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Abstract Soil heat flux is one of the important components
of surface energy balance. In this study, long-term
estimation of soil heat flux from single layer soil temper-
ature was carried out by the traditional sinusoidal analytical
method and the half-order time derivative method of Wang
and Bras [Wang and Bras (1999) J Hydrol 216:214–226].
In order to understand the characteristics of soil heat flux
and to examine the performances of the two methods, a
field experiment was conducted at a temperate and humid
grassland in Cork, Ireland. Our results show that the soil
heat flux had the same magnitude as the sensible heat flux
at this grassland site. It was also demonstrated that the
analytical method did not predict the soil heat flux well
because the sinusoidal assumption for the temporal varia-
tion in soil heat flux was invalid. In contrast, good
agreement was found between the soil heat flux measure-
ments and predictions made by the half-order time
derivative method. This success suggests that this method
could be used to estimate soil heat flux from long-term
remotely sensed surface temperature.
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Introduction

Soil heat flux (or ground heat flux) plays an important role
in surface energy balance at the land–atmosphere inter-
face, and in meteorological modelling. On a well-watered
and full-vegetation-covered surface, the soil heat flux is of
the same order as the sensible heat flux (Kustas and
Daughtry 1990; Clothier et al., 1986). For dry soil surfaces,
the soil heat flux could be up to 50 % of the net radiation
(Idso et al. 1975). Even within a forest, the soil heat flux
represents 30–50 % of the net radiation over the understory
(Ogee et al. 2001).

Direct soil heat flux measurements can be carried out
using a soil heat flux plate, but the plate needs to be
installed at a certain depth in the soil. Hence, a temperature
measurement is still needed for calculating the heat storage
at this depth of soil. Many methods (e.g. Kimball and
Jackson 1975; Stull 1988; Malek 1993) have been developed
to calculate soil heat flux; however, most of them need the
soil temperature measured in at least at two layers, which is
inconvenient for large area monitoring. Assuming the
surface temperature varies sinusoidally, an analytical
solution of the one-dimensional heat diffusion equation
for calculating soil heat flux from one level of soil
temperature measurement is available. However, this
analytical solution may not reflect the real soil environment
very well due to this assumption of sinusoidal temperature
variation (Campbell and Norman 1998). Wang and Bras
(1999) proposed a half-order time derivative method to
solve the heat diffusion equation and to calculate soil heat
flux. The advantage of this method is that it requires only
one layer of soil temperature time series observations.
Wang and Bras (1999) verified their method with two types
of data. The first data set was generated by numerically
solving a complete set of nonlinear equations of coupled
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heat and water transfer in a one-dimensional soil column.
The second data set was from observations (of 10–12 days
duration) of two field experiments: the First ISLSCP Field
Experiment (FIFE) project, and the Anglo-Brazilian Ama-
zonian Climate Observation Study (ABRACOS) project
(see Wang and Bras 1999). However, this method has not
yet been tested for long-term calculation of soil heat flux
and compared with the analytical solution.

As soil heat flux represents an important surface energy
component, a method yielding the most accurate calculation
with the least difficulty is required, especially for long-term
studies. Single layer (or surface layer) time series measure-
ments of soil temperature are much easier to obtain in-situ
or remotely than vertical distributions of soil temperature.
Hence, the objectives of this study were ((1) to evaluate the
performances of two single-layer methods—the traditional
sinusoidal analytical method (Carslaw and Jaeger 1986),
and the half-order time derivative method of Wang and
Bras (1999)—in estimating soil heat flux for long-term
studies; and (2) to study the characteristics of soil heat flux
at a grassland site. For the purposes of this study, an in-situ
experiment was carried out at a temperate and humid
grassland near Cork in Ireland. This experiment provides,
from a real environmental scenario, the long-term and
continuous field observations required to assess the
capability of the two methods for estimating soil heat flux.

