
Journal of Hydrology (2008) 355, 192–201
ava i lab le at www.sc iencedi rec t . com

journal homepage: www.elsevier .com/ locate / jhydro l
Structural optimisation and input selection of an
artificial neural network for river level prediction
Paul Leahy *, Ger Kiely, Gearóid Corcoran
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Summary Accurate river level prediction, necessary for reliable flood forecasting, is a
difficult task due to the complexity and inherent nonlinearity of the catchment hydro-
logical system. Although artificial neural networks (ANNs) offer advantages over mecha-
nistic or conceptual hydrological models for river level prediction, their applicability is
limited by the fact that each ANN has to be specifically optimised and trained for a par-
ticular prediction problem and suitable input vectors selected. A recently developed novel
optimisation algorithm combining properties of simulated annealing and tabu search is
used to arrive at an optimal ANN for the prediction of river levels 5 h in advance. The algo-
rithm seeks to minimise the value of a cost function based on the complexity and perfor-
mance of the ANN. This is done by removing inter-neuron connections and adjusting the
weights of the remaining connections. The candidate inputs presented to the algorithm
were: current values of river levels at the flood location and two upstream locations;
the change in level over the previous 4 h at the flood point, mean sea level pressure
(SLP) and the change in SLP over the previous 24 h. The optimisation removed 79% of
the network connections and three of the candidate inputs, leaving the current levels
at the two upstream locations and at the flood point as the only inputs. The optimised
ANN was then trained using the standard backpropagation algorithm. This methodology
produces an ANN of greatly reduced complexity albeit with a reduced performance com-
pared to an unoptimised ANN trained with backpropagation only. However, it has the
advantage of being generally applicable and represents an improvement over trial and
error as a method of ANN structural optimisation and input selection. For this prediction
problem, current levels at two upstream locations and at the flood point are the best pre-
dictors of the level at the flood point.
ª 2008 Elsevier B.V. All rights reserved.
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Introduction

A successful flood management strategy requires accurate
forecasting of river flows (White, 2001). Flows are depen-
dent on diverse factors such as the spatial and temporal
distribution of precipitation, topography, soil type, vegeta-
tion, land use, catchment hydrology and the built environ-
ment, making flood forecasting a difficult exercise.
Approaches to flow prediction can be broadly divided into
three categories: mechanistic modelling, statistical or
‘black box’ modelling and conceptual modelling. A typical
mechanistic approach combines precipitation observations
or forecasts with detailed physical models of the river
catchment (Ivanov et al., 2004). The statistical approach
is based on the properties of observed data (such as time
series of river stages or precipitation) rather than on the
physical properties of the catchment system itself. Concep-
tual modelling lies between these approaches, relying on a
simplified representation of the physical system, which
can be calibrated using past data.

Mechanistic modelling has the disadvantage of being
data-intensive and therefore expensive, requiring spatially
and temporally resolved meteorological input data and de-
tailed physical descriptions of the characteristics of the
catchment (Elshorbagy et al., 2000). The underlying physi-
cal system is complex and several of the driving factors
may interact with each other in unpredictable ways (Jain
and Prasad Indurthy, 2003). Conceptual models, while not
requiring such detailed knowledge of the physical properties
of the system, generally require some physical knowledge to
formulate the model and some data in order to calibrate it.
No knowledge of the underlying hydrological system is re-
quired for statistical modelling, but it is necessary to have
previous information on the system’s behaviour in order to
derive such a model.

One purely statistical method, the artificial neural net-
work (ANN), is a computational tool with the ability to
represent a complex nonlinear system without any a priori
knowledge of the underlying physical system itself. ANNs
combine nonlinear functions of variables presented as in-
puts in order to model a prescribed output. The combina-
tion of functions is optimised via a process known as
training the network in order to best match the output of
the network with the desired or target value (Haykin, 1994).

