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The average dissipation rate of turbulent kinetic energy in the
neutral and unstable atmospheric surface layer

John D. Albertson,! Marc B. Parlange,2 Gerard Kiely,3 and William E. Eichinger4

Hydrologic Science, University of California, Davis

Abstract. The mean rate of dissipation of turbulent kinetic energy is related to the surface fluxes
of momentum and heat through the turbulent kinetic energy budget equation. This relationship
may be used to estimate surface fluxes from measurements of the dissipation rates. The success of
recent applications of the approach has been limited by uncertainties surrounding the functional
relationship between the dimensionless dissipation rates and the atmospheric stability parameter.
A pair of field experiments was designed and carried out in the atmospheric surface layer to
identify this functional relationship over a broad range of neutral and convective flows, covering
greater than 3 orders of magnitude in the stability parameter. Mean dissipation rates were
computed using Fourier power spectra, second-order structure functions, and third-order structure
functions. Arguments are presented for the superiority of the third-order approach. A three-
sublayer conceptual model is invoked to guide the dimensional analysis, and the resulting
dissipation rates are shown to scale uniquely in the three sublayers. Near the wall, in the dynamic
sublayer, dissipation is significantly less than production, as energy is transported up to the more
convective regions, where an equality between dissipation and production is achieved.

1. Introduction

The atmospheric boundary layer (ABL) is the portion of the
atmosphere which is affected directly by the land surface. Flows
in the atmospheric surface layer (ASL), the lowest 10% or 100 m
of the daytime convective ABL, are directly dependent on the
surface fluxes of momentum and heat, which are the production
sources of turbulent kinetic energy (TKE). The mean TKE
dissipation rate (g) is related to the production rate of TKE, and
hence the surface fluxes, through the TKE budget equation.
Using the relation between € and the surface fluxes,
measurements of € can be used to obtain the surface fluxes of
momentum and sensible heat for practical applications [e.g.,
Fairall and Larsen, 1986; deleonibus and Simpson, 1987,
Skupniewicz and Davidson, 1991; Edson et al., 1991; Eichinger
et al., 1993; Albertson, et al., 1996; Kiely et al, 1996]. This
flux-dissipation technique, first suggested by Deacon [1959], is
very useful over oceans, where the proper vertical alignment of
instruments for eddy correlation is all but impossible. It is also
ideally suited for use with optical remote sensing instruments.
However, the efficacy of this method depends on empirical
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formulae to describe the role of atmospheric stability (or
stratification) on the relationship between € and the surface
fluxes. There exists considerable uncertainty in the literature
regarding the scaling of € in the atmospheric surface layer under
neutral and unstable atmospheric stability. In this paper, new
experimental results are presented on the scaling of the average
dissipation rate of TKE with respect to stability; these results are
analyzed' in the context of a directionally referenced form of
Monin-Obukhov similarity theory [e.g., Bechtov and Yaglom,
1971; Zilitinkevich, 1971; Kader and Yaglom, 1990] to identify
improved scaling laws that will support and improve the
accuracy of future applications of the flux-dissipation methods.
The improved understanding of how TKE dissipation scales with
stability (or dimensionless height) in the ABL is also of basic
importance to dissipation-based closure models used in
numerical simulation of boundary layer flows.

The TKE budget equation is obtained by multiplying the
momentum equation for the xy (o0 = 1 (streamwise), 2 (lateral), 3
(vertical)) direction by uqy, time averaging all terms, and
subtracting the equation governing the kinetic energy of the
mean flow [see Tennekes and Lumley, 1972, pp. 63-64]. We
maintain the convention of using Greek letters for directional
subscripts, Uy, for the mean velocity in the a direction, and ug
for fluctuations in the o direction velocity about its mean value.
Furthermore, as our interest is in the ASL, we must account for
temperature stratification and the accompanying buoyant forces
[Monin and Yaglom, 1971, p. 418]. For a steady state flow with
horizontal homogeneity, we write the TKE budget per unit mass
with the Boussinesq approximation as
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where t, and p represent fluctuations about the mean virtual
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temperature 7, and the mean pressure, respectively, g is the
gravitational acceleration, p is the density of air, and sumination
is implied on repeated subscripts. For convenience, we are using
virtual temperature to capture the combined effect of air
temperature and water vapor fluctuations on the density [e.g.,
Brutsaert, 1982, p. 37]. The first term in (1) represents the
mechanical production of TKE by interaction of the Reynolds
stress and the mean velocity gradient, the second term represents
the production of TKE by buoyant forces, the third term is the
divergence of vertical turbulent flux, the fourth term is the
transfer of TKE due to pressure-velocity interaction, and the last
term represents the dissipation (destruction) of TKE by viscous
action

It is important to note that {I\ is a
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time-averaged
equation which is not sensitive to the parttcular distribution of
the instantaneous dissipation rate, which is known to be highly
intermittent [e.g., Kraichnan, 1991; Meneveau and Sreenivasan,
1991].

