
MATERIALS AND METHODS

Study area and ground measurements of soil moisture

The study area is an upland sub-catchment, named Dripsey,
located in the south west of Ireland covering an area of
15 km2 at an elevation ranging from 68 to 251m (Figure 1).
Meteor tower
a)

b)

Figure 1. a) Location and contour map (elevation in meters) of the Dripsey
monitoring site), b) the simulated soil moisture for a wet condition (Julian da

day 164 in

Copyright © 2011 John Wiley & Sons, Ltd.
The land cover is uniformly agricultural grassland for dairy
and beef production. Old Red Sandstone underlies the
entire area with overlying soils of peaty gleys on brown
podzols. Broadly, the soil is classified as loam in the U.S.
Department of Agriculture texture classification. Averaged
over the top 10 cm, the soil porosity is 0.60, the saturation
moisture level is 0.57, the field capacity is 0.32 and the
wilting point is 0.12m3m�3; the pH is 6.7, the soil organic
carbon has a mean value of 4.5% and the soil organic N is
0.35%. The climate is temperate and humid with mean
annual precipitation (over 10 years) in the region of about
c)

catchment showing the location of the meteorological tower (soil moisture
y 15 in 2006) and c) the simulated soil moisture for a dry condition (Julian
2006).

Ecohydrol. (2011)
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Figure 2. Daily dynamics of the in situ soil moisture (black continuous
series). The square symbols are used to point out on which day the satellite

images were selected.

SPATIAL VARIABILITY OF SOIL MOISTURE
1470mmyear�1 (~1363mm in 2006). The rainfall regime
is characterized by long duration events of low intensity
(maximum value up to 50mmday�1). Short duration events
of high intensity are more seldom and occur in summer.
Daily air temperatures have a very small range during the
year going from a maximum of ~ 20 �C in summer to a
minimum of ~0 �C in winter. The daily summer average is
~15 �C, and the daily winter average is ~5 �C. A time-
domain reflectometry probe (Campbell Sci., Logan, UT,
USA) at the meteorological tower site (Figure 1) was used to
measure the soil moisture at the top 5 cm, and the data were
recorded every 30min. Detailed descriptions about the study
area and the meteorological monitoring can be found in the
study by Scanlon and Kiely (2003), Scanlon et al. (2004),
and Kim et al. (2010). The soil moisture values at the time
closest to the satellite passing time (Table I) were extracted
to develop a relationship between the in situ soil moisture
and the backscatter coefficient from remote sensing images
(as described in the following section).

Satellite data sets

ENVISAT/ASAR Wide Swath (WS) mode with a spatial
resolution of 150m (http://envisat.esa.int) was selected for
this study. There are 36 images for the year 2006,
corresponding to different Julian days (see Table I). The
image on Julian day 339 (5 December 2006) was only used
for the development of the soil moisture retrieval model, but it
was not used for later analysis because of its low quality in
some parts of the study area. The software-BEST (Basic
Envisat SAR Toolbox 4.0.5.) was used to automatically
calibrate and calculate the backscatter coefficients (for details
refer to the website: http://envisat.esa.int). The backscatter
coefficient of the pixel closest to the ground monitoring site
(Figure 1) for each image was selected to develop the
relationship between the backscatter coefficient and soil
moisture.

Terrain data sets

Two commonly used terrain indices closely associated with
soil moisture were calculated based on the 150m resolution
Digital Elevation Model (DEM) (re-sampled from 10 to
150m in order to match the ENVISAT/ASAR images).
The topographic wetness index (TWI), reflecting

topographic-controlled lateral water distribution (Quinn
et al., 1995), was calculated with the System for Automated
GeoscientificAnalyse (SAGA)Geographic Information System
(GIS) software (http://www.saga-gis.org/en/index.html).
The solar radiation index (SRI), reflecting topographic

(slope and aspect) impacted incoming solar radiation
(DEM used as only input in this study) and thus impacting
evapotranspiration (Moore et al., 1991), was calculated
with ARCGIS 9.3 (ESRI Inc., Redlands, CA, USA; 2008).

