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Abstract

Advances in global scale hydrology and climatology demand an improved understanding of the
interaction between the Farth’s surface and its atmosphere. Such an understanding is being
sought through field experiments over the ocean and the land and through the use of remote
sensing. In many cases, the traditional eddy correlation measurement technique to obtain
fluxes of heat and momentum is problematic and it becomes necessary to employ less direct
techniques. In this paper the inertial-dissipation method is reviewed and a refined approach
is presented. The new dissipation model circumvents several of the short-comings inherent to
previous formulations of the dissipation approach. Experimental data are presented to support
new empirical scaling forms for turbulent kinetic energy and scalar variance dissipation rates and
the refined dissipation-flux model is tested. Excellent agreement with direct flux measurements
is obtained.

3.1 Introduction

Momentum and scalar fluxes between the Earth’s surface and its atmosphere are fundamental
to issues ranging from watershed management to climate systems, as well as to our basic
understanding of flow and transport in the atmospheric surface layer. Efforts to model the
atmospheric boundary layer {ABL) in itself or as part of a larger climate simulation model
are limited by an inadequate understanding of surface fluxes over the land and the ocean.
Adyances in regional and global scale hydro-meteorology must rely on observations of the
exchange between the Earth’s surface and its atmosphere. For these observations to be relevant,
they must be made over a spatial scale appropriate to the problem being addressed. Satellite-
based instruments hold promise for diagnosing and mapping surface fluxes. However, the
development of reliable algorithms for relating the instrument readings to actual surface fluxes
hinges on a program of careful comparison of algorithm estimates to actual measurements of
the Auxes. Benchmark flux measurements may be acquired through (i) inference from vertical
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profiles of mean meteorological quantities using Monin-Obukhov similarity theory, (ii) remote
sensing of ABL turbulence with lidar or scintillometry, or (iii) in situ point measurements
of turbulent fluxes using eddy correlation or dissipation techniques in the ABL. For these
techniques to provide measurements that represent integrated fluxes over large spatial scales,
the measurements must be made above the blending height; here we rely on the thorough
mixing provided by the extremely high Reynolds number turbulent flow of the ABL. For a
complete discussion of the idea of a blending height and the relationship between measurement
height and spatial integration of surface fluxes see the recent review paper by Parlange et al.

(1995b).

Although the eddy correlation (EC) method provides a direct measurement of the vertical flu-
xes, there are applications for which it is inappropriate, particularly over water and for remote
field experiments requiring long term unattended operation. Fluxes from the mean profile me-
thod or the bulk aerodynamic method have limitations as well. The flux-dissipation method
is used widely over water surfaces, typically using power spectra to determine the dissipation
rates, followed by an iterative procedure to determine fluxes. However, this approach suffers
from uncertainties due to empirical inertial subrange constants, the jumpy (or noisy) nature of
power spectra, and the reliance on an iterative solution. In this paper we introduce a one-step
(non iterative) dissipation method for determining fluxes of momentum, sensible heat and water
vapor. This new method which uses third order structure functions to determine dissipation
rates, avoids many of the pitfalls previously assumed unavoidable with the dissipation method.
The results presented here may also improve the reliability of flux estimates from the ABL re-
mote sensing instruments, such as lidar and scintillometers, since these techniques typically rely
on an empirical relationship between scalar fluxes and the dissipation rate of scalar variances
(see Hill et al., 1992 and Eichinger et al., 1993).

3.1.1 The Atmospheric Boundary Layer

~

The ABL is that layer of air, directly above the Earth’s surface in which the effects of the
surface (friction, evaporation, heating and cooling) are felt directly on time scales less than a
day. The ABL is broadly made up of two layers, the atmospheric surface layer (ASL) and the
mixed layer (ML). The ASL is affected primarily by surface fluxes while the ML is affected
by both surface fluxes and boundary layer entrainment of the free atmosphere air from above.
Figure 3.1 is a schematic of the composition of the ABL. The ASL occupies about the lowest
10% of the fully developed daytime ABL, or approximately the first 100 m above the Earth’s
surface (Parlange et al., 1995b).

