
AUTHOR’S PERSONAL COPY 
Provided solely for non-commercial research and education use 
 

 

 

IMPORTANT COPYRIGHT INFORMATION 
 

The following PDF article was originally published in the Journal of 
Environmental Informatics and is fully protected under the copyright laws of 

Canada. The author of this article alone has been granted permission to copy 
and distribute this PDF. Additional uses of the PDF/article by the author(s) or 

recipients, including reproduction and distribution, or selling or licensing copies, 
or posting to personal, institutional or third party websites are prohibited without 
the express consent of the International Society for Environmental Information 

Sciences. 

 
If you are interested in reusing, redistributing, or posting online all or parts of the 

enclosed article, please contact the offices of the Journal of Environmental 
Informatics at 

Phone: +1 (306) 337-2306 E-mail: jei@iseis.org Web: www.iseis.org/jei 
 

Copyright © 2014 ISEIS 

Journal of 
Environmental
Informatics

Volume 24
Number 2
December 2014

ISSN 1726-2135
© 2014 ISEIS International Society for Environmental Information Sciences



111 

Journal of 
Environmental 

Informatics 

  
ISEIS 

 

 

 

Journal of Environmental Informatics 24(2) 111-120 (2014) 

www.iseis.org/jei         
 

Sediment Flux and Its Environmental Implications 
 

J. Józsa1, G. Kiely2 and A. G. L. Borthwick3,* 

 
1Department of Hydraulic and Water Resources Engineering and MTA-BME Water Management Research Group, Budapest University of 

Technology and Economics, Budapest H-1521, Hungary 
2Centre for Hydrology, Micrometeorology and Climate Change, Department of Civil and Environmental Engineering, Environmental Research 

Institute, University College Cork, Cork, Ireland 
3School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, UK  

 
Received 27 October 2014; revised 10 December 2014; accepted 16 December 2014; published online December 20, 2014 

 
ABSTRACT. Sediment transport in fluvial systems is a key driver of basin-wide global soil loss, river sedimentation, and the 
movement and transformation of organic, inorganic, and nutrient materials, all of which can contribute to severe eco-environmental 
degradation. Since the late 1800s, much research effort has focused on the physics of sediment entrainment, transport, and deposition 
by river flows. This paper reviews ongoing research aimed at considering the simultaneous physical, chemical and biological processes 
that characterize riverine sediment flux. Four related issues are considered: riverine sediment flux; soil erosion and chemical transport; 
fluxes of dissolved organic carbon; and sediment-induced CO2 emission/sequestration. Modelling of sediment flux has moved beyond 
empirical and statistical approaches to that of a generalized form of the universal integral solution of the basic flux equation, which is 
now anticipated to lead to a wide range of applications. Whereas soil erosion and riverine chemical transport are now known to cause 
soil degradation and reduced water quality, limited progress has been made to date on the quantification of erosion rates. As soils erode, 
CO2 is emitted at erosion and transport sites and sequestered at deposition sites, the net effect being carbon sequestration. However, the 
rates of CO2 emission/sequestration vary widely, owing to the large spatial variations in soil type, land-slope, rainfall intensity, etc. It is 
now well established that dissolved organic carbon (DOC) concentrations and fluxes have been increasing over the past two decades, 
due to reduced atmospheric sulphur concentration, climate warming, and changes in precipitation patterns. The research discussed 
herein provides insight into the interaction between sediment and multiple material substances, leading to a better understanding of 
fluvial river ecosystems, which is essential for maintaining river health. 
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1. Preamble 

Conventionally, the main surface material transport pro- 
cesses associated with sediment movement in a river basin 
may be categorized as runoff and sediment yield, soil erosion 
and nutrient loss, and river geomorphological evolution. The 
material transport processes tend to be considered by hydro- 
logists, sedimentologists, hydraulic engineers, agronomists, 
ecologists, and environmentalists (Kisi et al., 2013; Van Rijn 
et al., 2013; Miller et al., 2014), whereas the geomorphic 
evolution of a watershed is the primary concern of geomor- 
phologists (Provansal et al., 2014; Toone et al., 2014). In re- 
cent years, the environmental effects of sediment movement 
through a river basin have been investigated in terms of varia- 
tions in natural organic matter, nutrients, and contaminants in 
water-sediment two-phase systems, extending to multiphase 
systems of water-sediment-carbon, water-sediment-nitrogen, 
and water-sediment-phosphorous, owing to the considerable 
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annual losses of carbon, total nitrogen (TN) and total phos- 
phorous (TP) to surface waters (Panagopoulos et al., 2007; 
Mora et al., 2014). At the time of writing, there is an increa- 
sing research focus on the migration and transformation of the 
organic and inorganic forms of carbon, largely because of 
their sensitivity to global environmental change (Raymond 
and Bauer, 2001; Galy et al., 2007). Obviously, a systematic 
description of the coupled processes of material transport in 
multiphase river systems is essential if we are to assess accu- 
rately the environmental impact of sediment transport.  