Methods

We conducted conventional statistical analysis with SPSS

15.0 (SPSS Inc., Chicago, IL, USA; 1989–2006) and
Microsoft Excel 2003 (Microsoft Corporation, Redmond,
WA,USA; 1985–2003) and spatial and geostatistical analysis
with ARCGIS 9.3 (ESRI Inc., Redlands, CA, USA; 2008).
Copyright © 2011 John Wiley & Sons, Ltd.
The sample semivariogram, gs(h), which is half the
average squared difference between the values of data pairs
(Western et al., 2004), was estimated from

gs hð Þ ¼ 1
2N hð Þ

X

ij

θi � θj
� �2

(1)

where h is the lag, N(h) is the number of data pairs located
in a given lag bin, and θi and θj are the soil moisture values
at site i and j, respectively. We estimated the omnidirec-
tional semivariogram as done by Western et al. (2004).

The exponential semivariogram model with nugget as
intercept was selected to fit all of the sample semivariogram
in this study. The mathematical function is as follows:

ge hð Þ ¼ c0þ c1 1� exp �h=rð Þð Þ (2)

ge(h) is the fitted semivariogram, c0 is the nugget, c1 is the
partial sill and r is the spatial correlation length. This model
reaches its sill (c0 + c1) asymptotically, with the practical
range 3r, named as the spatial correlation range in this
study. If the separation distance between two sites is larger
than 3r, it means no spatial correlation between the two
sites exists. The quality of the semivariogram fitting was
assessed using coefficient of determination (R2) as follows:

R2 ¼ 1�
P

re hð Þ � rs hð Þð Þ2
P

rs hð Þ � �rs hð Þ� �2 (3)

rs hð Þ� is the average value of the sample semivariogram.
RESULTS AND DISCUSSION

Converting ground measured to remotely sensed soil
moisture

Figure 2 shows the daily (averaged from the 30-min
values) observed surface soil moisture time series at the
meteorological tower location. From Figure 2, high soil
moisture was observed in winter and spring, whereas lower
values occurred in summer. Three types of phases can be
identified: a steady wet phase (January to May), a steady
Ecohydrol. (2011)
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Figure 4. Temporal dynamics of spatial-averaged remotely sensed soil
moisture (mean� one standard deviation).
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Figure 5. The relationship between skewness of remotely sensed soil
moisture and mean soil moisture.

SPATIAL VARIABILITY OF SOIL MOISTURE
dry phase (July and August) and transient phases (from wet
to dry in June, and from dry to wet in the period of
September to November). In Figure 2, we also show the
date when the satellite images are selected for this study.
We can find that the selected remote sensing data sets (even
though they are at multiday intervals) span all of the
phases, and thus are representative of most of the soil
wetness regimes in this study area.
From Figure 3a, we found that the backscatter coefficient

(from the remote sensing image) is a good estimator
(R2> 0.90) of in situ soil moisture. The root mean square
error is 0.042 in this study comparable with 0.04–0.07 of
other studies (Loew et al., 2006 and references therein).
This suggests that the cubic function is applicable for this
humid region with observed soil moisture ranging from
0.219 to 0.525m3m�3, and its mean value and standard
deviation are 0.422 and 0.096m3m�3, respectively.
According to Figure 3b, the simulated soil moisture with
this empirical function applied is underestimated. The
simulated soil moisture spatial distribution maps were
shown in Figure 1b and c (as an example for wet and dry
conditions).

Statistical analysis of remotely sensed soil moisture

The temporal evolution of spatially averaged soil moisture
for the whole catchment is shown in Figure 4. It reflects the
summer trough of low soil moisture, but the contrasting
pattern of dry and wet season is not as distinct as the time
series of in situ measured soil moisture (Figure 2). This is
because the remotely sensed measurements are intermittent
in time (Table I) and averaged in space over 15 km2,
whereas the in situ observations are 30-min values
integrated over a day for one site.
Most of the remotely sensed soil moisture data sets (31

of 35 data sets) in this study are negatively skewed
(Kolmogorov–Smirnov test at 0.05 significance level; also
see the negative skewness in Figure 5). This is in
disagreement with the finding by Brocca et al. (2010)
who found that most of their field measured soil moisture
data can be described by a normal distribution. It might be
that they used a limited number (30 for each site) of field
y = 0.0003x3 + 0.0014x2 + 0.0013x + 0.5027