In the ASL, the turbulent flow is often assumed to be statistically stationary, when considering
periods of 10 minutes to 1 hour. The principle mechanism for the mechanical production of
turbulence in this time period is the vertical gradient of the mean wind. Figure 3.2 shows
schematics of the vertical profiles of the means of velocity U, potential temperature ©, and
humidity g for the daytime convective boundary layer (CBL). It is seen from Figure 3.2, that
the steepest gradients occur in the lower 10% of the boundary layer (i.e. the ASL), while in the
upper 90% of the CBL strong convective mixing and entrainment of the free atmosphere air at
the top of the ABL smooth out almost all vertical variations in the mean profiles.
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Figure 3.2: Mean profiles of wind speed, potential temperature, and humidity in the convective
atmospheric boundary layer.

3.1.2 Surface Layer Scaling

ASL Turbulence

Before getting into the details of ASL scaling, it is instructive to review briefly the turbulence
spectrum as s}}own schematically in Figure 3.3. The eddies carrying most of the energy are
of the larger, integral scale size. The integral scale for longitudinal velocity (d=fined by [)
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is representative of the large, turbulent energy producing eddies. At the other end of the
spectrum, energy is dissipated by molecular viscosity via eddies of length scale approaching
the Kolmogorov scale n (typically of order &~ I mim). Between these two extremes lies what is
known as the inertial subrange, which marks the broad range of scales between the anisotropic
energy bearing eddies and the viscosity controlled dissipative eddies. This inertial range, for
high Reynolds number flows as found in the ASL, spreads over several orders of magnitude
of wavenumbers. Referring to Figure 3.3, the spectral density peaks at wavenumbers of the
order of 7! . For the mid-spectrum inertial scales, Kolmogorov (1941) postulated that the
energy content is controlled simply by the eddy size (k) and the rate of energy transfer through
the spectrum (taken under an assumption of steady state as ¢, the average dissipation rate
of turbulent kinetic energy). Consequently, straight dimensional analysis yields Kolmogorov’s
celebrated -5/3 spectrum for the inertial subrange, E(k) ~ ¢¥/?k~5/%. It is seen from Figure
3.3, that-as k increases, the energy falls with a slope of -5/3 (in a log-log framework). For
wavenumbers approaching 17!, local dissipation induces steadily faster decay of energy content.
We make much use of Kolmogorov’s relationship in later sections.
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Figure 3.3: Schematic of the power spectrum. The integral length scale is represented by | and
the Kolmogorou length scale is represented by 1. Wavenumbers (k) are in radians/length.

Turbulence due to the gradient of the mean wind speed is created by mechanical (shear) tur-
bulence. A second form of turbulence production is that due to buoyancy, induced by vertical
temperature stratification. In general, turbulence is produced by a combination of both during
daytime hours, with the ratio of buoyant to mechanical production of turbulence increasing
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with height. This ratio is represented by the stability parameter, —z/L, where z is the height
above the surface and L is the Monin-Obukhov length

3
us©
L=—-"—— (3.1)
kg < wh >
where the friction (shear) velocity is u., the fluctuating vertical velocity is w, the mean potential
air temperature is © and its fluctuating component is 8, the dimensionless parameter k& is von
Karman’s constant (~ 0.4) and g is gravitational acceleration. The three classifications of

atmospheric stability can be expressed in terms of the stability parameter as

unstable stratification — % > 0
neutral — % = 0 (3.2)
z
tabl -— < 0
stable 7

Monin-Obukhov Scaling

Prandtl set out the concept of the logarithmic wind velocity profile, based on dimensional
analysis. In plane parallel flow, an increase of the horizontal mean velocity in the z direction
is evidence of a downward momentum flux. Thus the gradient of mean velocity is determined
by the shear stress at the earth surface, and the distance from that surface, such that

dU  u.
= = 3
dz  kz (33)
Upon integration from z; to z; we obtain the familiar log law
U 2y
7. — - == = 4
t 2 Ul k n <21> (3 )

where U; and U, are the mean longitudinal velocities at elevations z; and z,.