The aim of this review paper is to provide an overview of 
the present state of knowledge of sediment flux and its en- 
vironmental implications, thereby achieving a better under- 
standing of river systems and their sustainability. The conven- 
tional focus has been on sediment generated from soil erosion 
in a basin with associated chemicals absorbed onto solids or 
dissolved in water. However, nutrients have become of major 
concern to environmentalists, while carbon is the primary 
issue in environmental, ecological and climatic study areas 
concerned with global change, in terms of both dissolved 
organic carbon and gaseous CO2 flux. Hence, this paper dis- 
cusses four inter-related issues closely related to sediment 
transport processes, including sediment flux, soil erosion and 
chemical transport, dissolved organic carbon, and sediment- 
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induced CO2 emission and sequestration. This approach has 
the advantage of treating the different facets of sediment tran- 
sport in the spirit of a generalized integral form of the basic 
flux equation, which opens up a wide vista of future applica- 
tions in earth science.  

 

2. Sediment Flux 

Water and sediment are the main carriers of various ma- 
terials in river basins. The motion of the water-sediment mix- 
ture can have severe environmental consequences, owing to 
the sediment load carrying materials such as natural organic 
matter, nutrients and contaminants (Iwata et al., 2013; Thou- 
venot et al., 2007). Many theories have been proposed to 
describe the characteristics of sediment transport (Abad et al., 
2008; Ganju and Schoellhamer et al., 2009; Zhang et al., 
2013). Of these, the most frequently used theories are based 
on continuum concepts. The continuum assumption, which 
has proved very successful in representing liquid-gas motions, 
intuitively appears insufficient to describe motions of discrete 
solid particles in two-phase flows. Meanwhile, stochastic mo- 
dels can be used to model the motions of individual particles 
in a fluid. However, stochastic models assume that the ran- 
dom jump of each particle is independent and fits a Markov 
process, and so can only be applied to homogeneous turbulent 
flows and do not properly describe the interactions between 
solid particles. More sophisticated studies adopt a combined 
approach for describing solid-liquid systems whereby the li- 
quid phase is modeled by means of the continuum concept 
and the solid phase using kinetic theory, with proper consi- 
deration taken of the interactions between the two phases. 

The suspended sediment transport rate is usually calcu- 
lated by integrating the product of the sediment velocity and 
concentration over the depth. In uniform flow in a simplified 
open channel, suspended sediment transport at equilibrium is 
reasonably well described by means of standard vertical pro- 
files for the flow velocity and the concentration of suspended 
sediment. For engineering purposes, the velocity profile may 
be satisfactorily represented by a logarithmic distribution, p- 
rovided the flow contains low concentrations of sediment (i.e. 
is dilute). However, this may not be the case for hypercon- 
centrated sediment-laden flow. Alternatively, the vertical sedi- 
ment profile could be approximated by the well-established 
formula derived by Rouse (1937) from the principle of mass 
conservation. Due to the limitations of the Rouse formula, con- 

siderable research effort has gone into improved modeling of 
the concentration distribution of suspended sediment. This has 
led to diffusion, energy, mixture, similarity, stochastic, and 
two-phase flow theories, from which various formulas have 
been developed (see e.g. Rouse, 1937; Knapp, 1938; Bakh- 
meteff and Allan, 1946; Bagnold, 1962; Ananian and Gerba- 
shian, 1965; Matalas, 1970; Drew, 1975; McTigue, 1981; Me- 
ndoza and Zhou, 1995). One of the most exciting advances 
ma-de in the past few decades was by Ni and Wang (1991), 
who proved that a similar differential equation would be fina- 
lly derived no matter which of the aforementioned theories 
was selected, which directly led to a generalized formula as an 

universal integral solution of the basic equation. Ni and his 
colleagues also demonstrated that most well-known formulas 
such as those proposed by Rouse (1937), Lane and Kalinske 
(1941), Hunt (1954), Ananian and Gerbashian (1965), Zagus- 
tin (1968), Laursen (1980), and Itakura and Kishi (1980) were 
merely special cases of the generalized formula under diffe- 
rent conditions. This stimulated further studies which are still 
on-going (Cheng et al., 2013; Kundu and Ghoshal, 2014), the 
aim being to extend the general expression to an increasing- 
ly wide range of applicability. 