R2 = 0.9242, RMSE=0.042
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Figure 3. a) The relationship between soil moisture (in situ measured) and ba
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Copyright © 2011 John Wiley & Sons, Ltd.
measurements within smaller dimensions (60� 50m at
each site). With extensive field measurements for both dry
and wet conditions at six distinct spatial scales ranging
from 2.5 to 50 km, Famiglietti et al. (2008) found that the
distribution is negatively skewed for wet environments but
positively skewed for dry environments. Similar to the
results in the study by Famiglietti et al. (2008), the
skewness (negative value) in our study decreased with
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increasing spatial mean soil moisture, and the normal
distribution (skewness around 0) is at the mean soil
moisture of 0.20 (see Figure 5). For another humid area in
Iowa, USA, Das and Mohanty (2008) found that
polarimetric scanning radiometer–based remotely sensed
surface (0–5 cm) soil moisture was also not a normal
distribution. The statistical distribution of the soil moisture
field thus seems dependent on the scale extent of specific
cases (Ryu and Famiglietti, 2005).
The absolute spatial variation (standard deviation) is

a quadratic function (upward convex curve) of the
spatial mean value but mainly concentrated in the
decreasing part of the curve (Figure 6a). The decreasing
trend between standard deviation and mean values in
humid environments was already shown in the study by
Brocca et al. (2007) who analysed different studies in
different climatic regions. From field observations at different
scales, Famiglietti et al. (2008) also found variability in soil
moisture, initially increasing with increasing soil moisture (at
dry conditions), and then decreasing (at wet conditions)
beyond some soil moisture threshold.Many other studies also
identified and explained this point with model simulations.
For example, Vereecken et al. (2007) demonstrated that the
parameters of the soil water retention characteristic and their
variability can explain the relationship between standard
deviation and mean soil moisture, and they also found (in a
simulation study) for 11 soil texture classes that the standard
deviation peaked at mean soil moisture values between
0.17 and 0.23. In our study, the corresponding value was
0.22. Pan and Peters-Lidard (2008) demonstrated that soil
texture controlled the relationship between variance and
mean soil moisture, and the soil moisture variance peaked
at mean soil moisture values from 0.20 to 0.25 for different
cases. At a temperate site, Lawrence and Hornberger
(2007) found that at low mean soil moisture, the variability
is controlled by wilting point; at intermediate mean soil
moisture, the variability is controlled by soil hydraulic
conductivity; and at high soil moisture, the variability is
controlled by porosity. As for the relative variability
(coefficient of variation) in this study, it linearly decreased
with spatial mean soil moisture (Figure 6b). Many other
studies have also found similar decreasing trend
Copyright © 2011 John Wiley & Sons, Ltd.
(Choi et al., 2007; Famiglietti et al., 2008; Brocca et al.,
2010; Mascaro and Vivoni, 2010).

Geostatistical analysis of remotely sensed soil moisture

There is no good relationship between the spatial
correlation range and the mean soil moisture (Figure 7a).
At another humid area in New Zealand, Western et al.
(2004) also found no correlation between spatial correl-
ation range and mean soil moisture but found the correlation
for the dry sites in Australia. According to Table I, the
typical spatial correlation range was 554–854m, beyond
which (the distance between any two sites) no spatial
dependence exists for the soil moisture field any more.
Most of the nugget ratios [nugget (c0) divided by the sum
of partial sill (c1) and nugget (c0)] were concentrated from
45% (25% percentile) to 55% (75% percentile) with the
median value of 49%, which indicated that the spatial
dependence of soil moisture field in this area is moderate
(Cambardella et al., 1994). The relationship (Figure 7b)
between nugget ratio and mean soil moisture suggested that
relatively lower nugget ratios (therefore good spatial
structure of soil moisture field) mainly occurred at the
middle soil moisture values.