The similarity theory of Monin and Obukhov extended Prandtl’s scaling to scalars and into
the unstable and stable regimes. This was accomplished by noting the analogy between scalars
and velocity and by admitting additional variables to the dimensional analysis to account for
the effect of density stratification (i.e. (3.1)). Monin-Obukhov (MO) scaling of mean profiles
in the ASL, for example, vields

du U z )

do 0. z -
E = EQH (—L—> (3{)]:))
7 _ ¢ (=

with O.{= —H/pc,u.) being a temperature scale, g.(= — E/pu..) a humidity scale, and ®,,, &y,
and @, representing non-dimensional gradients of mean velocity, temperature, and humidity,
respectively. A basic premise of MO scaling is that the stability functions (e.g. ®,,, ®y, and
®,) are universal functions of the stability parameter.

Recently a three sublayer model has been proposed as an extension of MO scaling (see Kader,
1988, and Kader and Yaglom, 1990). This model represents the lowest sublayer of the ASL
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as the Dynamic Sublayer (DSL) in which buoyant action is negligible compared to mechanical
production. The uppermost sublayer of the ASL, governed by buoyancy only, is termed the
Free Convection Sublayer (FCSL). Between these two is a sublayer, driven by both mechanical
and buoyant forces, termed the Dynamic-Convective Sublayer (DCSL). The sublayers are se-
parated by narrow regions of transition. The -z/L limits of the sublayers, based on the order
of magnitude analysis of Kader (1992), are

DSL . —z/L<0.04
DCSL : 012<-z/L<12
FCSL : —z/L>20

The TKE and temperature variance budget equations are scaled in the context of the three
sublayer model using directional dimensional analysis (DDA) which involves different length
scales for the different directions, with L, for the horizontal and L, for the vertical (see Panton,
1984, p.207-209). The use of DDA implies that the vertical and horizontal motions are uncou-
pled. In the DCSL the energy transferred between the horizontal and vertical motions through
vortex stretching is considered to be much less than that produced in each the vertical and
horizontal directions. Therefore, the transfer between directions is ignored and we consider the
horizontal motions to be driven solely by horizontal processes (shear) and the vertical motions
to be driven solely by vertical processes (buoyancy) only. We will return to this model below
as we examine the scaling of the TKE and scalar variance budget equations. For further review
of DDA and its application to dissipation rates see Albertson et al. (1996).

Fluxes and methods of determination

The vertical fluxes of momentum, heat and moisture are defined as

U, = [— < uw >]/? (3.6a)
H = pe, <wd> (3.6b)
EF = p<wg> (3.6¢)

where ¢ is the fluctuation from the mean specific humidity and p is the mean air density. The
latent heat flux (LE) is related to the evaporation rate (E) as LE = L,E, where L, is the
latent heat of vaporization of water (see Brutsaert, 1982).

The four standard techniques of flux determination are eddy correlation, mean profiles, bulk
aerodynamic, and inertial-dissipation (see Brutsaert, 1982). The eddy correlation (EC) me-
thod is a direct measurement of fluxes, while the other three are indirect methods relying on
similarity theory. The EC method requires the measurement of the fluctuating components of
the vertical velocity, and an associated fluctuating component for the term being transported,
e.g.: horizontal velocity, for momentum flux; temperature, for heat flux; and humidity, for
moisture flux. The use of EC on a moving platform (ship or aircraft) is prone to errors due to
contamination of the w signal by motion of the platform. The mean profile method requires
precise measurements of the vertical gradients of the mean meteorological variables, which is
also difficult when applied from ships or aircraft. The bulk aerodynamic method is largely
a conceptual approach consisting of bulk transfer equations with drag coefficients which are
estimated experimentally (Brutsaert, 1982, p.201; Brutsaert, 1986). The dissipation approach
is significantly less susceptible to errors from ship motion, but does require measurement of
turbulent fluctuations at a frequency capable of resolving fluctuations in the inertial subrange
as well as the use of similarity theory and other assuraptions in its formulation. With this
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last approach the fluxes (covariances) are not determined directly but are derived from turbu-
lence measurements and use of variance budget equations that relate surface fluxes to mean
dissipation rates. Therefore, we begin the discussion of this method with an examination of
the budget equations for turbulent kinetic energy and temperature variance (with temperature
serving as a proxy for any other scalar).

