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Abstract: Anaerobic digestion of the organic fraction of municipal solid waste (MSW),
on its own or co-digested with primary sewage sludge (PSS), produces high quality
biogas, suitable as renewable energy. We report on the parameter estimation and
evaluation of a two-stage mathematical model of the anaerobic co-digestion of the
organic fraction of MSW and PSS. Measured data are from a bench scale laboratory
experiment using a continuously stirred tank reactor and operated at 36°C for 115 days.
The two-stage model simulates acidogenesis and methanogenesis, including ammonia
inhibition. Model parameters are estimated using an output error, Levenberg-Marquardt
(LM) algorithm. Sensitivity of the estimated parameter values and the model outputs to
non-estimated model parameters and measurement errors are evaluated. The estimated
mathematical model successfully predicts the performance of the anaerobic reactor.
Sensitivity results provide guidance for improving the model structure and experimental
procedures. '

INTRODUCTION

Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW), on -
its own or co-digested with primary sewage sludge (PSS), produces high quality biogas
and could contribute significantly to the renewable energy budget while reducing waste
disposal through other routes such as landfilling. The Danish Energy Agency (1994)
reports on 18 plants in operation in the European Union and at least 26 plants under
construction world wide, with feedstock mixtures of OFMSW and other organic wastes.

Biogas production has been shown to be about 2 m’/m? of reactor, for digesters
containing low solids (<5% dry solids) mixtures of OFMSW and PSS at mesophilic
temperatures (Kiely et al. 1994). Kayhanian et al. (1992) have reported biogas output as
high as 7 m*/m? of reactor for high solids mixtures (>20% dry solids) at thermophilic -
temperatures. One of the major problems in operating anaerobic digesters is inhibition of
microbial growth by ammonia. Accurate mathematical models would be useful to help
avoid such problems in analyzing the design and operation of production-scale digesters.
This paper reports on the performance of'a two-stage model the parameters of which have
been estimated from experimental data. Further, the paper presents the results of
sensitivity and model form evaluations performed using system identification techniques.




MATHEMATICAL MODEL

The mathematical formulation is based on Hill and Barth (1977), Havlik et al. (1986),
Moletta et al. (1986), and Kiely et al. (1997). The model considers the production of
methane during anaerobic digestion as being the result of a first stage of
hydrolysis/acidogenesis producing acetate and a second stage of aceticlastic
methanogenesis producing methane. The nine state model includes conservation of the

equilibrium between CO; and HCO; and conservation of mass for CO, cations and NH},
and ammonia inhibition of methanogenic biomass growth. The model requires influent
rates for substrate and COD loading and substrate glucose equivalent concentration. Also
required are the bicarbonate, cation and ammonium concentrations. The model is solved
numerically to simulate reactor operation. There are 13 model variables. Variables
output for comparison with measured data are pH, ammonium (NHy4), methane (CH,),
and total volatile fatty acid (VFA). The model contains 19 parameters that are candidates
for estimation.

SYSTEM IDENTIFICATION TECHNIQUES

Model parameters are estimated using an output error, Levenberg-Marquardt (LM)
algorithm (Levenberg 1944, Marquardt 1963, More 1977). The LM algorithm is used to
solve the nonlinear least squares problem
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and y(x,7) is the model output, and ¢(¢) is the observed system output. The LM
algorithm uses a search direction that is a blend of the Gauss-Newton direction and the
steepest descent direction. In this way the LM algorithm overcomes the convergence
problems of the steepest descent method and the Gauss-Newton method’s reliance on an
accurate estimate of the Hessian matrix (i.e., the matrix of second partials of F, also
known as the Fischer Information Matrix). ,

The paper describes additional system identification tools that-are used to analyze the
identifiability and sensitivity of the model. For the purposes of this discussion
identifiability is defined as a measure of the likelihood that any estimated parameter is
within a specific range of the actual parameter. Sensitivity refers to the bias effects that
one parameter has on the estimation of another. At convergence of the parameter
estimation process identifiability and sensitivity information can be obtained through
manipulation of the Hessian matrix since it is formed from the partial derivatives of the
model innovations with respect to the model parameters. That is, by decomposing the




Hessian matrix the sensitivity of the model’s performance to the measurements and
model parameters can be generated in an elegant and useful form (Anex 1990, Anex et al.

1986).

Measured data are from a bench scale laboratory experiment using a continuously
stirred tank reactor and operated at 36°C for 115 days. The reactor was 2 L in volume
and operated at a constant temperature in a water bath, with daily feed. The reactor was
seeded with 1.5 L of inoculum from two full scale operational anaerobic digesters,
allowed to acclimatize for 13 days, and was then fed pig slurry for 21 days. This
“setting-up” period resulted in a reactor with pH of 7.75, an alkalinity of 5.5 g/l and an
ammonia level of 1.5 g/l. These were the initial conditions at day one of the experiment.
Full details of the experimental set-up and procedures were reported by Kiely et al.

(1994).

RESULTS

The paper reports the results of identifiability and sensitivity analyses of the model’s
nineteen parameters. Theses analyses indicate which model parameters are most critical,
and which must be known (or identified) because they have strong bias effects (error in
their values will bias the estimated values of others). Model parameters previously
identified as being most important are the maximum specific growth rate of acidogenic
bacteria, the yield coefficient for acidogenic bacteria, and the yield coefficient of acetic
acid. The identifiability and sensitivity analyses also show which measurements are most
important in the estimation process and quantify how measurement error will bias model
parameter estimates.

The set of model parameters selected during the identifiability and sensitivity
analyses are then estimated from the observed data.-A set of ten model parameters have -
been estimated. The estimated parameter values are compared with values suggested in
the literature and outputs of the estimated model are compared with the observed reactor
performance. In Figure 1 the methane production measured in the digestion experiment
is compared with methane production simulated by an uncalibrated model and the

estimated model.

CONCLUSIONS

The estimated model simulates pH, NH; and CH, well. The estimated model
simulation performance is improved compared to the model using manually calibrated
parameters. Although not verified by simulating measurements not used in the
estimation process, the estimated model is the first thoroughly calibrated model of this
type. Identifiability and sensitivity analyses indicate which parameters in this model
structure are critical and how accurately measurement must be made to allow parameter
estimation. The methods described provide valuable information to the modeler and
should have broader application in environmental engineering.
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