Materials and methods

Analytical methods

The traditional sinusoidal analytical method and the half-
order time derivative method of Wang and Bras (1999) for
estimating soil heat flux from a single-layer soil tempera-
ture time series measurement are described in the following
sections.

Traditional sinusoidal analytical method

The one-dimensional heat diffusion equation for heat
transport in the soil can be written as

rscs
@T

@t
¼ � @G

@z
; ð1aÞ

where t is time, z is the depth below the surface, T is the soil
temperature, G (W m−2) is the soil heat flux, ρs (kg m−3) is
the soil density, and cs (J kg

−1 K−1) is the soil specific heat;
while ρsCs (J m−3 K−1) represents the volumetric heat
capacity. Combining equation (1a) and Fourier’s law for
heat transport,

G ¼ �k
dT

dz
; ð1bÞ

gives
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where k (W m−1 K−1) is the thermal conductivity. Assuming
the soil properties are uniform over the entire soil profile
and the soil surface temperature varies sinusoidally (Car-
slaw and Jaegr 1986), the analytical solution of Eq. (2) for
calculating the soil temperature at any depth and time is

T z; tð Þ ¼ Tave þ A 0ð Þ exp �z=Dð Þ
� sin w t � t0ð Þ � z=D½ �; ð3Þ

where Tave (°C) is the average surface temperature over a
cycle, A(0) (°C) is the amplitude of the soil temperature
fluctuations, and t0 (s) is the phase shift. In Eq. 3, ω (sec−1)
and D (m) are the angular frequency and damping depth,
respectively, and are defined as:

w ¼ 2p
t
;D ¼

ffiffiffiffiffiffiffiffiffi
2D0

w

r
ð4Þ

where τ is the period of the temperature fluctuations and
D0=k/(ρsCs) (m

2 s−1) is the thermal diffusivity.
Considering Eq. 1b, and differentiating Eq. 3 with

respect to z, the analytical solution for soil heat flux at
any depth and time is

G z; tð Þ ¼
ffiffiffi
2

p
A 0ð Þk
D
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D
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Applying Eq. 5 and set z=0, the surface soil heat flux
can be computed as:

G 0; tð Þ ¼
ffiffiffi
2

p
A 0ð Þk sin w t � t0ð Þ½ � þ p=4½ �

D
ð6Þ

Equation 5 indicates that soil heat flux also varies
sinusoidally with time and its mean equals zero, which
implies that the total soil heat flux received from the sun
during daytime is released from the deeper soil back to the
atmosphere during the night. When applying this analytical
solution for estimating soil heat flux, only one single-layer
time series data of soil temperature is needed. The beauty of
this analytical solution is that once the amplitude of the
temperature fluctuations is determined from any depth of
the soil temperature measurement, the soil heat flux at any
depth can be readily calculated by Eq. 5.

Half-order time derivative method

Assuming a constant thermal diffusivity, D0, Eq. 2 can be
rewritten as

@T

@t
¼ D0

@2T

@z2
: ð7Þ
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For solving the differential Eq. 7 to estimate the soil heat
flux, a knowledge of the initial and boundary conditions is
necessary. Note that the variation in soil temperature far
below the ground surface is near zero; and the initial soil
temperature profile is uniform throughout the entire soil
layer. Therefore, the initial and boundary conditions for the
soil temperature can be given as:

T ¼ T0; for t ¼ 0; z � 0 ð8Þ

T ¼ T0; for t > 0; z ! �1 ð9Þ
where T0 is the initial temperature. Equation 8 states that
the initial soil temperatures through every soil layer are the
same, and requires that the computation of soil heat flux be
started at the time when the soil heat flux is zero.