3.1.3 Turbulent kinetic energy

The mean turbulent kinetic energy (TKE) dissipation rate (¢) is related to the production rate
of TKE and hence the surface fluxes through the TKE budget equation. The TKE budget
equation is obtained by multiplying the momentum equation for the a(= 1,2,3) direction,
by ., time averaging all terms and subtracting the equation governing the kinetic energy
of the mean flow (Tennekes and Lumley, 1972, p63). For a stationary flow with horizontal
homogeneity we write the budget equation for the time averaged TKE per unit mass with the
Boussinesq approximation as

< >¢9_U_|_g<w«9>_lf3<ew>_l@<pw>_E
Y7 0 2 0z p Oz -

(3.7)
where p is the fluctuating component of the pressure, and e is twice the TKE (i.e. TKE =§ =
"2—+”22+—1”2) The first term in (3.7) represents the mechanical (or shear) production of TKE by
interaction of the Reynolds stress with the mean velocity gradient. The second term represents
the TKE production by buoyancy, the third the divergence of vertical turbulent flux of TKE
and the fourth the transfer term for TKE due to pressure-velocity interaction. The latter two
terms on the left hand side of (3.7) are generally called the transport terms. This budget is
non-dimensionalized by u3/kz to arrive at

z z Fkz Pkz z
& (f) L e & =2 (f) (38)
where
z ckz
°(7)=% (3:9)

.
and F and P are written for 1252%2 apd %a—f%? respectively.

It is often assumed that total production (mechanical plus buoyant) equals dissipation (Deacon,

'1988), regardless of the state of atmospheric stratification and position in the boundary layer,
ie.

O — =, (3.10)

| w

where ém is the dimensionless mechanical production and —z/L is the dimensionless buoyant
production.

In the Kansas experiments, Wyngaard and Coté (1971; abbreviated here as WCT1 } made
measurements of the production, turbulent transport and dissipation of TKE for near neutral
and moderately unstable stratification. Their results showed dissipation exceeding production
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for the slightly unstable flows, with an equality approached for more strongly convective flows.
Their empirical functions for non-dimensional shear production and dissipation are

5, (%) - (LHGED_;— (3.11a)

o, (i) - (1+0.5

WCT1 suggested that the pressure-velocity term may be important but that direct measure-
ments were needed to investigate this. Work by McBean et al. (1971) also found dissipation
to exceed total production for —z/L > 0.3. Further work by McBean and Elliot (1975) in
measurements of 7 and P over dry prairie land showed that these two terms were somewhat
balanced, with P adding energy and F removing energy. Leavitt and Paulson (1975) in an
ocean experiment concluded that dissipation equalled production. Champagne et al. (1977), in
work over bare furrowed soil, found dissipation to exceed production. Frenzen and Vogel (1992),
in an experiment over wheat in Wyoming, found the dissipation rate to be less than production
and showed that with corrections the WC71 data show dissipation equalling production. Many
of these studies represent narrow ranges of stability. Yet, the different circumstances and mea-
surement techniques of the studies inhibit the drawing of conclusions from the studies taken as
an ensemble. Therefore, we present new experimental results from dissipation measurements
made over a wide range of stability (Albertson et al., 1996; Kiely et al., 1996) and we investigate
the scaling of these measurements in the context of the three sublayer model.