The friction velocity (ux) is defined as
—
T
us = J-i =/-<uu3 > 2)
p

where 1, is the surface shear stress. Substituting (2) into (1), and
writing F' for the flux divergence term and P for the pressure
velocity term gives
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We use the dimensionless atmospheric stability parameter (z/L),
where
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is the Obukhov length and k(=0.4) is von Karman’s constant.
The mean velocity gradient from Monin-Obukhov similarity is

given as
oU;  ux z
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where ¢, is the nondimensional velocity gradient which depends
on (z/L). Substitution of (5) into (3) and multiplying by kz/u.’
yields the nondimensional TKE budget.
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where ¢g(z/L) represents the nondimensional dissipation rate as a
function of stability. The function ¢,,(z/L) is relatively well
established for most values of (z/L) typically found in the field
[Businger, et al., 1971; Dyer, 1974; Brutsaert, 1992; Parlange
and Brutsaert, 1993; Parlange and Katul, 1995]. The form, or
behavior, of ¢¢, F, and P relative to z/L is considerably less clear.

The ¢¢ should be a universal function of the stability
parameter (z/L), as defined by Monin-Obukhov similarity theory.
An important point to note here is that the mean dissipation rate
of TKE should not be susceptible to the same contamination
from large convective eddies as is the longitudinal velocity
variance [e.g., Garratt, 1992, p. 72]. The large-scale, boundary
layer filling convective eddies that cause 67, to deviate from the
Monin-Obukhov predictions are constrained to the low-
wavenumber end of the power spectrum. These eddies

qmmf‘rantl\/ affect the variance ie.,

piiaiicalily aiiccl allance,

area under the

wavenuimber range, the inertial buDrcmgc shouid not be affected
by their presence or absence. Recall that the mean dissipation

_rates are tied to the intercept of the straight-line fit through the

inertial subrange scaling [Ko/mogorov, 1941] and will therefore
not be affected.

To estimate the momentum flux from (6) using measurements
(either direct or inferred) of €, the dependency of ¢¢ on z/L must

al of o
be known with considerable level of confidence.

Generally, for
flux calculations, F and P have been assumed to be negligible
with respect to the production and dissipation terms, thus
implying an equality between production and dissipation. As
Tennekes and /umlpv ”077 pp. 64 Rﬁ] noint out. we chonld
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expect an equality of dlSSlpatlon and productlon when integrating
over the depth of the boundary layer, but not necessarily at any
one point in a shear flow. As production and dissipation are
nearly always of the same order of magnitude, it may be
conceptually appealing to assume an equality; however, this may
not be appropriate for quantitative applications. The transport
terms have been assumed to balance the budget equation when
measurements of dissipation exceeded production [e.g.,
Wyngaard and Cote, 1971; Hogstrom, 1990] or when production
exceeded dissipation [e.g., Frenzen and Vogel, 1992]. The
relative value of production versus dissipation for different
stability (z/L) values is uncertain. We review briefly the literature
on the relationship between production and dissipation, with
attention given to the stability ranges encountered during various

field experiments.
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production, dlSSlpatlon, and the flux divergence durmg the
Kansas Experiment. They found a flux divergence of TKE for
every unstable stability case. They claimed that the vertical
turbulent transport of TKE completely offsets the amount
produced by buoyant action. Their results show dissipation
exceeding production for moderately unstable flows, with an
equality approached for more strongly convective flows.
However, inclusion of the measured flux divergence term caused
a considerable imbalance in the TKE budget. They extrapolated
their fit to assume an equality between dissipation and
production in the neutral limit. Their data do not include low
enough -z/L values to confirm this assumption, as only three runs
with -z/L<0.1 were analyzed. They fit an empirical function to
their data,
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which approaches unity in the neutral limit and scales linearly
with |z/L| in the free convective limit (-z/L >> 1). For the
unmeasured P term in (6), Wyngaard and Coté extended and
earlier analysis by Batchelor [1951] and estimated the magnitude
of Pkz/u.? to be about 0.9 for z/L = -1.0, which is of the order of
the imbalance they reported. Wyngaard and Coté suggested in
conclusion that the pressure-velocity covariance term may be
important, but that direct measurements of it are necessary before
its true role will become clear. With present instrumentation, it is
exceedingly difficult to measure the gradients of pressure-
velocity interaction in the ABL. The numerical simulation of
ABL flows is showing promise, and with advancements in
computational capabilities, we may soon be able to study the
near-wall region with high-resolution meshes and learn more
about these hard to measure terms.
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In a study of the TKE budget in the ASL over grass, McBean
et al. [1971] found dissipation to match production in the
near-neutral cases, and to exceed production for unstable
atmospheric stability when -z/L > 0.3, up to a maximum
difference of about 70% for the highly unstable cases. They
attribute these results to an increasing importance of the turbulent
energy flux term (F) in the ASL below z =2 m for more unstable
stability conditions (i.e., higher -z/L values), though F was not
measured in their study. McBean and Elliot [1975] studied the F'
and P terms over a dry prairie and found them to have significant
and counteracting effects on the TKE budget, with F' removing
and P adding energy at the measurement height. The net effect
was a near equality of local production and dissipation for the
stability range measured. Their data were collected with a
maximum -z/L of 0.5, and there were only four measurements
taken with -z/L below 0.05. Interestingly, they concluded that
Monin-Obukhov similarity theory may not hold for the vertical
flux of TKE.