Given that the suspended sediment transport rate is deter- 
mined by the integral product of the sediment velocity and 
concentration over the flow depth, a plethora of formulas have 
been derived from different mathematical expressions for ve- 
locity and concentration profiles (Buyevich, 1990; Rasteiro et 
al., 1993; Davis and Gecol, 1994; Cheung et al., 1996; Xue 
and Sun, 2003; Deng et al., 2008; Bai and Duan, 2014). How- 
ever, various further aspects must also be considered when 
calculating sediment transport in unsteady flow, in a non- 
straight channel or in a human disturbed river system (Lenzi 
and Marchi, 2000; Sammori et al., 2004; Francke et al., 2008; 
Marttila and Kløve, 2010; Gao and Puckett, 2012; Kabir et al., 
2014). For example, although sediment-discharge hysteresis 
loops have been much analyzed in order to facilitate a better 
understanding of sediment transport processes, it remains un- 
clear how to characterize accurately the hysteresis using indi- 
ces (Aich et al., 2014). Moreover, to evaluate anthropogenic 
changes to river channels, full account must be taken of dis- 
continuities in flow and sediment transport, and their effect on 
primary geomorphic parameters such as the active channel 
width, bed slope, and sediment grain size. 

River water and sediment fluxes are closely related to 
runoff and sediment yield in a river basin. However, the des- 
criptions of soil erosion used nowadays mainly derive from 
statistical and physical models based on causality. As a core 
activity of global change research, e.g. within the IGBP and 
IHDP programs, assessments of water and soil loss are made 
at three spatial scales; namely, hillside, watershed, and re- 
gional scales. Statistical models focus on the establishment of 
empirical relationships between water, soil loss, and various 
influencing factors; of such models, the most widely used in- 
clude the universal soil loss equation (USLE) (Wischmeier, 
1976) and the revised universal soil loss equation (RUSLE) 
(Renard et al., 1991). Physical models are usually based on 
deterministic theories for hydrodynamics and sediment trans- 
port, which are used to predict runoff and sediment yield in 
small basins. Examples of physical-deterministic models inc- 
lude CREAMS (Chemicals, Runoff and Erosion from Agrcui- 
ltural Management Systems), GLEAMS (Groundwater Load- 
ing Effect of Agricultural Management Systems), CSEP (Cli- 
mate Index for Soil Erosion Potential), EPIC (Erosion-Pro- 
ductivity Impact Calculator), ANSWERS (Areal Nonpoint 
Source Watershed Environment Response Simulation), AGN- 
PS (Agricultural Nonpoint Pollution Source), KINEROS (Ki- 
nematic Runoff and Erosion Model), MEDALUS (Mediterra- 
nean Desertification and Land Use), EUROSEM (European 
Soil Erosion Model), WEPP (Water Erosion Prediction Pro- 
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ject) (Laflen et al., 1991) and LISEM (Limburg Soil Erosion 
Model). Of these, CREAMS (Knisel, 1980) establishes a field 
model primarily applicable at a scale incorporating hillslope 
and valley bottom (Rudra et al., 1998), which partially meets 
requirements for the protection of water resources. At water- 
shed-scale, ANSWERS (Beasley et al., 1980) considers the re- 
lationship between non-point source pollution and soil erosion. 
The individual rain distributed models LIMSEM (De Roo, 
1996) and EUROSEM (Morgan et al., 1998) are both physic- 
cally-based. Nevertheless, the mechanism model WEPP (La- 
flen et al., 1991) released by USDA in 1995 accounts for rain- 
fall infiltration, irrigation, surface runoff, soil separation, sedi- 
ment transport and deposition process, plant growth and de- 
composition of residues, and is by far the most complicated 
calculation model for the prediction of soil erosion. In recent 
years, several new models based on stochastic theory (Fou- 
foula-Georgiou and Stark, 2010; Chen et al., 2013) and self- 
organization concept have been applied to the simulation of 
slope surface erosion (Han et al., 2011) and have the potential 
to predict rill evolution in detail. 

The accurate prediction of water and sediment variations 
at different temporal and spatial scales is very difficult using 
the aforementioned models owing to excessively high data 
requirements and limitations of scale-up. Most conventional 
methodologies for soil-erosion assessment are limited to small 
or medium river basins. Although efforts have been made to 
develop an alternative approach for soil-erosion intensity 
assessment in large basins (see e.g. Ni et al., 2014), more in- 
formation about the influencing factors is still needed from 
systematic field studies. 