For all of the cases in this study (Table I), the sample
semivariograms (not shown) can reach a certain
plateau, which suggests that the remotely sensed soil
moisture field was stationary. This is also why we still
used the geostatistical analysis method for this study
although the variable (soil moisture) is not normally
distributed (negative skewness, see Figure 5). Most of
these cases had a high coefficient of determination
(median value at 0.822, see Table I), demonstrating that
the exponential model can provide a good match to the
shape of the sample semivariogram, and therefore can
be used as a confident estimator of the characteristics of
the remotely sensed measured soil moisture field.
Western et al. (2004) using field measurements for
dry conditions in Australia and for wet conditions in
New Zealand also found this aspect. The coefficients of
determination of the fitted exponential functions for the
sample semivariogram are not well correlated with the
spatial mean soil moisture (Figure 7c). The worst
Ecohydrol. (2011)
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(31 July), moderate (19 March) and best (3 A1 August)
fitting cases are shown in Figure 7d.

Correlations between soil moisture and terrain factors

Soil moisture is positively correlated to the topographic
wetness index (TWI), but the correlation coefficient (R) is
relatively low ranging from 0.004 (25% percentile) to 0.039
(75%percentile) with amedian value of 0.017 (Figure 8a). The
Copyright © 2011 John Wiley & Sons, Ltd.
SRI is negatively correlated with soil moisture, and the R
values ranged from�0.137 (25% percentile) to �0.039 (75%
percentile) with a median value of �0.097 (Figure 8a). This
suggests that SRI plays a relatively more important role in
controlling surface soil moisture distribution in this region than
TWI, which infers that potential evapotranspiration rather than
lateral flow controls the surface soil moisture distribution. In
many previous studies (Western et al., 2004; De Lannoy et al.,
Ecohydrol. (2011)
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2006; Brocca et al., 2007), the lateral flow played a more
important role in controlling soil moisture spatial distribution,
but, as stated by Western et al. (2004), the processes
controlling soil moisture distribution can change between
regions and over time with catchment soil moisture status.
Moreover, we found that the absolute R values for SRI had a
decreasing trend with spatial mean soil moisture (Figure 8b)
suggesting that the relationship between soil moisture and SRI
was closer at the dry end of the soil moisture distribution. This
may indicate that soil moisture become a limiting factor for
evapotranspiration with the progress of soil drying.
CONCLUSIONS

This study shows that the backscatter coefficient acquired
from ENVISAT/ASARWS image is a good estimator of the
surface (top 5 cm) soil moisture. The spatial variation
(standard deviation and coefficient of variance) of the
remotely sensed soil moisture decreased with increasing
mean soil moisture for this temperate-humid catchment. The
spatial dependence of the remotely sensed soil moisture field
was moderate, and the exponential model accurately fitted
the sample semivariogram. This study provides important
information for soil moisture monitoring at catchment scale.
However, there are also some uncertainties in this study:
(1) pixel size influences the relationship between in situ soil
moisture data and backscatter coefficients of remote sensing
data set; (2) although there are uniform land cover and soil
type in the whole catchment, the heterogeneity of soil
properties still affects the applicability of the established
relationship at one location to another.
ACKNOWLEDGEMENTS

This study was funded by the Irish Environmental Protection
Association (EPA) under the Science Technology Research
& Innovation for the Environment (STRIVE) Programme
2007–2013 (SoilH: Interactions of soil hydrology, land use
and climate change and their impact on soil quality; 2007-S-
SL-1-S1). The ENVISAT/ASAR data sets were provided by
the European Space Agency (ESA) through the project 6875.
Thanks to anonymous reviewers for their constructive

comments.
REFERENCES

Albertson JD, Kiely G. 2001. On the structure of soil moisture time
series in the context of land surface models. Journal of Hydrology 243:
101–119.

Baup F, Mougin E, De Rosnay P, Timouk F, Chenerie I. 2007a. Surface
soil moisture estimation over the AMMA Sahelian site in Mali using
ENVISAT/ASAR data. Remote Sensing of Environment 109: 473–481.

Baup F, Mougin E, Hiernaux P, Lopes A, De Rosnay P, Chenerie I.
2007b. Radar signatures of Sahelian surfaces in Mali using ENVISAT-
ASAR data. IEEE Transactions on Geoscience and Remote Sensing
44(7): 2354–2363.