Leavitt and Paulson [1975] studied the TKE budget over the
ocean during the Barbados Oceanographic and Meteorological
Experiment (BOMEX) and concluded that dissipation equaled
production, although their experimental scatter was about + 50%
of production. Their analysis is of data covering atmospheric
stabilities ranging from z/L of -0.14 to -1.5. They also estimated
the vertical turbulent flux divergence (the nondimensionalized F)
and found it to be greater than zero and to increase with
increasing -z/L. This term was found to be about one half as
large as the buoyant production, in contrast to Wyngaard and
Coté’s [1971] result that the F term was equal to buoyant
production.

Champagne et al. [1977] studied the TKE budget and used the
measured dissipation rates to estimate surface fluxes from a
furrowed bare soil surface in Minnesota for a narrow atmospheric
stability (z/L) range of -0.067 to -0.11. They used the
assumptions of Wyngaard and Coté [1971] and found dissipation
to generally exceed production. As with the Kansas Experiment,
Champagne et al. [1977] attribute an imbalanced TKE budget to
the uncertainty of the pressure transport term.

Hogstrom [1990] inferred dissipation rates from inertial
subrange analysis of Fourier power spectra for measured
longitudinal velocity time series and identified the vertical flux
divergence of TKE with measurements at multiple heights. His
inertial subrange estimates showed the near-neutral TKE
dissipation to be about 25% larger than the rate of production,
and his flux divergence measurements showed the F term to be
removing about *25% of production upward from the
measurement height. He did not measure the pressure term (P),
but estimated that it must be contributing 50% of production to
close the TKE budget, which he explained as being due to
“inactive” eddy motion. We should note that changing the value
of the Kolmogorov constant used in Hogstrom’s [1990] analysis
from 0.52 to the 0.55 value used in this study would reduce his
dissipation rates to just 14% greater than production. Hogstrom
[1990] also modified the results of Wyngaard and Coteé [1971] to
correct for flow distortion, which revealed that the Kansas
Experiment results have dissipation less than TKE in the near-
neutral regime.

In another study, Frenzen and Vogel [1992] performed an
experiment over emerging wheat in Wyoming and found
dissipation to be 15 to 20% less than production. They also
mention that by removing some “corrections” made to the
Kansas data by Wyngaard and Coté [1971], near-neutral
dissipation is found to be less than production.
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This brief review is indicative of the persistent uncertainty
associated with the scaling of ¢ with atmospheric stability (z/L).
Most of this uncertainty is ignored in flux-dissipation
applications, and the dissipation of TKE is simply assumed to
equal the production. This is a potentially perilous assumption in
light of Tennekes and Lumley’s [1972] remarks concerning the
likely inequality of production and dissipation at any arbitrary
point in a shear flow. Furthermore, some of the uncertainty must
be attributed to data processing techniques and the variability in
values assumed for Kolmogorov’s inertial subrange constant.
We could approach this problem by attempting to measure the
production, turbulent transport, and pressure transport terms to
define the dissipation rate as the residual (including the additive
measurement errors of the other terms). Instead, we take a more
direct approach of studying just the dimensionless dissipation
rate in order to refine its scaling with respect to stability as
needed to improve the accuracy of flux-dissipation applications.
The resulting scaling function will also be useful as a basic
understanding necessary for dissipation-based closure schemes in
numerical simulations of boundary layer flows. The present
effort considers fast response atmospheric surface layer velocity
measurements, collected over a broad range of atmospheric
stability, in the framework of directional dimensional analysis
(DDA). '

2. The Three-Sublayer Model and Directional
Dimensional Analysis

Bechtov and Yaglom [1971], building on the work of
Zilitinkevich [1971] and the DDA first applied to the ASL by
Bernstein [1966], presented a three-sublayer model of the
unstably stratified boundary layer. Kader and Yaglom [1990]
published a broad experimental examination of this theory ‘using
data collected in the ASL over a 7-year period. More recently,
Zilitinkevich [1994] extended the theory to accommodate the top-
down/bottom-up scaling concept of Wyngaard [1983].

As opposed to classical dimensional analysis, DDA involves
different length scales for the different directions, such as L, for
horizontal and L; for vertical lengths [see Panton, 1984, pp. 207-
209; Kader and Yaglom, 1990]. The addition of basic
dimensions will decrease the number of dimensionless groups
that can be formed from the basic physical parameters, in
accordance with Buckingham’s pi theorem. This may sharpen
the result, as it yields explicit functional forms for the terms in
the TKE budget with known exponents, rather than the classical
similarity theory with the empirical scaling components. To
apply this approach, the processes in the different directions must
be essentially independent of each other [Panton, 1984], or as
Kader and Yaglom [1990] put it, the horizontal and vertical
motions must be uncoupled. Here enters the need for the three-
sublayer model.