) (3.11b)

Accepting that all one point fluctuation moments in the DSL are independent of =z (Kader,
1992}, then F and P vanish in this region. Therefore, in the DSL the normalized dissipation
rate should equal the normalized production rate, which is know to be a constant of order 1.0.
In the DCSL the F and P terms may be significant. From DDA the shear velocity u. has
dimensions of L/2LY/%~" and the convective velocity w.(= [< wd > gz/0]'/*) has dimensions
of L.t7!, where t is used to represent the time dimension. The convective velocity is used to
scale the vertical motion and the combination u?/w. is used to scale the horizontal motions. In
the FCSL the scaling is independent of u. and thus the relevant velocity is w.. From dimensional
analysis for the TKE we obtain (Albertson et al., 1996)

& = $,=Ci~1 —%<o.o4 (3.12a)
Z\"F z z
. = -= -z 2<-Z<1 12
o = G(-3) 4G (-3) o<-<12 (3.12b)
4 A}i_ r4 z
= - -= - 9
. = af 2) +Gs 2) 2590 (3.12¢)

In the DCSL, C; is a constant that describes the effects of mechanical production and the
vertical transport of < u® > and < v* > . The value of C3 accounts for the buoyant production
and the combined effects of vertical transport of < w? > and the pressure-velocity interaction
(Kader, 1992). In the FCSL, C, describes the contribution of shear production, and Cj repres-
ents that due to buoyancy and the transport contributions F' and P. Since shear production is
negligible in the FCSL, the Cy4 term may be neglected in practice (i.e. C4 — 0). The constants
in (3.12) are determined below by regression fit to the experimental results of Albertson et al.
(1996).
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3.1.4 Temperature variance

The mean dissipation rate of the temperature variance (¢y) is related to the vertical temperature
flux (< w# > ) through the temperature variance budget equation, (actually the budget for
% < #% >), which for steady, horizontally homogenous flow is written

90 19 <wh >
—<wd> i e ] (3.13)

The first term is the average rate of production of temperature variance by interaction of the
vertical heat flux with the vertical gradient of mean potential temperature. The second term
represents the flux divergence of the variance. Non-dimensionalizing (3.13) by u.02%/kz yields

z kz z
o (Z) T aerr T % (Z) (3.14)

where T, (= %Q%) is the dimensional transport, ®g is the dimensionless production of
temperature variance from (3.5), and @, (= g%—ki) represents the dimensionless dissipation rate
of temperature variance. Hogstrom (1990) found measurements of the transport term to contain
large scatter, as with WCT1, but found no systematic deviation from zero.

The classic Businger-Dyer empirical formula for the normalized production in the near neutral
and unstable region is (Businger, 1966; Dyer, 1967)

by = (1-1—16‘%') ? for 0<——E<2 (3.15)
although the empirical constants are subject to some uncertainty and varying mterpretatlon
However, several recent studies have found that ® scales convectively (i.e. & (—z/L) %) for
-z/L » 0 (e.g. Kader and Perepelkin, 1984). An important point is that under convective
scaling, ®., is also proportional to (—z/L)~%, and hence &5 is independent of surface shear
stress. This simplifies greatly the calculation of H from &g.

Following the approach described above for the three sublayer model we obtain the following
scaling form for the temperature variance dissipation

¢, = Gy=Bi~l - <004 (3.162)
= AN “Zc12 3.16b

@, B, ( L> 012<-+<1 ( )
o = A ) 3.16c
&, Bg‘( L) I~ (3.16¢)

Note that the production and dissipation rates scale with (—Z/L)_1/3 for all but the most neutral
region of the convective boundary layer, and not with (—z/ L)_I/ % as was suggested in earlier
research (e.g. WC71). This -1/3 scaling simplifies greatly the process by which heat fluxes are
computed from inertial subrange measurements of scalar dissipation rates. The constants in
(3:16) are determined below from the results of recent experiments (Kiely et al., 1996).
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3.1.5 Computing fluxes from dissipation rates