This approach of using a network of interconnected, sim-
ple neurons to perform computations was introduced by
McCulloch and Pitts (1943) as a representation of synaptic
processes in the brain. Applications of ANNs inmachine learn-
ing became widespread in the early 1980s with the advent of
affordable microprocessors and by the late 1990s ANNs had
been applied to many topics in water resource management
and hydrology (see review by Govindaraju, 2000a), such as
the modelling of flood events and the prediction of bacterial
concentrations in seawater (Campolo et al., 1999; Kashefi-
pour et al., 2005). Among the characteristics of ANNs that
make them suited to such applications are: noise rejection;
tolerance of errors and gaps in the input data; and the lack
of any requirement for exogenous inputs (Nayak et al.,
2005). A key feature of ANNs is their ability to generalise,
i.e. to generate an output from a previously unseen specific
combination of inputs (Haykin, 1994).
Kisi (2004) applied various ANN types and auto-regressive
moving average (ARMA) models to the problem of forecast-
ing monthly river flow based on past flows and concluded
that ANNs provided better results than ARMA models. At
shorter time scales, ANNs have also been found to perform
better than both ARMA and conceptual models for daily
streamflow forecasting and to outperform ARMA models in
real-time forecasting of hourly river stage based on inputs
of previous stages (Birikundayvi et al., 2002; Thirumalaiah
and Deo, 2000). Toth et al. (2000) presented a hybrid ap-
proach, using various time series models (ARMA, ANNs and
non-parametric nearest-neighbours) to generate short-term
precipitation forecasts for a catchment, and then fed these
predictions into a conceptual rainfall-runoff model in order
to predict river runoff. Of the time series models investi-
gated, ANNs provided the best prediction accuracies, espe-
cially at longer prediction intervals. Dawson et al. (2006)
reported on a genetic algorithm to evolve neural network
runoff prediction models for a catchment of 3315 km2 in
northern England, based on inputs of upstream stages and
rainfall and found good performance at 6 h prediction
intervals.

Supervised training methods such as backpropagation
(Werbos, 1974; Rumelhart et al., 1986) are capable of opti-
mising the connection weights of a given ANN, but a suitable
ANN structure for the application must be chosen before
training can take place. Trial and error is a widely used
method of ANN structural optimisation (Hsu et al., 1997;
Jain and Chalisgaonkar, 2000) but this approach is not rigor-
ous and offers no guarantee of arriving at a truly optimal
structure. Furthermore, trial and error becomes impractical
for ANNs with large numbers of neurons and weights and is
therefore of little use as a general approach to structural
optimisation. Network growing techniques such as cas-
cade-correlation learning and network pruning techniques
such as weight decay have also been successfully used as
means of structural optimisation (Fahlman and Lebiere,
1990; Weigend et al., 1991; Thirumalaiah and Deo, 2000).
More recently, genetic algorithms have been employed in
order to remove surplus weights and derive optimal ANN
structures (Sexton et al., 2004; Dawson et al., 2006; Zan-
chettin and Ludermir, 2007). Constructive, rather than
destructive, algorithms, where networks are built up from
a minimal size instead of pruned from a maximal size, have
also shown promise for structural optimisation of ANNs (Sex-
ton et al., 2004).

Selection of suitable input data remains a problem in
ANN applications. Bowden et al. (2005) presented two
methodologies for ANN input selection: one based on partial
mutual information (PMI) and one based on self-organising
maps (SOM), generalised regression neural networks (GRNN)
and genetic algorithms (GA). However, the methodology to
be described here is more general in that it simultaneously
addresses both the problem of input selection and the re-
lated problem of structural optimisation of the ANN itself.

Ludermir et al. (2006) proposed a two-stage hybrid global
optimisation methodology for simultaneously optimising the
structure and weights of an ANN using elements of both sim-
ulated annealing and tabu search (reproduced in Table 1). In
this approach, network weights and structure are optimised
together in the first stage, prior to a second stage of fine



Table 1 Optimisation algorithm (after Ludermir et al.,
2006)

1. s0 :¼ [C0,W0] (initial solution)
2. T0 :¼ 1 (initial temperature)
3. sBSF :¼ s0 (initialisation of best solution so far)
4. for i = 0 to Imax�1
5. if (i + 1) = m IT [m = 1,2,3, ..., Imax/IT]
6. Ti+1 :¼ rTi (cool to new SA temperature)
7. Else
8. Ti+1 :¼ Ti
9. if (stopping criterion satisfied)
10. Break
11. Generate set of K new solutions from si
12. Choose best solution s 0 from set
13. if f(s0) < f(si)
14. si+1 :¼ s 0