The basic concept of the ASL being represented by three
distinct sublayers [Bechtov and Yaglom, 1971] did not receive
substantial experimental support until recently [e.g., Kader,
1988; Kader and Perepelkin, 1989; Kader and Yaglom, 1990].
The lowest of the three sublayers is termed the dynamic sublayer
(DSL) and is defined to be that region where the buoyant
production is negligible with respect to mechanical production of
TKE. Just above this sublayer is the so-called dynamic-
convective sublayer (DCSL), where buoyant production becomes
relevant and must be considered along with the still important
mechanical production. The uppermost portion of the ASL, just
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above the dynamic-convective sublayer, is the free convection
sublayer (FCSL), which is affected strictly by the buoyant forces.
The DDA is useful, as the buoyant forces act in the vertical
direction and the shearing action is in the horizontal direction,
giving these two energy terms different dimensions. The DSL
represents the neutral limit (z << -L), and the FCSL the free-
convective limit (z >> -L). However, the DCSL does not fit as
cleanly into the classical similarity theory approach. In this
middle region, the theory states that the transfer of energy
between the horizontal and vertical velocity fluctuations is small
with respect to the rates of mechanical production of energy in
the horizontal direction and buoyant production in the vertical
direction [Kader and Yaglom, 1990]. The energy transfer
between the horizontal and vertical motions is neglected, and the
vertical and horizontal motions are considered to be energetically
uncoupled, thus allowing for the applications of DDA. The
predicted scaling of the individual terms in (6) for each of the
three sublayers is discussed next, with the expected stability
ranges of the sublayers based on the order of magnitude analysis
of Kader [1992].

2.1. Dynamic Sublayer (-z/L < 0.04)

All one-point moments are believed to be independent of z in
the dynamic.sublayer [Kader and Yaglom, 1990; Kader, 1992],
so the derivatives F and P are expected to vanish. The buoyant
production is negligible compared to mechanical production in
this sublayer, and the normalized mechanical production ¢,
assumes a value of unity. This leaves the normalized dissipation
rate ¢g, which, according to dimensional analysis, should be
constant in the dynamic sublayer, i.e., independent of z. If F and
P are in fact equal to zero, and ¢, is equal to unity, then ¢¢
should also be equal to unity in this lowest sublayer. So we
would expect ’

¢s =G ~¢,=1 (8

where C, is a constant. However, as discussed above, most
experimental evidence suggests a departure of ¢¢ from 1, while
still supporting that ¢, =1. This inequality between ¢¢ and ¢,y
implies that the one-point moments of F and P may not vanish in
this sublayer. Hogstrom [1990] showed F to be a nonzero
constant in this flow regime, thus allowing ¢¢ to be not equal to
dsm, while still maintaining that ¢¢ is a constant. In consideration
of uncertainty here, Kader [1992] called for additional
experimental work in this sublayer to improve the ¢¢ (z/L)
formulation.

2.2. Dynamic-Convective Sublayer (0.12 < -z/L < 1.2)

In the dynamic-convective layer the DDA is useful, since
there is distinct action in both the horizontal and vertical
directions, such that the analysis becomes more complex than in
the other layers (where conventional dimensional analysis will
yield the same results as DDA). In addition, the F" and P terms
can be important in this middle layer. Following DDA, the
friction velocity u. has dimensions [Lx"? Lz"? t'], which is not
completely appropriate for scaling the horizontal (x direction)
motions. Therefore the local convective velocity
wi(=[<u;t,>gz/Ty]"?) with dimensions [Lz#'] is used to scale the
vertical motion, and the combination u./w. with dimensions
[Lyt'] is used to scale the horizontal motion. Applying these
scaling velocities to the appropriate terms in (1), following pure
dimensional arguments, yields
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where C, is a constant that describes both the positive effect of
mechanical production and the vertical transport of u,u, and u,u,
energy (negative); the value of 1 that accompanies C; accounts
for buoyant production; and the constant C, captures the vertical
transport of the u;u, energy as well as the effect of pressure-
velocity interaction. For a more detailed derivation of (9) from
(1), see Kader [1992]. Zilitinkevich [1994] provides additional
discussion about this intermediate regime.

2.3. Free Convection Sublayer (-z/L > 2)

For free convection scaling the flow variables should be
independent of u. and should instead depend on the convective
velocity scale w.. Hence ¢,, scales with (-z/L)"?, and the
remainder of terms on the left-hand side of the TKE budget scale
with (-z/L)'. From dimensional analysis

() o(3)

where the constant C, describes the contribution of mechanical
production and C; reflects a sum of constants which individually
represent buoyant production, F, and P. Note that C, can be
neglected in this sublayer, as mechanical production is becoming
small with respect to buoyant production. Again, we refer to
Kader [1992], where the derivation of these scaling forms is
already published.