From the dimensionless dissipation functions @, and ®., and measurements of € and £y we may
estimate the momentum and heat fluxes. The u. and H estimates may be determined from

kze :
Up = | —F— (3.17)
Lbe (%)}

kzu.cq ?
H = pe, [q)___} (3.18)

However, the useful application of this approach rests on the accuracy of the empirical functions
®. and @.,. For the classical interpolation-type models of ®. and ®.,, the flux estimation
demands an iterative technique, as (3.17) and (3.18) are coupled in a way that does not submit
to a closed form solution. Such a scheme typically starts at an assumption of neutral conditions
(-2/L=0), thus providing estimates ®. and ®.,, and in turn estimates of u. and H. These fluxes
provide an improved estimate of -z /L, which yields new values of ®, and ®.,, toward revised
estimates of the fluxes, and so on iteratively.

Deacon (1959) was the first to suggest that fluxes (u. and H) could be estimated from dissipa-
tion rates, but he did not actually employ the technique and he cautioned that it may not work
well for strongly unstable stratifications. He mentioned that a similar approach could be used
for evaporation but that its use would be limited by the lack of instruments capable of making
fast measurements of water vapor concentration fluctuations. The dissipation method has since
been used, mostly, over the ocean environment, with instrumentation on ships or buoys, (e.g.
Fairall and Larsen, 1986; DeLeonibus and Simpson, 1987; Skupniewicz and Davidson, 1991;
Edson et al., 1991). However, aircraft based data were used by Durand et al. (1991) and land
based, point instrumentation were used by Hicks and Dyer (1974), Kader and Yaglom (1990)
and Marsden et al. (1993). Hill et al. (1992) used optical scintillation methods over land sur-
face path lengths of 150 meters. Others who have used scintillation methods for fluxes include
Andreas (1988) and Hill et al. (1992). In a fascinating study, Raman lidar derived dissipation
rates of humidity variance were used to estimate the surface flux of water vapor by Eichinger
et al. (1993).

With the new three sublayer model for the dissipation rates of TKE and scalar variance, we
proceed to present a model for calculating the fluxes of momentum, sensible heat and latent heat
from inertial subrange estimates of the dissipation rates. The derivation of this new method is
presented only briefly here. Essentially, the approach grew out of the need to produce a more
accurate determination of fluxes from dissipation rates.

Sensible heat flux

As the vertical heat flux vanishes in the neutral limit of the DSL, we focus our model develop-
ment on the convectively scaled power law of (3.16b) and (3.16¢). It seems reasonable to apply
this single form over the full range of unstable stratification. This form is appropriate wherever
the heat flux is significant (i.e. —z/L > 0). A test of this assumption is provided below. Using
the definitions of ®,,, 0., and L we may write .

_ egkzu, _ <_£>'§
@ = <w9>2_B L
g “13 U -
5 (L) =] e 319
) . (kz) (3.19)
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where B is a single empirical constant. This convective form provides a closed form expression
for the sensible heat flux

H=B"%p, (%)g (k)b el (3.20)

This method provides a simple and direct computation of sensible heat flux, which does not
require iteration or depend on u.. Below, we will describe how to compute &4.

Latent heat flux

Assuming similarity of scalars (see Brutsaert, 1982), we can extend our temperature analysis
to water vapor. In fact, it is reasonable to believe that the result obtained for ®,, would apply
to any scalar. Therefore, we write the normalized dissipation rate for water vapor as

ekz  egkzu. < z>'§
Qu, < wg >

B <%>‘§ [<—w“9—>] (k2)F (3.21)

o, =

q

This convective scaling form yields the following expression for evaporation

; ;
E=p [B“ (%)3 < wh >¥ (kz)%eq] (3.22)

where < w8 > is taken in this case from the above calculation based on e4. The dissipation
rate for humidity variance can be calculated by the methods described below for temperature
with the substitution of ¢ for 6.