 

3. Sediment and Soil Chemical Transport Processes 

Migration and transformation of soil organic matter and 
other chemical nutrients occur simultaneously with soil ero- 
sion and sediment transport. Such processes can result in dec- 
line in soil fertility, reduction in crop yield, and release of che- 
mical components into rivers, lakes or reservoirs, perhaps lea- 
ding to non-point source pollution and eutrophication. It is ge- 
nerally believed that nutrient loss from surface soil is driven 
by nutrients becoming dissolved by runoff and/or being ca- 
rried away through sediment transport. Hitherto, nutrient loss 
from slope surface soil has mostly been determined from rain- 
fall-runoff plots through real-time monitoring and analysis of 
runoff, sediment and nutrient. For example, a five-year conti- 
nuous field observation on the loss of nitrogen due to growth 
season drainage in the United States, showed that losses by 
use in the case of fertilizers were 48.8, 96 and 144 kg nitrogen 
per hectare, corresponding to 4.8, 9.6 and 12.7 times that 
obtained for no fertilizer (Almasri and Kaluarachchi, 2004). 

Water and sediment are not only the main carriers of 
other materials but also affect their migration and transfor- 
mation. During soil erosion and sediment transport, the flow 
of water and sediment influences the dissolution of inorganic 
and organic components in sediments as well as the redistri- 
bution of external contaminants between solid and liquid pha- 
ses, e.g. adsorption and desorption (McCulloch et al., 2003). 

These can further alter sediment composition and the occu- 
rrences of pollutant contamination between the different pha- 
ses, ultimately affecting the water environment status. More- 
over, inorganic components in soil or sediment could also a- 
ffect the retention of metal species, and further affect their mi- 
gration behavior through water and sediment transport. Ba- 
ckground values of trace elements in sediments directly deter- 
mine the species and content of various background ions in 
the water phase, altering the adsorption of organic pollutants 
onto sediment. Humic organic components in soil or sediment 
also play an important role in interphase distribution or disso- 
lution, affecting not only water quality but also the adsorption 
and desorption of organic matter (Grathwohl, 1990; Kile et al., 
1995; Luthy et al., 1997). 

In flowing water, the presence of sediment also affects 
biodegradation and photolysis of organic pollutants, leading 
to their transformation between either liquid and gas or solid 
and gas phases. It has been reported that sediment can pro- 
mote the biodegradation of organic pollutants (Xia and Wang, 
2008; Duong et al., 2009). Due to the enrichment of various 
nutrients in sediment particles, the sediment itself provides 
better conditions for microbial growth. Sediment acts as a ca- 
rrier for microbial adhesion and metabolic activity, thus en- 
couraging rapid proliferation of microorganisms. Moreover, 
sediment also transports pollutants and provides direct contact 
conditions beneficial to microorganisms and organic matter 
(Marchesi et al., 1994). 

Although the degradation of organic matter has been a 
focus for interaction between water, sediment and pollutants 
in terms of its impact on water quality and pollutant migration 
and transformation, such degradation does not necessarily 
mean complete detoxication and mineralization. For example, 
organic pollutants such as steroids are by no means comple- 
tely removed in the degradation process. Instead, they are 
transformed into other intermediates maintaining a potential 
ecological hazard; in this context, the presence of sediment 
may promote further transformation of pollutants. Mineraliza- 
tion (involving CO2 emission) is of key importance in under- 
standing the mechanisms behind migration and transformation 
of organics in sediment-laden flow, and could serve as a use- 
ful indicator for environmental and ecological consequence 
diagnoses. 

 

4. Sediment-induced CO2 Emission and 
Sequestration 

During sediment movement, mineral weathering is most 
active (Lal, 2003; Berhe et al., 2007), with physical, chemical 
and biological processes relevant to organic carbon decom- 
position, synthesis and transformation also affected, leading to 
CO2 sequestration, emission, and change of concentration in 
the atmosphere (Stallard, 1998; Smith et al., 2001; Berhe et al., 
2007; Quinton et al., 2010). 