(10)

3. Determination of ¢

For a velocity signal, € may be computed by either so-called
“direct” or “indirect” methods. The direct methods are typically
based on an assumption of local isotropy, to eliminate the need to
measure all the terms in the dissipation rate tensor and relate
simply € to the squared longitudinal velocity derivative, viz.,

(In

In practice, (11) may be implemented by differentiating the
temporal velocity signal and invoking Taylor’s [1938]
hypothesis of frozen turbulence, or by evaluating the curvature of
the autocorrelation function about the origin at zero lag to
provide an estimate of the Taylor microscale A, which yields the
dissipation rate [see Tennekes and Lumley, 1972, pp. 210-211]

()

8=1507\.—2 (12)

The indirect methods are based on Kolomogorov’s [1941]
(hereafter K41) second hypothesis, which relates the velocity
difference (Aug) between two points separated by a distance r
directly to € and », where it is required that » be much smaller
than the production scales and much larger than the viscous
scales (i.e., » must be in the inertial subrange). This cornerstone
of turbulence analysis provides, in theory, myriad ways of
computing € from time series of longitudinal velocity. In the
present study, we focus on three of these: (1) power spectra, (2)
second-order structure functions, and (3) third-order structure
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functions. For simplicity, we write Au,(r) for the velocity
difference between two points separated by a distance r, and by
necessity, we use Taylor's [1938] hypothesis of frozen
turbulence for expressing temporal velocity data taken at a single
point as spatial data [e.g. Tennekes and Lumley, 1972, p. 253].
The second-order structure function represents the average
squared velocity differences D,(r)=<(Au,(r))*>, and the third-
order structure function uses cubed velocity differences
D=(r)<(Auy(r))*> [see Monin and Yaglom, 1975, chap. 8].
Following K41, dimensional analysis yields directly the
following expressions for the second- and third-order structure
functions in the inertial subrange:

W
W

Dz(r) = S28 r

D3(r)=—%sr (13)
where S, is an empirical constant and the -4/5 constant of the
third-order structure functions is an exact result from the
equations of motion and the work of von Karman and Howarth
[1938]. (Subsequent to the original submission of this
manuscript, Frisch [1995] referred to this exact result as “... one
of the most important results in fully developed turbulence as it
is both exact and nontrivial.”) The Fourier counterpart of the
second-order structure function is the power spectrum, which is
described in the inertial subrange following K41 as

2 -5

Eul(kx)=au8 3kx ' (14)
where E,,(ky) describes the expected energy content of turbulent
velocity fluctuations at wavenumber &y (rad/m) and o, is an
empirical constant. Note that k, and r are related as ky = 2n/r,
and the empirical constants o, and S, are related under a constant
skewness assumption as S, = 4.02a, [e.g., Anselmet et al., 1984].
An important distinction between the second- and third-order
moments is that the former are subject to intermittency
corrections and include empirically determined constants, while
the latter has an exact constant and is immune to intermittency
effects in its inertial subrange scaling [e.g., Anselmet et al., 1984;
Frisch, 1995]. There remains some concern about application of
the second-order approaches to define dissipation rates from
inertial subrange measurements, as the average of the two-thirds
power of the instantaneous dissipation rate can be quite different
from the two-thirds power of the average dissipation rate. The
third-order approach is linear in € and will therefore not suffer
from these concerns or ambiguities.

4. Experiment

Surface energy balance and atmospheric turbulence
measurements were conducted at two sites: a bare soil field
located at the Campbell Tract research facility on the campus of
the University of California, Davis and the dry Owens Lake bed,
in Owens Valley, California. A one-dimensional sonic
anemometer with a fine-wire (diameter 0.0127 mm)
thermocouple and a Krypton hygrometer were used (at 10 Hz
with covariances taken over 20-min periods) to measure the
vertical fluxes of sensible and latent heat. A three-dimensional
sonic anemometer (Gill Instruments 1012R2) with transponder
spacing of 15 cm was used to measure and record the three
velocity components, at 21 Hz for the Campbell Tract site and 56
Hz for the Owens Lake site. The eddy correlation equipment ran
continuously for each day of the experiment on the 20-min
averaging time step. The three-dimensional sonic was run for up
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to 12 hours continuously each day, with signals written to a new
file each 20 min (i.e., 25,200 points at 21 Hz and 67,200 points
at 56 Hz) for ease in data processing and time matching to the
energy balance measurements.

4.1. Campbell Tract

Campbell Tract is a plowed field extending 500 by 500 m,
with an irrigation system capable of saturating a portion of the
field extending 155 m in the north-south direction and 115 m in
the east-west direction. The irrigated plot is located in the
northeast corner of the main field. The surface roughness length
has been estimated to be z, = 2 mm, and the prevailing winds are
out of the southwest. Data were collected at z = 0.85 m on June
22, 23, and 24, 1994, and at z = 1.5 m on July 15, 16, and 17,
1994. Irrigations were performed over the nights of June 21 and
July 14, 1994, with periods of drying in between. Saturating the
soil surface extends the range of the DSL available for
experimental investigation, since most of the available energy is
partitioned to latent heat rather than sensible heat. This provides
for a wide range of atmospheric stability conditions. The days
immediately following an irrigation provide typically low values
of -z/L as most of the available energy at the surface is used for
evaporation. The value of -z/L increases with time following an
irrigation, as more energy is partitioned to sensible heat flux,
thereby increasing the buoyant production of TKE.