15. else
16. si+1 :¼ s 0 with probability exp(�[f(s 0) – f(si)]/Ti+1)
17. if f(si+1) < f(sBSF)
18. sBSF :¼ si+1
19. end for
20. Use backpropagation to train the network defined by

sBSF
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tuning of the optimised network by conventional backprop-
agation training. A maximal complexity network is initially
defined. The optimisation algorithm is iterated and allowed
to randomly prune inter-neuron connections and adjust con-
nection weights until the value of a cost function (based on
the network prediction error and the number of remaining
connections in the network) is minimised. In common with
tabu search methods, several new candidate solutions are
randomly generated during each iteration and the best
(i.e. lowest cost) of these is selected and evaluated. If
the lowest cost candidate solution has a lower cost than
the current solution, then it replaces it. In common with
simulated annealing, even if the lowest cost candidate solu-
tion has a higher-cost than the current solution, it may still
replace it. A random variable determines whether such a
transition to a less favourable, higher-cost solution is al-
lowed. With each iteration of the algorithm the maximum
allowed value of the transition probability is reduced by
decreasing a controlling parameter known as the tempera-
ture. These unfavourable cost transitions allow the optimi-
sation process to escape from local minima. A record of the
lowest cost, or best so far (BSF), solution is retained
throughout the optimisation process.

Unlike the weight elimination complexity regularisation
method (Haykin, 1994), this method optimises the network
structure prior to training by backpropagation. After the
ANN structure has been optimised using the algorithm, con-
ventional backpropagation is used to arrive at the final
weights. This methodology also has the capability to elimi-
nate redundant inputs by disconnecting them from the
output.

The relationship between river flow and stage is straight-
forward in most river channels, and the problem of flood
prediction can be reduced to the prediction of the river
stage at the flood location corresponding to a flood event
(Henderson, 1969). The objective of this study was to opti-
mise and test ANN models for the prediction of river levels
at Mallow, a town on the Munster Blackwater river in south-
western Ireland which is prone to regular flooding (Corco-
ran, 2004). We investigate if an optimised ANN with six or
fewer inputs can provide accurate forecasts over a predic-
tion interval of 5 h.

Catchment description

The Munster Blackwater catchment (Fig. 1) covers an area
of 3324 km2 in the southwest of Ireland. 1186 km2 of the
catchment is upstream of the town of Mallow, 45 m above
sea level, and 90% of the vegetation cover in the catchment
is grassland. The catchment drains from west to east, the
flow being influenced by year round rainfall, transported
by south-westerly prevailing winds. Significant evaporation
losses only occur during the summer months of May to Sep-
tember. The annual average rainfall varies from 1465 mm to
980 mm (west to east) across the catchment with approxi-
mately 400 mm of annual evapotranspiration. January and
July mean daily temperatures at Donoughmore (17.5 km
SW of Mallow, 180 m a.s.l.) are 5.4 and 14.3 �C, respec-
tively. The Blackwater extends 75 km upstream of Mallow
(45 m a.s.l.) and the gradient (S1095) of this section is
2.3 m km�1.
Methods

Instrumentation and data

Three river level measurement stations were used in this
study. Stations S1 and S2 are located at Duarrigle and Drom-
cummer, 38 km and 19 km upstream of the flood location at
Mallow town (S3, Fig. 1 and Table 2). River stages were mea-
sured using both pulley-based shaft encoders (Thalimedes,
OTT-Hydrometry, Germany) and radar sensors (Kalesto,
OTT-Hydrometry, Germany) to provide redundancy in the
event of a sensor failure and all levels were logged by mul-
ti-channel data loggers (Hydrosens, OTT-Hydrometry, Ger-
many) every 15 min and transferred via GSM modem to a
central archive. Sea level pressure was measured at the syn-
optic weather station at Cork Airport, approximately 50 km
south of Mallow. Routines were developed in the MATLAB
environment (Mathworks, USA) to create, optimise, train
and evaluate the neural network models. Data gathered
during the period 2001–2002 were used in the study.
Approximately 36,000 records were suitable after some data
were removed due to failing quality control tests.