The three main pathways for CO2 exchange between soil 
and atmosphere include chemical weathering of minerals in 
the soil, and the formation and decomposition of soil organic 
matter (Suchet and Probst, 1995; Van Oost et al., 2007). CO2 
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fixation of inorganic minerals in sediment-laden flow is us- 
ually attributed to accelerate chemical weathering via sedi- 
ment transport. Silicate and carbonate in broken soil particles 
generate soluble bicarbonate by absorbing CO2 as runoff- 
induced scouring occurs, creating a “carbon sink” (Meybeck, 
1982; Berner et al., 1983; Gaillardet et al., 1999). Although 
the consensus is that the processes of CO2 sequestration and 
emission of organic carbon in sediment-laden flow are prima- 
rily caused by changes to the behavior of soil organic carbon 
at different stages of sediment movement, controversy still 
exists about the exact effect of CO2 emission or sequestration 
at a specific stage (e.g. erosion, transport or deposition). 

In a region of sediment erosion, soil particles undergoing 
crushing and migration cause organic carbon decomposition 
to speed up, thus releasing more CO2 (Lal, 1995, 2003; Jene- 
rette and Lal, 2007). Meanwhile, the loss of soil organic car- 
bon during soil erosion helps reduce surface plant growth due 
to diminished fertility and volume of residues available from 
fields, resulting in loss of the soil carbon pool (Lal, 1995). An 
alternative view is that soil formation and CO2 fixation are 
accelerated due to surface organic carbon loss in an erosion 
area, resulting in the so-called “substitution effect” (replace- 
ment) thereby increasing the storage of the soil carbon pool 
(Stallard, 1998; Harden et al., 1999; Smith et al., 2001; Har- 
den et al., 2002; McCarty and Ritchie, 2002; Fontaine et al., 
2007; Quine and Van Oost, 2007; Van Oost et al., 2007; Quin- 
ton et al., 2010). 

Soil organic carbon is believed to be further decomposed 
in areas dominated by sediment transport, though different 
views exist regarding the decomposition ratio. Smith et al. 
(2001) used an equilibrium model to point out that the longi- 
tudinal decomposition of organic carbon is almost negligible. 
However, Jacinthe and Lal (2001) found, by interpreting ex- 
perimental data, that approximately 15% of soil organic car- 
bon was converted to CO2 in the sediment transport process. 
Óskarsson et al. (2004) argued that the organic carbon decom- 
position rate could reach 50% in the process, and Schlesinger 
(1995) even reckoned that 100% soil organic carbon could 
transform into CO2. 

Harden et al. (2002) suggested that upstream sediment 
entering areas of sediment deposition tends to enrich organic 
carbon, increasing CO2 decomposition and emission. Other in- 
vestigators (Stallard, 1998; Berhe et al., 2007) have claimed 
that a protective layer would form on the original soil due to 
sediment deposition, hindering subsoil decomposition and re- 
ducing the rate of release of CO2. However, the sediment or- 
ganic carbon content in the protective layer is often lower 
than that of the carbon-rich original surface soil, and thus the 
soil balance once again breaks, accelerating CO2 fixation and 
enhancing storage of the carbon pool (Stallard, 1998; Smith et 
al., 2001). 

In certain countries, including Bangladesh, Brazil, Burma, 
China, India and the USA, the sediment content of major 
rivers can be relatively high (e.g. the Amazon, Yellow and 
Ganges-Brahmaputra all carry a mean sediment load of ~ 109 
tons per annum; see e.g. Milliman and Meade, 1983; Good- 
bred and Kuehl, 2000), and so the process of material fluxes 

becomes more complicated. For example, substantially diffe- 
rent chemical and biological behaviors of inorganic/organic 
carbon and organic pollutants have been reported for Chinese 
rivers with high sediment content (Marshall et al., 2000; Xia 
and Wang, 2008; Duong et al., 2009). To date, almost no re- 
search studies have considered the environmental consequen- 
ces of sediment-laden river flows in terms of CO2 emission 
and sequestration. This is likely to provide fertile ground for 
future scientific studies. 

Through interaction with carbonate rocks, biophysical 
and biochemical processes play an important role in the glo- 
bal carbon balance. Biological metabolic processes involve 
carbonate activation. Biological composition, structure and 
activity affect (directly or indirectly) the circulation and trans- 
formation of soil organic carbon throughout the whole process 
of sediment movement. Soil microorganisms provide a cons- 
tantly updated dynamic driver for soil carbon form transfer, 
which continuously assimilates materials in the environment 
as part of the microorganisms’ metabolic processes while re- 
leasing carbon components in different forms to the environ- 
ment. Until now, there has been no unified understanding 
about biological effects on the soil carbon pool in sediment e- 
rosion regions. In such regions, biological photosynthesis and 
respiration also cause the content of inorganic carbon in river 
water to vary, although this may be subject to the influence of 
sediment content. Moreover, sediment, as a carrier of pollu- 
tants and microorganisms, could cause changes to the biolo- 
gical behavior of organic pollutants in water (Marshall et al., 
2000; Duong et al., 2009), hence altering rates of CO2 emi- 
ssion and sequestration. In depositional areas, the biological 
mineralization of soil organic carbon becomes a very compli- 
cated process affecting a wide range of parameters, including 
soil properties, temperature, moisture, and organic carbon co- 
mposition. 