Based on Eqs. 7–9 and the half-order time derivative,
Wang and Bras (1999) derived the statement that the vertical
gradient of temperature can be a function of the weighted
average of a soil temperature time series, and the soil heat
flux, G, at any depth and time can be calculated by the soil
temperature as:

G z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
krscs
p

r Z t

0

dT z; sð Þffiffiffiffiffiffiffiffiffiffi
t � s

p ð10Þ

where s is the integration variable. Equation 10 is the so-
called half-order time derivative method for estimating soil
heat flux. A detailed derivation of Eq. 10 is provided in the
Appendix. The advantage of Eq. 10 is that only single-layer
time series data of soil temperature at a certain depth and
the soil property information are required for estimating the
soil heat flux at that same depth. The small disadvantage of
using Eq. 10 to estimate soil heat flux is that the integration
must start from a time when the ground heat flux is near
zero as required by Eq. 8. Practically speaking, the starting
time of the integration can be set at midnight, as the soil
heat flux is small or around zero at that time.

Experiment

The experiment was conducted at a temperate and humid
grassland in County Cork in Eire (southern Ireland;
latitude: 52.14° N, longitude: 8.66° W) throughout the
entire year of 2002. In this experimental site, the grassland
type was pasture and meadow and the dominant plant
species was perennial ryegrass. The grass height varied
from 0.1 to 0.45 m during the experiment. The soil type
is sandy loam and the soil properties are summarised in
Table 1.

Two soil heat flux plates were installed at a depth of 5
cm from the soil surface to measure the soil heat flux. Also,
two soil temperature probes were buried at a depth of 5 cm
to measure the soil temperature and heat storage at this soil

depth. The soil heat flux at the soil surface, G (0, t), was
then calculated as

G 0; tð Þ ¼ G 0:05; tð Þ þ $G

¼ G 0:05; tð Þ þ rscs
@T

@t
$z ð11Þ

where G (0.05, t) is the soil heat flux measured by the soil
heat flux plate installed at 5 cm; ΔG is the heat stored
within this 5-cm-thick soil layer, which is calculated from
the soil temperature time series measured at 5 cm; and Δz
(=0.05 m) is the thickness of the soil layer above the heat
flux plate. Note that if the skin temperature is measured,
then Eq. 10 could provide a semi-direct estimate of surface
soil heat flux. A soil moisture sensor was also used to
measure the volumetric soil moisture content at 5 cm depth.
The air temperature at 3 m was also measured.

In addition to soil heat flux measurements, an eddy-
covariance system consisting of a three-dimensional sonic
anemometer (model 81000; R.M. Young,Traverse City, MI)
and an open-path CO2/H2O infrared gas analyzer (LI7500,
Li-Cor, Lincoln, NE) was used to measure sensible heat,
latent heat, and CO2 fluxes. A net radiometer was installed
for measuring net radiation. The sonic anemometer, gas
analyzer, and net radiometer were all positioned at 10 m
height from the soil surface. All raw data, measured and
averaged at 10 Hz and 30 min, respectively, were collected
with a data-logger and then transmitted to a computer.

When applying the traditional sinusoidal analytical and
the half-order time derivative methods to estimate soil heat
flux, the soil volumetric heat capacity, ρsCs, and thermal
conductivity, k, are needed. At this site, the mean soil
thermal conductivity was 1.07 (W m−1 K−1); while the soil
volumetric heat capacity was computed as the sum of the heat
capacities of the dry soil and soil water (Zhang et al. 2007):

rscs ¼ 1� fð Þrmcm þ qrwcw ð12Þ
where ϕ is the soil porosity, θ (m3 m−3) is the volumetric
water content, ρm is the density of dry mineral soil (kg m−3),
ρw (kg m−3) is the water density, and cm (J kg−1 K−1) and
cw (J kg−1 K−1) are the specific heat of dry mineral soil and

Table 1 Summary of the properties. The mean damping depth was
determined by Eq. 4

Soil properties

Bulk density (g cm−3) 1.3
Porosity 0.61
Mean thermal conductivity (W m−1 K−1) 1.07
Soil moisture content (volumetric) 0.22–0.61
Volumetric heat capacity (MJ m−3 K−1) 1.84–3.47
Thermal diffusivity (m2 s−1) 3.1×10−7–5.81×10−7

Mean damping depth (m) 1.48
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water, respectively. In Eq. 12, the contribution of air is
neglected. During the year 2002, the measured volumetric
soil moisture θ was between 0.22 and 0.61, and by Eq. 12
the volumetric heat capacity ρsCs was found to be in the
range of 1.84 to 3.47 (MJ m−3 K−1).