ANN description

The multi-level perceptron (MLP; Rumelhart et al., 1986) is
a widely used ANN configuration and has been frequently ap-
plied in the field of hydrological modelling (Govindaraju,
2000a). In an assessment of network types the MLP has been
found to perform well, with superior generalization proper-
ties to the radial basis function network. However the MLP
model is more difficult to optimise (Senthil Kumar et al.,
2004). The basic processing units (the neurons) of a MLP
are arranged in layers, each layer containing several neu-
rons (Fig. 2). A MLP consists of an input layer, one or more



Figure 1 Map of the Munster Blackwater catchment showing river level monitoring stations. Arrows indicate direction of flow.
Inset: map of Ireland showing location of catchment.

Table 2 Locations and physical details of river water level monitoring stations

Station ID Location Distance upstream
of flood point (km)

% of subcatchment
upstream of station

Elevation
(m a.s.l.)

S1 Duarrigle 38 24 100
S2 Dromcummer 19 83 65
S3 Mallow 0 100 45

Structural optimisation and input selection of an artificial neural network for river level prediction 195
hidden layers and an output layer. Input data are presented
to the input layer and then passed to each hidden layer in
sequence, and finally to the output layer. The one-direc-
tional flow of data through the network results in this being
known as a ‘feed-forward’ network.

The number of neurons in the input layer is equal to the
number of inputs. The input layer performs no computations
on the data, but merely distributes the values it receives to
the first hidden layer. Normally, all the neurons of the input
layer are connected to all the neurons of the first hidden
layer (Fig. 2a). All connections between neurons have an
associated weight. The neurons of the hidden layers calcu-
late the weighted sum of their inputs. A nonlinear transfor-
mation known as an activation function is then applied to
this weighted sum. The activation function serves two pur-
poses: it scales the output value of the neuron to a norma-
lised interval such as [0,1] and it introduces the nonlinearity
necessary for the ANN to be able to represent nonlinear sys-
tems. A sigmoid function such as (1 + exp(�t))�1, where t is
the untransformed neuron input, is a common choice for the
activation function (Jain and Prasad Indurthy, 2003).
The optimisation algorithm of Ludermir et al. (2006) al-
lows for inter-neuron connections to be randomly removed
and the effects of these removals on network prediction
performance to be evaluated. A maximal complexity net-
work with six inputs and a single hidden layer containing
eight neurons was defined as the starting point for the algo-
rithm. Neuron biases were not used in this exercise.

Input selection

The selection of appropriate inputs is crucial to the success
of any ANN model. Too many inputs will result in a parame-
ter space that is too large to be efficiently optimised during
training. Redundancy must be avoided in choice of inputs in
order to reduce the risk of local minima being returned as
optimisation solutions (Govindaraju, 2000b). The choice of
inputs can be guided by knowledge of the physical system
to be modelled. For example: upstream river levels are ex-
pected to be a good predictor of future river levels down-
stream in the same river system (Govindaraju, 2000a).
Furthermore, there are practical reasons (such as the cost
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Figure 2 (a) Maximally connected six input ANN topology with a single hidden layer of 8 neurons, illustrating intra-neuron
connections; (b) Optimised ANN topology with three inputs and reduced connectivity.
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of purchasing and maintaining instrumentation) to keep the
number of inputs to a minimum.

In order to determine suitable lag times for inputs, cross-
correlations between each of the upstream (S1 & S2) mea-
sured stages and the downstream stage at Mallow (S3) were
performed. The peak in the cross-correlation spectrum of S2
and S3 was at 135 min and the peak of the S1 and S3 spec-
trum was at 225 min. The correlation peaks are useful as
guidelines for input selection, but they are not definitive,
as the river system is incompletely gauged. Increased flow
at the downstream location could emanate as lateral inflow
from areas of the basin that are not upstream of either S1 or
S2 (see Table 2 for the percentages of the catchment which
are upstream of each monitoring point). It should also be
noted that as the catchment drains predominantly from
west to east and that the prevailing winds (carrying mois-
ture from the Eastern Atlantic) come from the southwest,
bands of precipitation may often follow the course of the
streamflow, resulting in an increased proportion of the ob-
served flow at S3 which has not passed S1 or S2. This makes
the task of river stage prediction more difficult and may also
have the effect of shifting the cross-correlation peak back in
time (if compared to the ideal scenario of a point discharge
upstream of S1). Hence, the correlation peaks should only
be considered as lower bounds for the selection of lag times
for inputs.