Different degradation rates of soil organic carbon are li- 
kely in areas which experience different erosional, transport 
and depositional processes associated with sediment move- 
ment (Berhe, 2012). Obviously, considerable attention should 
be paid to the influence of biological processes on the carbon 
cycle, in the overall context of sediment processes. 

 

5. Dissolved Organic Carbon (DOC) 

In addition to the vertical pathway of exchange of carbon 
(i.e. CO2) between terrestrial ecosystems and the atmosphere, 
there is also a horizontal pathway of significant soil carbon 
loss of dissolved organic carbon (DOC) to the riverine envi- 
ronment. The hydrological erosion pathway is more by sub- 
surface flow than by surface runoff, and as such the riverine 
concentrations of DOC are a function of myriad factors, inclu- 
ding climate, season, soil type, ecosystem type, temperature, 
rainfall, and antecedent soil moisture. While the concentration 
of DOC is in itself an informant variable, the flux of DOC (i.e. 
the product of DOC concentration and riverine flow rate) pro- 
vides greater insight into DOC impact on carbon loss and 
water quality. The problems associated with DOC in riverine 
water are three-fold: firstly its carbon loss from soils contri- 
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butes to soil quality degradation; secondly, as DOC export is a 
source term in catchment carbon budgets, increasing DOC 
loss (export) may result in some catchments (especially peat- 
lands) becoming sources for carbon and thus destabilizing 
their large soil stores of carbon; and thirdly its negative im- 
pact on water quality if high DOC waters are used as the raw 
water in potable water treatment plants and then treated with 
chlorine disinfection possibly resulting in elevated levels of 
carcinogenic trihalomethanes (THMs) and other toxins.  

A number of studies have shown that DOC riverine con- 
centrations have been increasing over the past two to three 
decades, especially over Northern Europe and North America 
(Evans et al., 2005; Monteith et al., 2007; Grieve and Gilvear, 
2008; Sucker and Krause, 2010; Mehring et al., 2013; Tian et 
al., 2013; Filella and Rodriguez-Murillo, 2014; Oni et al., 20- 
14). Several hypotheses have been tendered as possible exp- 
lanations for this DOC increase, including: decreasing atmos- 
pheric sulphur concentration; climate warming (with seasonal 
temperature increases); increasing precipitation with increas- 
ing annual (e.g. winter/spring) river discharge; reducing sum- 
mer discharge; longer inter-annual drought length; increasing 
atmospheric CO2 concentration; CO2 mediated stimulation of 
primary productivity; increasing decomposition; land-use land- 

management change (e.g. afforestation of peatlands; wind far- 
m developments and disturbance); catchment scale; and cli- 
mate zones. 

Freeman et al. (2004) in peatland manipulation experi- 
ments found that reduced summer precipitation did not exp- 
lain increases in DOC concentration. Noting increases in at- 
mospheric CO2 (CO2 enrichment), they proposed that DOC 
increases were induced by increased primary production and 
DOC exudation from plants. Evans et al., (2005), in a study of 
22 UK upland waters, found that DOC concentrations increa- 
sed by an average of 91% during the previous 15 years and 
noted that this increase resulted from a combination of dec- 
lining acid rain deposition (reducing atmospheric sulphur con- 
centration) and rising temperatures. In an assessment of data 
from 522 remote lakes and streams in North America and 
Northern Europe, Monteith et al. (2007) found that DOC con- 
centrations increased in proportion to the declining rates of 
atmospherically-deposited anthropogenic sulphur. Monteith et 
al. stressed that the rise in DOC concentration was integral to 
the recovery from acidification. Grieve and Gilvear (2008) in 
a study of tributaries (disturbed due to wind farm construction 
on blanket peatlands versus undisturbed) found DOC concen- 
trations to be always higher in the disturbed streams by con- 
centrations ranging between 2 and 5 mg/L. A review by Suc- 
ker and Krause (2010) found that the most realistic reason for 
DOC increases was the complex interaction of changing at- 
mospheric sulphur deposition and climate warming. Clark et 
al. (2010) observed a stalemate had occurred in the debate as 
to why DOC increases, between those favoring decreasing at- 
mospheric sulphur deposition and those supporting climate 
warming. They suggested that the conflicting observations 
may be due to them being derived from experiments taken at 
different spatial and temporal scales. 