Results and discussion

Surface energy flux characteristics

Figure 1a shows the temporal variations in the net radiation,
Rn, and surface soil heat flux, G (0, t), at the grassland for
the whole year of 2002. It is clear that Rn varied with
season and had a bell-shaped annual cycle that reached a
minimum value in the winter and a maximum in the
summer. Note that, in Fig. 1a, the soil heat flux also varied
with season, but did not follow the same trend as Rn. This
can be attributed to the following. The peaks of the
observed net radiation and surface soil heat flux were
around day 157 and day 112, respectively. Around the peak
period of net radiation, the grass was taller and the land
surface was more covered by vegetation. Hence, a lower
percentage of the net radiation was distributed to the soil
heat flux during this peak period (∼ day 157), resulting in

the peak period of soil heat flux being shifted to an earlier
time (∼ day 112). From autumn to winter (September to
December), the soil heat flux was almost constant, and this
was the minimum value within the year. Starting from
January, the soil heat flux increased gradually and reached
its maximum at the end of spring; it then decreased with
time until the end of August. Figure 1b shows typical
diurnal cycles of the soil heat flux in winter, spring,
summer, and autumn (represented by days 1, 97, 182, and
271, respectively). It is clear that these soil heat fluxes did
not have the sinusoidal diurnal cycles as implied/assumed
in Eq. 5. Instead, these soil heat fluxes showed the bell-
shaped variations that had minimum values at night and
maximums around noon. Recall that the analytical solution,
i.e. Eq. 5, assumes that the soil surface temperature varies
sinusoidally with time. Hence, the derived soil heat flux
also varies sinusoidally with time. It is common to find that
measured soil heat fluxes do not follow this sinusoidal
behavior. During daytime, the source of soil heat flux is
from the net radiation; however, during the night the source
of soil heat flux is from the deeper and warmer ground.
Hence, generally speaking, daytime soil heat fluxes are
larger than nighttime fluxes in terms of magnitude. One
interesting point to note in Fig. 1b is that the times at which
the maximum heat fluxes occured in days 1, 97, and 182
were all around noon and did not shift with different
seasons.

The relationship between the net radiation and sensible
heat flux is shown in Fig. 2a. The solid line represents the
linear regression between these two parameters. The slope
of the regression line is 0.26 and the value of the coefficient
of determination, R2, is 0.73. This shows that the sensible
heat flux is strongly related to the net radiation and close to
26 % of the net radiation energy was distributed to sensible
heat flux. Figure 2b and c are the same as Fig. 2a but
showing water vapor flux and surface soil heat flux. These
results show that about 34 % and 24 % of the net radiation
were used for evapotranspiration and soil heat flux. Note
that, from Fig. 2a to c, the energy closure for this grassland
was near 85 % and the soil heat flux was as large as the
sensible heat flux.

Traditional sinusoidal analytical method estimation

Since the surface soil heat flux cannot be measured directly
by the soil heat flux plate at the soil surface, a more direct
and appropriate way for evaluating the performance of the
two methods is to use the soil heat flux measured at 5 cm,
G (0.05, t). With Eq. 5 and measured soil temperature at
5 cm, we predicted the soil heat flux at this depth. Figure 3a
shows the comparison between observed and estimated soil
heat fluxes by the traditional sinusoidal analytical method
(hereafter analytical method). A typical time series com-

Fig. 1 a Temporal variations in net radiation and surface soil heat
flux at a grassland near Cork, Eire, for the whole year of 2002. b
Typical diurnal cycles of the soil heat flux in winter, spring, summer,
and autumn (represented by days 1, 97, 182, and 271, respectively)
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parison, from day 90 to 100, is also shown in Fig. 3b. The
R2 and standard error of estimation (SEE) in Fig. 3a are
0.42 and 16.45 (W m−2), respectively (regression statistics
are also summarised in Table 2). It is clear that the
analytical solution did not reproduce the measured soil
heat flux well. And, as shown in Fig. 3b, the soil heat flux
was overestimated during the night (heat transported
upward) and slightly underestimated during daytime (heat

transported downward). This is because the assumption that
the soil temperature and heat flux vary sinusoidally with
time is invalid, as demonstrated in Fig. 1b.