Bell JE, Sherry R, Luo Y. 2010. Changes in soil water dynamics due to
variation in precipitation and temperature: an ecohydrological analysis
in a tallgrass prairie. Water Resources Research 46: W03523.

Brocca L, Melone F, Moramarco T, Morbidelli R. 2010. Spatial-temporal
variability of soil moisture and its estimation across scales. Water
Resources Research 46: W02516.
Copyright © 2011 John Wiley & Sons, Ltd.
Brocca L, Morbidelli R, Melone F, Moramarco T. 2007. Soil moisture
spatial variability in experimental areas of central Italy. Journal of
Hydrology 333: 356–373.

Cambardella CA, Moorman TB, Nocak JM, Parkin TB, Karlen DL,
Turco RF, Konopka AE. 1994. Field-scale variability of soil properties in
central Iowa soils. Soil Science Society of America Journal 58: 1501–1511.

Choi M, Jacobs JM, Cosh MH. 2007. Scaled spatial variability of soil
moisture fields. Geophysical Research Letters 34: L01401.

Das NN, Mohanty BP. 2008. Temporal dynamics of PSR-based soil
moisture across spatial scales in an agricultural landscape during SMEX02:
a wavelet approach. Remote Sensing of Environment 112: 522–534.

De Lannoy GJM, Verhoest NEC, Houser PR, Gish TJ, Meirvenne MV.
2006. Spatial and temporal characteristics of soil moisture in an
intensively monitored agricultural field (OPE3). Journal of Hydrology
331: 719–730.

Famiglietti JS, Ryu D, Berg AA, Rodell M, Jackson TJ. 2008. Field
observations of soil moisture variability across scales. Water Resources
Research 44: W01423.

Jackson TJ, Cosh MH, Rajat Bindlish, Starks PJ, Bosch DD, Seyfried M,
Goodrich DC, Moran MS, Du J. 2010. Validation of advanced
microwave scanning radiometer soil moisture products. IEEE Transac-
tions on Geoscience and Remote Sensing DOI: 10.1109/
TGRS.2010.2051035.

Jacobs JM, Hsu EC, Choi M. 2010. Time stability and variability of
electronically scanned thinned array radiometer soil moisture during
Southern Great Plains hydrology experiments. Hydrological Processes
24: 2807–2819.

Kim DG, Mishurov M, Kiely G. 2010. Effect of increased N use and dry
periods on N2O emission from a fertilized grassland. Nutrition Cycle
Agroecosystem DOI: 10.1007/s10705-010-9365-5.

Koster RD, Mahanama SPP, Livneh B, Lettenmaier DP, Reichle RH.
2010. Skill in streamflow forecasts derived from large-scale estimates of
soil moisture and snow. Nature Geoscience 3: 613–616.

Lawrence JE, Hornberger GM. 2007. Soil moisture variability across
climate zones. Geophysical Research Letters 34: L20402.

Loew A, Ludwig R, Mauser W. 2006. Derivation of surface soil moisture
from ENVISAT ASAR wide swath and image mode data in agricultural
areas. IEEE Transactions on Geoscience and Remote Sensing 44(4):
889–899.

Mahanama SPP, Koster RD, Reichle RH, Zubair L. 2008. The role of soil
moisture initialization in subseasonal and seasonal streamflow prediction
– a case study in Sri Lanka.Advances inWater Resources 31: 1333–1343.

Mascaro G, Vivoni ER. 2010. Statistical and scaling properties of remotely-
sensed soil moisture in two contrasting domains in the North American
monsoon region. Journal of Arid Environments 74: 572–578.

Mladenova I, Lakshmi V, Wagner W. 2010. Validation of ASAR global
monitoring mode soil moisture product using the NAFE’05 data set.
IEEE Transactions on Geoscience and Remote Sensing. DOI: 10/1109/
TGRS.2010.2040746.

Montaldo N, Albertson JD, Mancini M, Kiely G. 2001. Robust simulation
of root zone soil moisture with assimilation of surface soil moisture.
Water Resources Research 37(12): 2889–2900.

Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling, a
review of hydrological, geomorphological and biological applications.
Hydrological Processes 5: 3–30.

Moran MS, McElroy S, Watts JM, Peters Lidard CD. (2006). Radar
Remote Sensing for Estimation of Surface Soil Moisture at the Watershed
Scale. Chapter 5. Modelling and Remote Sensing in Agriculture (US and
Mexico). Richardson CW, Baez-Gonzales AS, Tiscareno M, (eds).
INIFAP Publ: Aquascalientes, Mexico. Oct. 2006. ch. 7., 91–106.

Pathe C, Wagner W, Sabel D, Doubkova M, Basara JB. 2009. Using
ENVISAT ASAR global mode data for surface soil moisture retrieval
over Oklahoma, USA. IEEE Transactions on Geoscience and Remote
Sensing 47(2): 468–480.

Pan F, Peters-Lidard CD. 2008. On the relationship between mean and
variance of soil moisture fields. Journal of the American Water
Resources Association 44(1): 235–242.

Pumo D, Viola F, Noto LV. 2010. Climate changes’ effects on vegetation
water stress in Mediterranean areas. Ecohydrology 3: 166–176.

Quinn PF, Beven KJ, Lamb R. 1995. The ln(a/tanb) index: how to
calculate it and how to use it within the Topmodel framework.
Hydrological Processes 9:161–182.

Rodriguez-Iturbe I, Vogel GK, Rigon R. 1995. On the spatial organization
of soil moisture fields.Geophysical Research Letters 22(20): 2757–2760.

Ryu D, Famiglietti JS. 2005. Characterization of footprint-scale surface
soil moisture variability using Gaussian and beta distribution functions
during the Southern Great Plains 1997 (SGP97) hydrology experiment.
Water Resources Research 41: W12433.
Ecohydrol. (2011)



SPATIAL VARIABILITY OF SOIL MOISTURE
Scanlon TM, Kiely G. 2003. Ecosystem-scale measurements of nitrous
oxide fluxes for an intensely grazed, fertilized grassland. Geophysical
Research Letters 30: 1852.

Scanlon TM, Kiely G, Xie Q. 2004. A nested catchment approach for
defining the hydrological controls on non-point phosphorus transport.
Journal of Hydrology 291: 218–231.

Teuling AJ, Seneviratne SI, Stocklil R, Reichstein M, Moors E, Ciais P,
Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E,
Gianelle D, Gielen B, Grunwald T, Klumpp K, Montagnani L,
Moureaux C, Sottocornola M, Wohlfahrt G. 2010. Contrasting response
of European forest and grassland energy exchange to heatwaves. Nature
Geoscience 3: 722–727.

Tietjen B, Jeltsch F, Zehe E, Classen N, Groengroeft A, Schiffers K,
Oldel J. 2010. Effects of climate change on the coupled dynamics of
water and vegetation in drylands. Ecohydrology 3: 226–237.
Copyright © 2011 John Wiley & Sons, Ltd.
Vereecken H, Kamai T, Harter T, Kasteel R, Hopmans J, Vanderborght J.
2007. Explaining soil moisture variability as a function of mean soil
moisture: a stochastic unsaturated flow perspective. Geophysical
Research Letters 34: L22402.

Western AW, Zhou SL, Grayson RB, McMahon TA, Bloschl G,
Wilson DJ. 2004. Spatial correlation of soil moisture in small
catchments and its relationship to dominant spatial hydrological
processes. Journal of Hydrology 286: 113–134.

Zribi M, Baghdadi N, Holah N, Fafin O. 2005. New methodology for soil
surface moisture estimation and its application to ENVISAT-ASARmulti-
incidence data inversion. Remote Sensing of Environment 96: 485–496.

Zribi M, Chahbi A, Shabou M, Lili-Chabaane Z, Duchemin B, Baghdadi
N, Chehbouni A. 2010. Multi-scale estimation of surface moisture in a
semi-arid region using ENVISAT ASAR radar data. Hydrology Earth
System Science Discussion 7: 8045–8089.
Ecohydrol. (2011)