Momentum flux

For true convective scaling the dissipation rates of the TKE and scalar variances are independent
of w., and so measurements of the dissipation rates do not contain the information necessary
to estimate u.. For neutral stratification the normalized dissipation rate of TKE is a constant.
This neutral behavior for @, seems to continue up to about —z/L = 0.1 (Albertson et al.,
1996). In this limited region we may use

k
o.="So¢
u*
and on rearrangement
L
U, = [C7ekz)’ (3.23)

The momentum flux per unit mass is simply —u2. For larger values of -z/L we can compute
u, from the empirical interpolation form of ®, as used by W(C71 (ie. (3.11b)) with H taken
from (3.20) for use in calculating L. Note this requires some iteration. Our main focus here is
in estimating sensible and latent heat (water vapor) fluxes and, therefore, we will not extend
the u, model any further.

In the next section, we review several inertial subrange methods for computing ¢ and ¢ from
velocity and temperature fluctuation measurements.
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3.1.6 Inertial range methods of determining dissipation rates

We review three methods for determining dissipation rates from inertial subrange scaling in the
spirit of Kolmogorov (1941): power spectra, second order structure functions, and third order
structure functions.

Spectral method

The dissipation rates (£ and £¢) have been determined most frequently from the one-dimensional
power spectra in the inertial subrange using (Kolmogorov, 1941; Corrsin, 1951)

E.(k) = a,cik™5/3 (3.24)

and

Eo(k) = Boe v esk™F (3.25)

where o, and 3y are empirical constants that have been determined from experiments to
be about 0.55 and 0.8, respectively (McBean et al., 1971; Antonia et al., 1979; Kaimal and
Finnigan, 1994). Thus, the dissipation rates can be obtained from (3.24) and (3.25) evaluated
at one or more wavenumbers (k) using measured spectral densities in the inertial subrange. This
is the approach adopted by most researchers, who have made flux estimates from dissipation
rates over oceans and land, (e.g. Hicks and Dyer, 1972; Fairall et al., 1990; Skupniewicz and
Davidson, 1991; Kader, 1992; and Eichinger et al., 1993).

The power spectra method is subject to errors introduced by the jumpiness of the spectra,
the data treatment required for Fourier analysis (e.g. windowing and tapering), and from the
uncertainty of the constants <, and f(y. The dissipation rate for sensible heat computed from
(3.25) is potentially more erroneous than that for TKE, as the former is dependent on an
estimate (with all the attendant problems) of the latter.

Second order structure function

The second order structure function represents the averaged squared differences in a flow va-
riable over spatial separation r in the direction of flow. For longitudinal velocity Dy, (r) =<
(u(z +r) - u(z))* > and for temperature Dg(r) =< (6(z + 1) — §(z))? > (see Monin and
Yaglom, 1975). These terms scale in the inertial subrange according to Kolmogorov (1941; for
velocity) and Obukhov (1949; for temperature) as

Coushrs (3.26)
r$ (3.27)

Dy (r)
Dgg(T) = (Clygcge”

I

=

where Cyu(= 4.00,,) and Cyy(= 4.08;) are empirical constants (Anselmet et al., 1984). T'rom
these equations the dissipation rates can be computed, using values of the constants taken from
the literature. This approach was used by Taylor (1961) in perhaps the first application of the
inertial-dissipation method. However, due to the uncertainty in these empirical constants, there
is some degree of imprecision in this approach as well.
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Third order structure function

For velocity the third order structure function represents the averaged cubed velocity differences
over lag T, Duwu(r) =< (u(z +7) —u(z))* > (Monin and Yaglom, 1975, Ch.8). For temperature
the mixed third order structure function is Dype =< (u(z +7) — u(z))((z + 1) — 0(z))? > .
These structure functions scale in the inertial subrange with r as

4

Duuu(r) = "gsr (328)
4

Dyoe(ry = —zeer (3.29)

Note that with this approach the dissipation rates for momentum and heat can be directly
computed without resort to empirical constants. This method is superior to the second order
methods in that no empirical constants are used and also the dissipation rate for temperature
variance is not dependent on prior numerical calculation of the dissipation rate for momentum.
This approach has been used by Albertson et al. (1996) for momentum, and by Kiely et al.
(1996) for heat. The application of dissipation rates derived by third order structure functions
to compute fluxes is shown below.