To further evaluate the usefulness of the analytical
method, we compared the measured soil heat flux at the
surface, Gm (0, t), with the predictions, Gp (0, t). Here, Gm

(0, t) is the sum of soil heat flux measured at 5 cm, Gm

(0.05, t), and the heat storage in this 5 cm thick of soil,
ΔGm (0.05, t); while Gp (0, t) is calculated as the sum of
predicted soil heat flux at 5 cm, Gp (0.05, t), and the heat
storage Δ Gm (0.05, t). The comparisons between Gm (0, t)
and Gp (0, t) in scatter and time series plots are shown in
Fig. 4a and b, respectively. For clarity, only the measure-Fig. 2 Relationships between the net radiation and a sensible heat

flux, b water vapor flux, and c surface soil heat flux. The solid line
represents the linear regression between the two parameters

Fig. 3 Comparison between observed and estimated soil heat fluxes
calculated by the traditional sinusoidal analytical method at 5 cm. For
clarity purpose, only the measurements and predictions from days 90
to 100 are plotted. a Scatter plot, b time series plot

Table 2 Coefficients of regression analyses between measured and
estimated soil heat fluxes calculated by the traditional analytical and
half-order time derivative methods. SEE Standard error of estimation

Method Flux Slope Intercept R2 SEE

Analytical G (0.05, t) 0.64 −0.64 0.42 16.45
G (0, t) 0.87 −0.86 0.76 16.45

Half-order G (0.05, t) 0.96 2.50 0.94 5.40
G (0, t) 1.00 2.46 0.98 5.40
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ments and predictions from days 90 to 100 are plotted in
Fig. 4b (and the other time series plots in this study). Good
agreement between Gm (0, t) and Gp (0, t) is found and
the R2 and SEE in Fig. 4a are 0.76 and 16.45 (W m−2),
respectively. This demonstrates that the analytical method
in conjunction with the soil heat storage term can
reasonably capture the magnitude and temporal evolution
of soil heat flux at the surface. This also reveals the
importance of heat storage in determining the surface soil
heat flux, G (0, t). Figures 5a and b show comparisons
between measured soil heat flux at 5 cm and heat storage in
this 5 cm thickness of soil in scatter and time series plots,
respectively. Note that the heat storage term is as large as
the heat flux at this depth, and has similar temporal
variation.

Half-order time derivative method estimation

With Eq. 10 and measured soil temperature at 5 cm, we
applied the half-order time derivative method (hereafter
half-order method) to predict the soil heat flux at this depth.
Figures 6a and b show comparisons between measured and
predicted soil heat fluxes in scatter and time series plots,
respectively. Notice that the half-order method predicted the
soil heat flux very well, not only in magnitude but also in

Fig. 4 Comparisons between observed and estimated soil heat fluxes
calcualted by the traditional sinusoidal analytical method at the
surface. a Scatter plot, b time series plot from days 90 to 100

Fig. 5 Comparisons between observed soil heat fluxes at 5 cm and
the heat storage. a Scatter plot, b time series plot from days 90 to 100

Fig. 6 Comparisons between observed and estimated soil heat flux by
the half-order method at 5 cm. a Scatter plot, b time series plot from
says 90 to 100
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temporal trend. The R2 and SEE in Fig. 6a are 0.94 and 5.4
(W m−2), respectively. As in Fig. 4a and b, we also used the
half-order method to predict the soil heat flux at the surface,
G (0, t), and the results are shown in Fig. 7a and b,
respectively. Not surprisingly, good agreement was found
in both figures. Figures 6a and 7b demonstrate that the half-
order method can capture the magnitude and temporal
evolution of soil heat flux at the surface, and any other
depth, well.