In a review of DOC cycling and transformation in rive- 

rine and estuarine waters, Bauer and Bianchi (2011) noted that 
DOC is derived from terrestrial vegetation and soils. Bauer 
and Bianchi observed that estuaries bordering the Gulf of Me- 
xico have among the highest DOC concentrations as well as 
the some of the highest rates of fresh litter decomposition. 
Kindler et al. (2011) found that DOC losses constitute a small 
but continuous loss of carbon from terrestrial ecosystems, ty- 
pically of the order of 25% of net ecosystem exchange and as 
such must be incorporated in carbon budgets. Laudon et al. 
(2012) in a study of 49 catchments in Northern latitudes found 
that the mean annual temperature (MAT), in the range of -3 to 
10 oC, has a strong control over regional stream water DOC 
concentration, with the highest concentrations in regions with 
mean annual temperature ranging between 0 and 3 oC. Räike 
et al. (2012) examined 36 years of data from Finland, and re- 
ported increases in DOC stream water concentrations but no 
increase in DOC export. This holds when precipitation and s- 
tream flow decreases, possibly due to climate warming. Oni et 
al. (2013) studied three nested headwater boreal catchments, 
and found that stream DOC was positively-correlated with 
certain trace metals (copper, iron and zinc) and negatively- 
correlated with several other chemical parameters (sulphate, 
conductivity, and calcium). These observations indicate the 
subtle effects of recovery from acidification. However, Oni et 
al. (2013) concluded that climate warming rather than recove- 
ry from acidification could be the dominant driver of DOC in- 
creases in the boreal catchments they considered. Mehring et 
al. (2013) found that long drought periods in North American 
rivers reduced DOC concentration (in summers) followed by 
higher DOC concentration in the later hydroperiod (autumn 
/winter). Tian et al. (2013) observed that a linear relationship 
held between the surface temperature and mean instream 
DOC concentration at the annual scale for seven major water- 
sheds, including coastal rivers crossing different climate zon- 
es. Their results strongly suggest that climate warming is the 
primary factor causing the increasing DOC flux. They also 
note that landscape factors are a secondary consideration. 

In a recent study, Koehler et al. (2009) found the concen- 
trations of DOC in peatland stream water in Ireland, ranged 
from 2.7 to 11.5 mg/L over one year with the higher concen- 
trations in the summer. The DOC concentrations were highly 
correlated with temperature. However as the flow rates were 
much higher in winter, the export of DOC was highest in win- 
ter. The annual export of DOC for the year 2007 was 14.1 g 
cm2ha-1yr-1. This was approximately twice that of the carbon 
in CH4 emissions and approximately half that of the atmos- 
pheric carbon sequestered by the peat soils. Liu et al. (2014) 
investigated the spatial and seasonal variation of DOC con- 
centrations in 55 Irish streams on seven time occasions over 1 
year (2006/2007). The DOC concentrations ranged from 0.9 
to 25.9 mg/L with a mean value of 6.8 and a median value of 
5.7 mg/L and varied significantly over the course of the year. 
The DOC concentrations from late winter (February: 5.2 ± 3.0 
mg/L across 55 sites) and early spring (April: 4.5 ± 3.5 mg/L) 
had significantly lower DOC concentrations than autumn (Oc- 
tober: mean 8.3 ± 5.6 mg/L) and early winter (December: 8.3 
± 5.1 mg/L). Stream runoff from peat soils had the highest 
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DOC concentrations and the highest DOC export while the 
lowest were from catchments with mineral soils (with soil 
organic matter (SOM) < 3%). The DOC production sources (e. 
g., litterfall) or the accumulation of DOC over dry periods mi- 
ght be the driving factor of seasonal change in Irish stream 
DOC concentrations. Analysis of data using stepwise multiple 
linear regression techniques identified the topographic index 
(TI, an indication of saturation-excess runoff potential) and 
soil conditions (organic carbon content and soil drainage cha- 
racteristics) as key factors in controlling DOC spatial varia- 
tion in different seasons. The TI and soil carbon content (e.g., 
soil organic carbon; peat occurrence) are positively related to 
DOC concentrations, while well-drained soils are related to 
DOC concentrations. Similar observations have been noted by 
Worrall et al. (2006), Worrall and Burt (2007), Eimers et al. 
(2008), Dawson et al. (2008), and others. 