Modelling of systems that exhibit hysteretic behaviour
can be achieved by incorporating previous values of input
variables. This extra information should be sufficient to al-
low the ANN to distinguish the two limbs of the hydrograph
curve. This approach has been used for modelling loop-rat-
ing curves (Jain and Chalisgaonkar, 2000) and soil water
retention curves (Jain et al., 2004). We added an additional
candidate input variable: the recent change in stage (Dh/
Dt) at the downstream flood location at S3. Using such a
measure rather than lagged values of actual stage should al-
low the network to distinguish the rising limbs of flood
hydrographs (Dh/Dt positive) from falling limbs (Dh/Dt neg-
ative) more easily, reducing the prediction error due to the
hysteresis of the system. The change in stage was calculated
over 2, 4 and 6 h intervals and 4 h was found to provide
slightly better results than 2 h, with the worst results from
a 6 h interval (data not shown).
Sea level pressure (SLP) has been used with success to
condition stochastic models of daily precipitation (Kiely
et al., 1998) therefore current SLP and the change in SLP
over the previous 24 h were incorporated as additional
ANN inputs.

Thus, the following parameters were used as network
inputs:

• Current river stage at all stations (S1, S2, and S3).
• Sea level pressure.
• Change in S3 river stage over the previous 4 h.
• Change in sea level pressure over the previous 24 h.

All input data were linearly mapped to the range [0,1].

Network structure optimisation

In addition to selecting the ANN inputs, the properties of the
ANN’s structure must be correctly chosen. Haykin (1994)
recommends that the ratio of the number of training pairs
to the number of neurons to be trained should be greater
than 30. Given the large size of the training set, this is
not a concern in this case, where we limit the total number
of neurons in all layers to 15 (6 + 8 + 1). With a large number
of potential inputs and ANN properties available to config-
ure, it is not possible to test every single possible configura-
tion. However, the structure may be optimised by defining
an initial maximal structure and applying the methodology
of Ludermir et al. (2006). Network complexity is repre-
sented by a parameter, c, the percentage of network con-
nections used. A connection, i, may be enabled or
disabled, therefore each connection is represented by a
connectivity bit, ci, which has a value of one if the connec-
tion is used and zero if the connection is unused. After the
network optimisation, some of the hidden layer neurons
may be redundant if all their input connections have been
removed (Fig. 2b). These neurons were removed prior to
the subsequent step of backpropagation training.

If N1 is the number of inputs, N2 the number of neurons in
the hidden layer and N3 the number of outputs, the maxi-
mum possible number of connections is given by

Nmax ¼ N1N2 þ N2N3 ð1Þ
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and c is then defined by

c ¼ 100

Nmax

XNmax

i¼1
ci ð2Þ

The cost function is then defined as

fðsÞ ¼ 1

2
ðkE þ ð1� kÞcÞ ð3Þ

where k is a bias factor to allow adjustment of the relative
importance of the number of network connections and the
prediction error; E is a network performance indicator, such
as the mean squared error (MSE; Eq. (4)) expressed as a per-
centage of the maximum value

MSE ¼ 1

N

XN

i¼1
ðoi � piÞ

2 ð4Þ

In Eq. (4), N is the number of test points and oi (pi) is the
ith observation (simulation) of river stage at the flood
point.

The parameters used for the optimisation were:
Imax = 200 number of iterations of optimisation algorithm;
Nepochs, max = 100 maximum number of epochs for backprop-
agation training;
N1 = 6 number of input layer nodes;
N2 = 8 maximum number of hidden layer nodes;
N3 = 1 number of output layer nodes;
T0 = 1 initial simulated annealing temperature;
r = 0.9 geometric cooling factor;
IT = 10 number of iterations between coolings;
p = 0.2 probability of inverting connectivity bits;
nK = 20 number of new solutions to generate per iteration;
k = 0.75 weighting factor of prediction error in cost
function.