Not only the soil heat flux but also the soil temperature
can be estimated using the half-order method. With similar
derivation, as detailed in the Appendix, the soil temperature
can be expressed as the integration of soil heat flux (Wang
and Bras 1999):

T z; tð Þ ¼ T0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pkrscs

p Z t

0

G z; sð Þdsffiffiffiffiffiffiffiffiffiffi
t � s

p ð13Þ

Using Eq. 13 and measured soil heat flux at 5 cm, Fig. 8a
and b show the scatter and time series comparisons between
measurements and predictions of soil temperature, respec-
tively. It can be seen that this method can record the temporal
trend of the soil temperature but not the magnitude. Figure
8b reveals that when an error of temperature estimation
occurs, it remains in the integration formula, Eq. 13, hence
affecting the magnitude of the latter estimations.

In Figure 8, estimations were obtained by Eq. 13 and the
integration time period was 365 days (t=365), i.e. the time
integral in Eq. 13 was carried out continuously from day 1
(initial point) to day 365. To further examine the perfor-
mance of the half-order method for long-tem estimation of
soil temperature, Eq. 13 was adopted with a different
integration time period (cycle). Figure 9a shows the
comparison between measured and predicted soil tempera-
ture by Eq. 13 with an integration time period (cycle) of
100 days, i.e. the time integral was carried out continuously
from day 1 (first initial point) to day 101, and then a new
integral was carried out from day 101 to 201 with a new
and known initial temperature at day 101 (second initial
point); this time integration was then repeated periodically
with a cycle of 100 days until the end of day 365. Figures
9b and c are the same as Fig. 9a but the integration time
cycles were 10 days and 2 days, respectively. In Fig. 9a–c,
the R2 values are 0.85, 0.90, and 0.96, respectively, and the
SEE are 4.56, 1.82, and 1.0 (°C), respectively (regression
statistics are also summarised in Table 3). It is clear that the
performance of the half-order method for estimating soil
temperature depends on the integration time period (cycle):
the shorter the integration period, the better the temperature
estimation. This indicates that this method is less suitable
for long-term (say longer than 100 days) estimation of soil
temperature. Or, in other words, this method needs

Fig. 7 Comparisons between observed and estimated soil heat flux by
the half-order method at the surface. a Scatter plot, b time series plot
from days 90 to 100

Fig. 8 Comparisons between observed and estimated soil temperature
by the half-order method at 5 cm. a Scatter plot, b time series plot
from days 90 to 100
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references (initial temperatures) periodically to prevent drift
on temperature estimations when these estimations are
inferred from a long history of observed heat flux data.

Now back to the prediction of soil heat flux. In Fig. 6,
the flux estimations were obtained by Eq. 10 and the
integration time period was 365 days (as in Fig. 8). To
study the influence of the integration time period on the
performance of the half-order method for predicting soil
heat flux, Eq. 10 was adopted with a different integration

time period (cycle). Figure 10a shows the comparison
between measured and predicted soil heat flux calculated
using Eq. 10 with an integration time period (cycle) of 100
days; Fig. 10b and c show integration time cycles of 10
days and 2 days, respectively. In Fig. 10a–c, the R2 values
are between 0.88 and 0.92, and the SEE is between 7.1 and
5.5 (W m−2); detailed regression statistics are listed in
Table 3. It can be seen that, unlike with the temperature
estimations, the performance of this method for estimating

Fig. 9 Comparisons between observed and estimated soil temperature
by the half-order method at 5 cm with different integral time cycles. a
100 days, b 10 days, c 2 days

Fig. 10 Comparisons between observed and estimated soil heat fluxes
calculated by the half-order method at 5 cm with different integral
time cycles. a 100 days, b 10 days, c 2 days
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soil heat flux is less related to the integration time period
(cycle). This demonstrates that the half-order method is
suitable for both short-term and long-term estimations of
soil heat flux. The reason that the soil temperature
estimation is sensitive to the integration period but the soil
heat flux is not is attributed to the following.