4.2. Owens Lake

The dry Owens Lake bed is located in the southern portion of the
Owens Valley. Its surface area exceeds 200 km?. It is bounded
on the west by the Sierra Nevada and on the east by the Inyo
Mountains. The surface consists of crusted sand and evaporative
salts, with a roughness length estimated at z, = 0.13 mm [Katul,
et al., 1995] and uniform fetch exceeding 10 km. The
predominant wind during the experiment was out of the
southwest. - Samples were taken of the surface crust soil, exposed
to a chilled mirror hygrometer test in the Desert Research
Institute’s laboratory, and found to have gravimetric moisture
contents below 1% (W. Albright, personal communication,
1995). These site conditions provide for strongly convective
flows that present a wide range of stability in the FCSL for
examination. Data were collected over Owens Lake from August
8 through 12, 1994, at a measurement height of z=2.65 m.

The data files were screened for suitability of Taylor’s
hypothesis-based conversion from the temporal to spatial domain
on the basis of turbulence intensity (TI = 6,,/U,). Our analysis
revealed the scaling of the dimensionless dissipation rate to be
insensitive to TI for values of TI < 50%. Therefore a TI < 50%
cutoff was imposed for an unambiguous decomposition of each
signal into a mean and fluctuating component for the
computation of dissipation rates [see Stull, 1988, p. 6; Kiely et
al., 1996]. The TI cutoff reduced the 183 files collected at the
Campbell Tract to 113, and the 103 files collected at Owens
Valley to 75, yielding a total of 188 files for analysis, each
representing a 20-min measurement period.

After rotating the coordinate system into the mean wind for
each file and subtracting the mean values, the friction velocity u.
was calculated from the resultant surface stress as [Stul/, 1988, p.

67] ]

Us = (<u1u3>2 + <u2u3>2)z (15)

The use of (15) did not give appreciably different results from
those from the longitudinal stress (u. = -<u,u;>)"?). The stability
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parameter was computed using (4) with heat fluxes from the
eddy correlation instruments and friction velocity from the three-
dimensional sonic anemometer. Note that the signals were not
detrended, as the TI cutoff effectively captured and discarded
files with nonstationary means. The atmospheric stability
encountered during the acceptable TI portion of the experiment
ranged over more than 3 orders of magnitude: 0.004 < -z/L <
8.1.

The power spectrum of the longitudinal velocity component
of each file was computed to support the estimation of € from
(14). This involved the square windowing of 2048 points from
the file, Bell tapering [Stull, 1988, pp. 308-310] the first and last
10% of the window, computing the power spectrum of the
window, repeating this process on the remaining windows (2048
each) in the file, and averaging the energy of all windows for
each wavenumber. This process resulted in averaging of the
power spectra for at least 10 windows in each file.

5. Results and Discussion

Space limitations preclude the graphical presentation of the
spectra and structure functions for all 188 files. However, it is
instructive to examine the appearance of these plots, so figures
are included for three files, representing a DSL flow
(I: z/L =-0.03), a DCSL flow (II: z/L =-0.39), and a FCSL flow
(III: z/L = -4.0). These files have their power spectra presented
in Figure la, second-order structure functions in Figure 1b, and
third-order structure functions in Figure 1c. Note that the spectra
follow the -5/3 inertial range scaling for a reasonably wide range
of ky, in fact, for a range considerably wider that that which
could strictly be defined as an inertial subrange. As our objective
of the inertial range analysis is to identify the dissipation rate
from the intercept, we can rest on this rather weak but necessary
condition for inertial subrange scaling. We expect the strict
inertial subrange for the longitudinal velocity to correspond to
scales that are smaller than one-half the measurement height
(large structure end) and larger than the scale at which path-
averaging effects of the sonic anemometer become critical (small
structure end) [see Kaimal et al., 1968; Kaimal, 1986;
Wyngaard, 1986]. However, since long-standing empirical
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Figure 1a. Power spectra of streamwise velocity fluctuations

(u,") for three sample data files. I represents DSL, Il DCSL, and
ITII FCSL. The spectrum has units of m?/s?, and the wavenumber
k (kx in the text) has units of m”. The spectra have been shifted
apart for presentation, so the absolute magnitudes of E, should
be disregarded.
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Figure 1b. Second-order structure functions for the same three
sample files shown in Figure 1a. D, has units of m%s? and r has
units of m.

evidence shows the longitudinal power spectra to possess a linear
-5/3 scaling (in the log-log framework) over a wider range than
the narrow, strictly defined inertial subrange, we can readily
regress a range of the measured scales with the prescribed slope
of -5/3 to identify the intercept as needed to estimate €. These
calculations are based on observations in a narrow range of
scales that fall between the measurement height and the scale at
which path averaging effects become important. We must note
that for studies of flow properties other than the local structure of
the longitudinal velocity component, a higher instrument
placement may be necessary to ensure the presence of a strict
inertial subrange. We refer to Kaimal et al. [1986] for guidance
on this issue.