The maximal network thus had 56 ( = N1N2 + N2N3) inter-
nal connections. A total of five different network variants
were applied to the prediction problem. Firstly a maximally
connected network was created with six inputs, one hidden
layer with eight neurons and a single output. A further four
networks were derived from the maximally connected net-
work, allowing the different parts of the optimisation algo-
rithm to be compared. The maximal, unoptimised network
was trained using classical backpropagation. The optimisa-
tion algorithm was applied to both the weights and connec-
tions of the untrained maximal network. In a further
variant, only the network weights were optimised. Finally
the two optimised variants were subsequently trained using
backpropagation, giving the following complete list of
networks:

[MaxCjNoOptWjBP]: initial, maximal network, no optimi-
sation, trained with backpropagation;
[OptCjOptWjnoBP]: weights and connections optimised
and no backpropagation training;
[MaxCjOptWjnoBP]: weights only optimised, fully con-
nected, no backpropagation training;
[OptCjOptWjBP]: network with optimised weights and
connections subsequently trained with backpropagation;
[MaxCjOptWjBP]: fully connected network with weights
only optimised subsequently trained with back propa-
gation.
Training

For each input element of the training set, there is a cor-
responding target value. Together, these are known as
training pairs. During training, each training pair was fed
into the ANNs and the weights of the model were itera-
tively adjusted using Levenberg–Marquardt backpropaga-
tion until the prediction error on the validation set failed
to improve for five successive epochs or a limit of 100
epochs was reached. The use of the intermediate valida-
tion stage prevents overtraining of the ANN, a phenomenon
where an ANN begins to model the noise in its training data
as well as the underlying trends (Govindaraju, 2000b),
resulting in poorer performance on unseen data. Finally,
the prediction error was calculated on the previously un-
seen test set.
Performance measures

Legates and McCabe (1999) recommend the use of a com-
bination of relative and absolute measures of goodness-
of-fit when assessing model performance. The mean squared
errors (MSE, Eq. (4)) is the absolute error value used in the
network training phase. The MSE is computed for each
epoch and the network parameters are adjusted in order
to minimise the MSE. The MSE or sum of squared errors
(SSE) from the test phase provides a good overall assess-
ment of the accuracy of the model predictions. The coef-
ficient of efficiency E2 (Nash and Sutcliffe, 1970), and
correlation coefficient, R, are relative measures of good-
ness-of-fit widely used in hydrological modelling. E2 com-
pares the model performance against using the mean as
a predictor, with E2 = 1 representing a perfect model. E0n,
a generalised modification of the coefficient of efficiency
(Eq. (5)) uses the base flow rather than the mean flow as
the reference point, as the baseline is more likely to be
a good predictor than the mean for the majority of
samples.

E0n ¼ 1�
PN

i¼1joi � pij
n

PN
i¼1joi � o0jn

ð5Þ

In Eq. (5); o 0 is the baseline flow; n is a positive nonzero
integer (usually 2) and N is the total number of samples.

A test for comparing different learning algorithms has
been proposed by Mitchell (1997) in which the available
data is partitioned into k disjoint subsets of equal size,
where a suggested value of k is at least 30. The networks
to be compared are trained and tested k times. Each of
the k subsets is used in turn as the test set, with the
remaining k � 1 subsets used to train the networks. The
means of the errors over the k trials can be used to com-
pare the learning algorithms and obtain a confidence
interval.

Results

Fig. 3 and Animation 1 show an example of the optimisa-
tion algorithm in progress. Rapid decreases in both the
value of the cost function and the network connectivity
(c) occur in the first 20 iterations of the optimisation.
Updates of the best so far (BSF) network configuration
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are always associated with a decrease in the value of the
cost function (Fig. 3a), which may be attributed to either
a reduction in c (Fig. 3c) or in the prediction error (Fig. 3d)
or both. A comparison of Figs. 3b and 3c shows that sev-
eral transitions to higher-cost solutions were permitted
by the randomly generated transition probability within
the first 50 iterations. After 50 iterations these transitions
are less frequent as the temperature is cooled and they
become less likely to be allowed. By iteration 67 most of
the internal ANN connections have been removed and by
iteration 102 only a single input remains connected to
the output. However, this configuration represents a local
minimum and is not a BSF solution and by iteration 119,
one input has been reconnected (Animation 1).