(1) In Eq. 10 (or its discrete form Eq. A19, see Appendix),
the integral is taken with respect to the temperature
gradient with time, ∂T/∂t; hence the accuracy of Eqs.
10 or A19 does not depend on the temperature
magnitude but the temperature fluctuation with time.
If a drift in the temperature history occurs over a
certain period, its influence on the integration process
is attenuated by taking the temperature gradient.

(2) In Eq. 13, the integral is taken with respect to the soil
heat flux, G; hence if a drift in soil heat flux
magnitude occurs within some periods, its influence
on the integration process stays there and will cause
estimation errors.

Conclusions

In this study, we investigated the importance of soil heat
flux at a temperate and humid grassland in Ireland and
examine the performances of the traditional sinusoidal
analytical method and the half-order time derivative method
for long-term estimation of soil heat flux. The usefulness of
adopting the half-order time derivative method for inferring
soil temperature from soil heat flux was also presented. The
common advantage of these two methods is that they need
only one single-layer of soil temperature measurements in
order to predict soil heat flux. Our results suggest the
following:

(1) The soil heat flux at this temperate and humid
grassland had the same magnitude as the sensible heat

flux and accounted for 24 % of the net radiation
energy.

(2) The traditional sinusoidal analytical method did not
reproduce the measured soil heat flux at 5 cm depth as
the sinusoidal assumption was not valid. However, by
adding the amount of heat storage in this depth of soil
to the surface soil heat flux calculation, this analytical
method could predict the soil heat flux at the surface
well.

(3) The predicted soil heat fluxes at the surface and 5 cm
depth by the half-order time derivative method were
found to be in good agreement with measured values;
the R2 values were above 0.9. This demonstrates the
usefulness of this method for long-term prediction of
soil heat flux from remotely sensed surface temperature.

(4) The half-order time derivative method was found to be
less suitable for long-term estimation of soil temper-
ature from soil heat flux data. However, if the
reference temperatures (i.e. initial temperatures) at
each integral period are known, then this method can
reproduce the soil temperature well.
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Appendix: Derivation of the half-order time derivative
method

The algorithm and derivation of the half-order time
derivative method was first proposed by Wang and Bras
(1999). Here, details of the derivation are provided.

First of all, define two new variables: ez ¼ z
� ffiffiffiffiffiffi

D0
p

and
Θ ¼ T � T0, and then transfer Eqs. 7, 9, and 10 to:

@Θ
@t

¼ @2Θ
@ez2 ðA1Þ

Θ ¼ 0; for t ¼ 0;ez < 0 ðA2Þ

Θ ¼ 0; for t> 0;ez ! �1 ðA3Þ

Now, take the Laplace transform of both sides of Eq. A1.
According to the definition of Laplace transform,
L @

@t f tð Þ� �
sð Þ ¼ sF sð Þ � f 0ð Þ, the left hand side of A1 then

becomes seΘ ez; sð Þ �Θ ez; 0ð Þ ¼ seΘ ez; sð Þ since A2 requires
Θ ez; 0ð Þ ¼ 0. The Laplace transform of the right hand side

Table 3 Coefficients of regression analyses between measured and
estimated soil temperature/heat fluxes calculated by the half-order
time derivative method with different integration time cycles

Parameter
estimated

Time
cycle

Slope Intercept R2 SEE

Soil temperature 100 days 1.88 −9.98 0.85 4.56
10 days 1.25 −2.89 0.90 1.82
2 days 1.12 −1.48 0.96 1.00