Log transformation of (14) allows for determination of € from
the regressed intercept of log(E) versus log(ky) over a range of
wavenumbers in the inertial subrange, using a,,=0.55. While
there is no strong consensus on the exact value of a,,, 0.55 falls
near the median of the published estimates [Deacon, 1988;
Kaimal and Finnigan, 1994]. These estimates of € derived from
the power spectra of the 188 runs and normalized to w.’/kz
(i.e.,¢¢) are shown in relation to the stability parameter (z/L) in
Figure 2a. Vertical bars are included in the figure to delineate the
DSL, DCSL, and FCSL. Similarly, log transformation of (13),
and the selection of S, = 2.2 (= 4.02*a,,,) in accordance with the
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Figure 1c. Third-order structure functions for the same three
sample files shown in Figure 1a. D, has units of m*/s’ and r has
units of m.
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Figure 2a. Power spectra based estimates of the normalized

dissipation rates versus atmospheric stability for the 188 files.
The Campbell Tract points are marked by circles, and the Owens
Lake points with diamonds. The estimated normalized rate of
production of TKE is shown with a solid line.

constant skewness assumption, yielded estimates of €, which are
shown in normalized form (¢¢) in figures 2b and 2c¢ for the
second- and third-order structure functions, respectively. For
reference, a typical estimate of the normalized production [(1-
15z/L)y*#-z/L] is plotted along with the data on Figures 2a, 2b,
and 2c [Brutsaert, 1982, p.68]. For consistency, we regressed
the log transformed structure functions over the same range of
scales as for the power spectra, although such a regression is
unnecessary for the structure functions. The structure functions
scale smoothly with » (cf. Figures 1b and 1c), such that a reliable
estimate of € may be computed from evaluating the structure
function (13) at a single lag. In fact, this is a measure easily
made by a simple field data logger, in contrast to the relatively
extensive data manipulation required for the power spectra-based
calculation of €. Note that although the three methods yield
estimates that differ (most likely due to the uncertain inertial
subrange constants, intermittency contamination of the second-
order estimates, and data treatment necessary for the power
spectral scaling), they all give similar trends with respect to
stability. The DSL is marked, as predicted, by an invariance of
normalized dissipation with respect to z, and the break from the
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Figure 2b. Second-order structure function based estimates of
the normalized dissipation rates versus atmospheric stability for
the 188 files. Symbols are as in Figure 2a.
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Figure 2c. Third-order structure function based estimates of the
normalized dissipation rates versus atmospheric stability for the
188 files. Symbols are as in Figure 2a.

constant value occurs near the onset of the DCSL (-z/L = 0.12) as
predicted by dimensional arguments [Kader, 1992]. The
constant value is markedly below 1.0, suggesting a significant
local imbalance between production and dissipation. Moreover,
the imbalance is constant over the range of z/L measured in the
DSL, suggesting that the transport moments are logarithmic
functions of z as necessary to result in a constant divergence.
This is corroborated partly by Hogstrom's [1990] measurements.
We note that this is in contrast to the classical surface layer
scaling theory, which holds that these moments are independent
of z. The present finding of production exceeding dissipation
throughout the large neutral region which includes more than a
decade of z/L is in general agreement with the recent work of
Frenzen and Vogel [1992] and certain reinterpretations of the
Kansas experiment data of Wyngaard and Coté [1971]. In the
DCSL and FCSL the dissipation values track more closely the
estimate of production.

In consideration of the uncertain true values of o, and S, and
the susceptibility of the second-order structure function and
power spectrum to intermittency effects in the inertial subrange
[e.g., Anselmet et al., 1984, p.77], we place more confidence in
the values derived from the third-order structure function, with
its exact constant (-4/5) and linear dependence on ¢ and
associated immunity to intermittency effects. The value chosen
for the Kolmogorov constant could have been modified from
0.55 to, say, 0.45 in order to bring the estimates from the second-
order approaches in line with those from the third-order
approach. However, little is to be gained from tuning constants
when an exact inertial subrange scaling form is available (i.e.,
the third-order structure function scaling of Kolomogorov). To
continue the analysis and narrow the scope to those estimates
derived from the third-order structure functions, we introduce
Figure 3, which shows the normalized mean dissipation rate over
the full range of -z/L computed using the third-order structure
function. The original 188 data points are binned in equal log
increments of -z/L resulting in 14 points. The constant C, in (8)
was computed for the third-order structure function, C, = 0.61.
The DDA derived functions of (9) and (10) were fit to the
unbinned third-order structure based estimates of ¢g, resulting in
C,=0.35 and C; = -1.28 for the DCSL, and Cs = 1.81 in the
FCSL. The effect of mechanical production in the FCSL was
neglected by ignoring C, and simply scaling ¢¢ with (-z/L)! in
this sublayer. The three-sublayer model for ¢¢ ((8), (9), and
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Figure 3. Data from Figure 2c placed in logarithmically spaced
bins. Average of data in each bin shown with circles, and
standard deviations marked with vertical bars. The three-
sublayer model of (16) is shown with a solid line, estimated
normalized production is shown with a dot-dash line, and
Wyngaard and Coté's [1971] model of dissipation is shown with
a dotted line.