All 30 trials of the fully optimised network [OptCj
OptWjnoBP] arrived at the same selection of three inputs
from the six candidate inputs: namely the current river lev-
els at the two upstream stations S1 and S2, and at the flood
point, S3. All trials also converged to the same number of
internal network connections (Table 3). The coefficient of
variation in the performance over 30 trials was 22% for
[OptCjOptWjnoBP] and 10% for [OptCjOptWjBP], indicating
that optimisation of the weights did depend to some extent
on network initialisation and partitioning of data into train-
ing, validation and test sets. The coefficient of variation of
performance over the 30 trials of the maximal network
[MaxCjNoOptWjBP] was 23%.

Observed and simulated hydrographs for a single set of
trials on a test dataset are shown in Fig. 4. Fig. 4a shows
the fully optimised network before [OptCjOptWjNoBP] and
after [OptCjOptWjBP] backpropagation training. The back-
propagation-trained variant exhibits closer estimation of
the baseflow, however both variants tend to overestimate
smaller peaks. The fact that the test dataset is a random
set of 1/30th of the available data means that some peaks,
e.g. that of 9th March 2002 are not represented in the test
set. In Fig. 4b hydrographs simulated by the two weights
only optimised network variants are shown. After backprop-
agation training, the variant [MaxCjOptWjBP] provides bet-
ter estimates of baseflows than the fully optimised
variants shown in Fig. 4a, and peak flow magnitudes are well
simulated. Finally, Fig. 4c shows the performance of the
maximal network after backpropagation [MaxCjNoOptWjBP]
which provides a simulated hydrograph with good
representation of base and peak flows, similar to that of
[MaxCjOptWjBP] in Fig. 4b.

The complexity and performance measures of each ANN
are presented in Table 3. The ANNs with optimised connec-
tions retain only 21% of the connections of the maximal
case, i.e. only 12 of the 56 initial connections remain in
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Figure 4 Target and normalised 5 h predicted river levels from trial number 30: (a) from fully optimised networks before
[OptCjOptWjnoBP] and after [OptCjOptWjBP] backpropagation; (b) from weights only optimised networks before [MaxCjOptWjnoBP]
and after [MaxCjOptWjBP] backpropagation; (c) from unoptimised, maximal network trained by backpropagation [MaxCjNoOptWjBP].

Table 3 Averages over 30 trials of: complexity (c), number of epochs before training was stopped, and performance on test set
(as baseline-adjusted coefficient of efficiency, E02, correlation coefficient, R, and SSE as percentage of maximum SSE) of:
unoptimised, maximally connected ANN trained using conventional backpropagation (MaxCjNoOptWjBP); ANN with optimised
connectivity and weights (OptCjOptWjnoBP); maximally connected ANN with optimised weights (MaxCjOptWjnoBP); ANN with
optimised connectivity and weights and further training by backpropagation (OptCjOptWjBP); and maximally connected ANN with
optimised weights and further training by backpropagation (MaxCjOptWjBP)

MaxCjNoOptWjBP OptCjOptWjnoBP MaxCjOptWjnoBP OptCjOptWjBP MaxCjOptWjBP
c 100 21 100 21 100
Ninputs 6.00 3.00 6.00 3.00 6.00
Nepochs (BP) 100.00 – – 9.00 64.30
E02 0.99 0.83 0.85 0.90 0.98
R 0.99 0.89 0.88 0.91 0.98
SSE 0.17 1.95 1.72 1.16 0.26
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the fully optimised network [OptCjOptWjBP]. Furthermore,
of the remaining connections, all but four were redundant
(as they did not influence the ANN output) and were re-
moved prior to backpropagation training. Of the six candi-
date input vectors presented to the optimisation
algorithm, only three remain after full optimisation in all
30 trials. This implies that the current levels at the up-
stream stations and the flood location are better predictors
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of levels 5 h ahead, for this catchment than SLP, its recent
change in value, or the recent change in level at the flood
point.

Over the 30 trials, the fully optimised, trained networks,
[OptCjOptWjBP] performed worse on test datasets than
the trained maximal network [MaxCjNoOptWjBP] by a SSE
margin of 0.99 ± 0.04 (where the 95% confidence interval
was derived using the approach of Mitchell (1997)). The per-
formance of the weight-only optimised networks
[MaxCjOptWjBP] was close to the maximal networks, with
a difference in SSE of 0.09 ± 0.03 (Table 3). The E02
goodness-of-fit measure also shows the loss of network per-
formance of [OptCjOptWjBP] (0.90) compared with
[MaxCjNoOptWjBP] (0.99). The E02 of [MaxCjOptWjBP]
(0.98) was close to that of the maximal ANNs. A similar
trend can be observed by comparing the correlation coeffi-
cients (R) of each variant.