Soil heat flux 100 days 0.91 0.92 0.92 5.52
10 days 0.90 0.91 0.90 6.23
2 day 0.88 1.47 0.88 7.05
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remains the same since the Laplace transform is based on
the variable t. Hence, Eq. A1 is transformed to

seΘ ez; sð Þ ¼ @2eΘ
@ez2 ðA4Þ

where eΘ is the Laplace transform of Θ and defined as:

eΘ ez; sð Þ ¼
Z1
0

exp �stð ÞΘ ez; tð Þdt ðA5Þ

The general solution of Eq. A4 iseΘ ez; sð Þ ¼ A sð Þ exp ez ffiffi
s

p	 
þ B sð Þ exp �ez ffiffi
s

p	 
 ðA6Þ
where A(s) and B(s) are arbitrary functions of s and can be
determined by the boundary conditions. By Eq. A3, B(s) is
found to be zero and Eq. A6 then becomes:

eΘ ez; sð Þ ¼ A sð Þ exp ez ffiffi
s

p	 
 ðA7Þ
Differentiating both sides of Eq. A7 with respect to ez

gives:

@

@ez eΘ ez; sð Þ ¼ ffiffi
s

p
A sð Þ exp ez ffiffi

s
p	 
 ðA8Þ

Now, substituting A7 into A8 yields

@

@ez eΘ ez; sð Þ ¼ ffiffi
s

p eΘ ez; sð Þ ðA9Þ

Based on the equation derived by the fractional calculus
(Miller and Ross 1993),

L Dnf tð Þf g ¼ snF sð Þ �
Xm�1

k¼0

sm�k�1Dk�mþnf 0ð Þ ðA10Þ

the right hand side of Eq. A9 becomes

ffiffi
s

p eΘ ez; sð Þ ¼ L
@

1
2

@t
1
2

eΘ ez; tð Þ
( )

ðA11Þ

By the initial condition Eq. A2, the last term of Eq. A10,
f(0), is found to be zero. Replacing the right hand side of
Eq. A9 by Eq. A11, we have

@

@ez eΘ ez; sð Þ ¼ L
@

1
2

@t
1
2

eΘ ez; tð Þ
( )

ðA12Þ

Inverting the Laplace transform of Eq. A12 leads to

@

@ezΘ ez; tð Þ ¼ @
1
2

@t
1
2

Θ ez; tð Þ ðA13Þ

With the definition of Θ, Eq. A13 becomes

@

@z
T z; tð Þ ¼ 1ffiffiffiffiffiffi

Do
p @

1
2

@t
1
2

T z; tð Þ � T 0ð Þ½ �: ðA14Þ

Now, applying the fractional calculus (Miller and Ross
1993)

daf tð Þ
dta

¼ 1

* 1� að Þ
d

dt

Z t

0

f sð Þ
t � sð Þa ds ðA15Þ

to the right hand side of Eq. A14, we have

@
@z T z; tð Þ ¼ 1ffiffiffiffiffiffi

pD0
p

Rt
0

@T z;sð Þ
@s

dsffiffiffiffiffi
t�s

p ¼ 1ffiffiffiffiffiffiffiffi
pD0

p
Z t

0

dT z; sð Þffiffiffiffiffiffiffiffiffiffi
t � s

p

ðA16Þ

Finally, the prognostic result can be evaluated by
applying Eq. A16 to Fourier’s law, and then we have

G z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
krscs
p

r Z t

0

dT z; sð Þffiffiffiffiffiffiffiffiffiffi
t � s

p ðA17Þ

Equation A17 can also be written as:

G z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
krscs
p

r Z t

0

@T z; sð Þ
@s

dsffiffiffiffiffiffiffiffiffiffi
t � s

p

¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
krscs
p

r Z t

0

@T z; sð Þ
@s

d
ffiffiffiffiffiffiffiffiffiffi
t � s

p ðA18Þ

And its discrete form is

G ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
krscs
p

r

�
XN
i¼0

Tiþ1 � Ti
tiþ1 � ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tN � tiþ1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
tN � ti

p� � ðA19Þ

where N is the number of intervals.
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