(10)) with constants derived from this experiment using the third-
order structure function is shown as a solid line in Figure 3,
representing

-2
¢, =061 <004
-1
—-Z)3 -z -2
¢ = 0.35(—2—) + 2.28(—L—) 012 < —L— <12 (16)
-z -z
¢ ="8‘(T) B

Also plotted is the empirical function (7) from Wyyngaard and
Coté [1971] marked as WC71, and a typical form of the total
normalized production [(1 - 15 z/Ly" - z/L] [e.g., Brutsaert,
1982, p. 68]. From Figure 3 we note (1) in the DSL the
dissipation rate is significantly lower than production; (2) in the
DCSL the dissipation rate closely follows but slightly exceeds
production, although the difference is well within the standard
deviation of the scatter; and (3) in the FCSL the dissipation rate
exceeds the estimated production rate by a small amount, with
the center bin point in Figure 3 pulled up by the outlier shown on
the top of Figure 2c. The dissipation rate scales as predicted by
the three-sublayer model based on directional dimensional
analysis as identified by (16). These data may also be
represented by a continuous scaling function with proper
asymptotic behavior as determined by regression of the unbinned
data.

z
0 = 0.61(1 - 2.782) 17

6. Conclusions

We have presented measurements representing 188 fast
response velocity data files in the ASL over a wide range of
atmospheric stability, spanning greater than three decades of -z/L.
The power spectrum, second-order structure function, and third-

“order structure function forms of Kolmogorov’s [1941] inertial
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subrange scaling were used to estimate the normalized average
dissipation rate ¢¢ of TKE. These three approaches yielded
qualitatively similar results with respect to z/L, although the
magnitudes differed. The power spectrum and second-order
structure function approaches give similar results, while the
third-order structure function approach yielded slightly higher
values. The closely matched results of the two second-order
methods suggests that the data treatment required for the power
spectra calculations (i.e., windowing, bell tapering, and
averaging) did not affect appreciably the dissipation estimates.
However, the true magnitude of the second-order-based estimates
may be questioned on grounds of the values chosen for a,;, and S,
and potential intermittency contamination of the inertial subrange
scaling. As the third-order structure function is not prone to
these problems, it is chosen as the better measure to relate ¢g¢ to
z/L (see Frisch, [1995] for a discussion of the benefits of the
third-order structure function).

The data presented represent greater than a decade of z/L in
the DSL, the full DCSL, and nearly a decade of the FCSL. The
predicted constant nature of ¢g in the DSL was confirmed by the
results. - However, the magnitude of the constant (=0.6) is
substantially below unity, implying a constant local imbalance
between production and dissipation of TKE. This imbalance, as
in previous studies, must be attributed to the flux divergence and
pressure-velocity interaction transport terms, which were not
directly measured in the present study. These results suggest that
the transport moments are logarithmic functions of z as measured
by Hogstrom [1990], in contrast to the classical surface layer
scaling assumption that they are independent of height. The
point along the z/L axis at which ¢¢ departs from its constant
value matches closely the starting point of the DCSL, as
predicted by order of magnitude analysis of the budget equation
(1) [see Kader, 1992]. One important feature of this model is its
quick transition from a constant value for ¢¢ in the DSL to a form
that grows proportional to (-z/L). This quick transition is absent
in the empirical model of Wyngaard and Coté [1971] as well as
others. However, this feature is clearly observed in our data as
well as in those of Kader [1992]. One area in particular need of
further study/validation is the left (dynamic) end of the DCSL
scaling, where the model seems to miss the data. This
discrepancy is visible in the work of Kader [1992] as well. It is
emphasized that the scaling (i.e., slope) of (16) is derived
completely from dimensional and physical arguments, which do
not involve empirical slope fitting (as is used in (7)).

In many previous studies the actual range of -z/L encountered
was limited to a narrow band in the transition zone (-z/L ~ 0.1),
yet conclusions were often inferred for the full neutral region.
Figure 3 shows that the values of dissipation are close to
production and similar to Wyngaard and Coté’s [1971] values in
this narrow band. The results in Figure 3 complement and
validate the partitioning of the ASL into dynamic, dynamic-
convective, and free-convective sublayers. The use of a single
empirical function to represent ¢¢ throughout the ASL may fit
the data, as in (17). However, the sublayer-based models provide
more direct ties to the physics of the flow and are therefore better
suited to dimensional arguments within the boundaries of the
respective sublayers.

The three-sublayer model applied to scalar fluctuations has
proven successful in the prediction of surface fluxes of sensible
heat and water vapor from variances and dissipation rates
measured in the surface layer [e.g. Albertson et al., 1995, 1996,
Kiely et al., 1996]. In fact, the three-sublayer model has yielded
a closed-form solution for fluxes from dissipation rates
[Albertson et al., 1996], thus circumventing the iterative
techniques used in the past.



‘ALBERTSON ET AL.: DISSIPATION OF TURBULENT KINETIC ENERGY

Considering -z/L as the normalized vertical length scale, we
see that close to the lower boundary (in the DSL) a greater
amount of TKE is produced than dissipated, while farther from
the wall (in the DCSL), dissipation exceeds production, and that
a crossover occurs in the transition zone, at a -z/L of about 0.1.
Of course, dissipation must equal production when integrated
over the depth of the ABL for a stationary and homogenous flow.
This fact seems more in line with the present result of dissipation
being less than production near the wall and exceeding
production away from the wall, as opposed to the earlier view of
dissipation matching production near the wall and exceeding
production away from the wall.
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