Discussion

Current river levels were found to have more predictive
power for this particular problem than sea level pressure,
change in sea level pressure, or recent change in river
level. The fact that all 30 trials of the optimisation
[OptCjOptWjnoBP] selected the same set of inputs from
random network initial states and randomly partitioned
training/validation/test data shows that the methodology
has the ability to find a global solution regardless of initial
conditions. In the case of the fully optimised ANN
[OptCjOptWjBP], the optimisation process removed all but
three inputs and twelve internal network connections, leav-
ing a greatly reduced parameter space for the backpropaga-
tion algorithm.

In training of the fully optimised networks [OptCj
OptWjBP] only nine epochs of backpropagation were re-
quired before the early stopping criterion was satisfied. Dur-
ing backpropagation of the weight-only optimised network
variants [MaxCjOptWjBP] an average of 64.3 epochs was re-
quired. The early stopping criterion was not satisfied during
the maximum allowed 100 epochs of backpropagation train-
ing of the maximal network [MaxCjNoOptWjBP]. Therefore,
the fully optimised networks can be trained much faster
than unoptimised networks with conventional backpropaga-
tion, which is largely due to their greatly simplified internal
complexity. However, the fact that even the partially
(weights only) optimised variants [MaxCjOptWjBP] satisfied
the early stopping criterion before the maximum allowed
number of epochs shows that this methodology also reduces
the required number of backpropagation epochs through
weight optimisation. However, these reductions in back-
propagation training epochs are achieved at a performance
penalty, which is small but statistically significant, in
the case of [MaxCjOptWjBP] and larger in the case of
[OptCjOptWjBP].

Algorithms which simultaneously optimise ANN struc-
tures and weights such as this one and the constructive
scheme reported by Sexton et al. (2004) are generally slow
in execution compared to classical backpropagation as they
require evaluation of large numbers of candidate solutions.
In this case, processing time on a desktop computer for 200
iterations of the optimisation algorithm was approximately
twelve times longer than for 100 epochs of backpropagation
training of the maximal network. However, such algorithms
remain valuable for their ability to reduce the number of in-
put vectors, particularly if the processing time available for
optimisation is not a constraint.

Conclusions

This study has demonstrated that a global optimisation
methodology for ANN architecture and weights can be em-
ployed successfully to a river level prediction problem,
but with a performance penalty relative to a fixed architec-
ture trained using conventional backpropagation only. Opti-
misation of weights alone increases the ANN performance to
a value close to that of the fixed architecture. The benefits
of the combined optimisation of weights and connections
are: a large reduction in the network complexity; a conse-
quent reduction in the number of epochs of backpropaga-
tion training required; and the identification of the most
parsimonious set of network inputs.

The methodology is more robust than trial and error, has
the demonstrated ability to escape local minima, can elim-
inate unnecessary input vectors, and also offers the advan-
tage that it is not application-specific, i.e. that it can be
applied to any similar problem as a general approach. How-
ever, in common with other approaches to structural opti-
misation and input selection, there remain several
parameters controlling the scheme which have to be pre-
scribed prior to the optimisation.

In this study, current river levels at the flood location and
the two available upstream monitoring stations were found
to be the most useful predictor of levels 5 h ahead at the
flood point. Using the prescribed cost function, other input
vectors such as the recent change in river level at the flood
location, sea level pressure or the change in sea level pres-
sure did not improve prediction accuracy to the point where
the extra network complexity added by their introduction
was justified by an associated improvement in prediction
performance.

The methodology offers further potential for automat-
ing the ANN design and optimisation process as it is also
possible to incorporate neuron input delays and neuron
biases within the parameter space given to the optimisa-
tion scheme prior to backpropagation training. The use
of more sophisticated cost functions in the optimisation
procedure may offer further improvements in predictive
performance and greater control over the performance
versus complexity trade-off. The methodology has also re-
cently been modified to incorporate a genetic algorithm
showing promising results on test problems (Zanchettin
and Ludermir, 2007).
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