There is growing concern internationally amongst water 
treatment plant (WTP) operators and water quality (WQ) re- 
gulatory agencies with regard to the levels of natural organic 
matter (NOM) such as DOC present in raw water and persis- 
ting in treated water prior to disinfection. The presence of 
elevated NOM can cause problems in water treatment proce- 
sses at drinking WTPs and problematic WQ of water when 
treated with chlorine disinfectant. Problems occur not just as 
the treated water leaves the WTP but also along the distri- 
bution network and more crucially at the consumer’s tap. The 
problems at the WTP include: negative WQ effects on aesthe- 
tics, colour, taste and odour; inefficiencies in coagulation/flo- 
cculation processes leading to smaller floc sizes and more 
expensive floc settlement costs; the requirement for activated 
carbon process (GAC) and the production of elevated levels 
of trihalomethanes (THMs), haloacetic acids (HAAs) and 
other toxins in the drinking water (EPA and HSE, 2011; EPA, 
2012). Elevated NOMs can lead to the promotion of an un- 
healthy biological growth in the water distribution network. 
At the tap, the above issues are integrated, resulting in: poor 
WQ in colour, taste and odour (including chlorine odour); and 
elevated THMs and other toxins. Chlorine has a long track re- 
cord (more than 100 years) of success (USEPA, 1999). THMs 
are a group of organic chemicals which are considered to be 
carcinogenic in excessive amounts. EU regulations have an 
upper limit of 100 μg/L for total THMs, which are composed 
of the four compounds: Chloroform, Bromoform, Dibromo- 
choromethane, and Bromodichloromethane. Haloacetic acids 
(HAAs) are a further group of chlorine associated DBPs, re- 
ceiving more recent attention. The higher the chlorine dose, 
the higher the THMs (Kraus et al., 2010). The levels of NOM 
concentration have significant variation on the temporal and 
spatial scales. Typically NOMs increase in flood events and 
decrease in low flow periods. While the high river flow sea- 
sons of Autumn and Winter are more likely to have highest 
NOM concentrations, periods of NOM flushing can occur in 
Spring and Summer flood events (after dry periods). NOMs 
are thus considered to vary over the seasons and even from 
year to year, depending on the climate. NOMs are also known 
to increase with temperature (Koehler et al., 2009) and possi- 
bly with climate change. Upland peatland catchments tend to 

have high NOMs which tend to be diluted in the downstream 
direction as the catchment size enlarges. However, where ri- 
vers flow into lakes, and lakes are used as raw water sources 
for WTPs, then the low velocity lakes can retain elevated 
NOM concentrations. Understanding both chemical and phy- 
sical characteristics of NOM in source waters is key to better 
water treatment (Wei et al., 2008). 

 

6. Conclusions 

Modeling of runoff and sediment yield in multiple-scale 
watersheds remains a challenging problem even though con- 
siderable progress has been made on understanding the me- 
chanics of sediment transport from entrainment to deposition. 
However, the present review highlights new problems that are 
emerging about the effects of sediment motion, noting inc- 
reasing environmental and ecological concerns at scales from 
hillside to global. In a river basin, it is necessary to consider 
the integrated physical, chemical and biological aspects of se- 
diment flux in order to appreciate the wider impact on the 
eco-system. The review has shown that it is necessary to con- 
sider simultaneously soil erosion, sediment transport and the 
associated movement of dissolved organic carbon and chemi- 
cals, along with horizontal and vertical carbon exchanges. 
This leads naturally to the concept of a universal flux equation 
that integrates all the foregoing aspects of sediment flux. 
More field data are required on soil erosion and carbon ex- 
changes at different spatial scales. Future research effort 
needs to be directed towards a better understanding of integra- 
ted sediment transport processes in multi-phase systems, and 
their environmental consequences. Our understanding of the 
biological response to sediment flux needs strengthening par- 
ticularly in the context of carbon and nitrogen transformations, 
including sequestration and emission of greenhouse gases ac- 
companied with sediment erosion, transport and deposition. 
This can only be achieved by a combination of fundamental 
laboratory-based research into soil-water-sediment science 
and high quality field observation campaigns conducted in 
major river basins at sufficient spatial resolution. A relevant 
example of the former is provided by Wang et al. (2014) who 
recently measured the soil organic carbon, dissolved organic 
carbon and CO2 fluxes in a laboratory-scale flume containing 
loess soil subjected to simulated rainfall. 
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