3.2 Experiments

Surface energy balance and atmospheric turbulence measurements were carried out in the sum-
mer of '94, at two sites in California (Albertson et al., 1996; Kiely et al., 1996). One was located
at the Campbell Tract research facility at the University of California at Davis in the Central
Valley of California and the second was at a dry lake bed at Owens Valley in southeastern
California. Eddy correlation equipment consisted of a one dimensional sonic anemometer with
a fine wire (dia. = 0.0127 mm) thermocouple and a Krypton hygrometer operating at 10 Hz,
with covariances taken over 20 minute averaging periods. This enabled the direct measurement
of the vertical fluxes of sensible and latent heat. A three-dimensional sonic anemometer was
used to record the three velocity components at 21 Hz for the Campbell Tract site and 56 Hz
for the Owens Lake site. Instantaneous air temperature was also measured from the speed
of sound recorded by the 3-D sonic. From the 3-D sonic we obtain direct measurements of
s (and so the flux of momenturm). The eddy correlation equipment ran continuously for the
experimental duration (six weeks at Davis and two weeks at Owens Lake) with data logged on
20 minute time increments. Typically, the 3-D sonic ran for up to 12 hours per day and the
data recorded to a new file every 20 minutes (i.c. 25200 data points at 21 Hz and 67200 points
at 56 Hz) to match the eddy correlation and energy balance time steps.

The Davis site is a flat bare soil field of 500 m by 500 m extent. In the northeast corner of
t.he field an irrigated portion extends 155 m in a north-south line and 115 m in an east-west
line. The surface roughness length is zo = 2 mm. The fetch for uniform surface roughness
exceeded 400 m and for surface wetness the fetch exceeded 100 m. The experiments were
performéd in June and July, with daytime highs of about 30°C and nighttime lows of about
15°C. The 3-D sonic anermometer was set at z=0.85 m for the initial 4 days and at z=1.5
m thereafter. Irrigations were performed at the beginning of the experiment and also three
weeks later. The three week period in between was dry, with no recorded rain. By saturating
the soil surface most of the available energy was forced to latent heat rather than to sensible
heat, thus extending the range of near neutral flows encountered. Throughout the experiment
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o wide range of atmospheric stabilities were observed with low —z/L values during the days
immediately following irrigation and increasingly large values as the drying out of the bare soil
continued and more of the available energy was forced to sensible heat.

The dry Owens Lake site, which had daytime highs of about 40°C and night-time lows of about
15°C during August 1994, enabled investigation over a wider range of convective atmospheric
conditions than in Davis. Owens Lake is an arid flat landscape with uniform fetch exceeding
10 km, and a lakebed area of about 200 km?. The surface roughness length of the lakebed has
been estimated at zp = 0.13 mm (Katul et al., 1995b). The 3-D sonic anemometer was set at

2=2.65 m, and data were recorded at 56 Hz.

3.3 Dissipation Results

3.3.1 Data screening

0 files (each of 20 minute duration) were selected for analysis. The
es support unambiguous decomposition into

lence intensity values ( T.1. = 0,/ <U >) of

Of the collected data, 13
selection was based on a requirement that the fil

means and fluctuations and that they possess turbu
less than 50%, as necessary for the application of Taylor’s hypothesis (Stull, 1988). The Davis

experiment contributed 105 of these files and Owens Lake the remainder. The atmospheric
stability range encountered was 0.004 < —z/L < 8.1 . For each file the power spectra of
the longitudinal velocity and temperature were computed using square windowing of 2048
points, bell tapering the first and last 10% of the window (Stull, 1988, p.309), using an FFT
to compute the spectra of the window, repeating the process on the remaining windows and
averaging all windows for each wavenumber. The power spectra of w was also calculated for
each file to verify local isotropy, which is necessary for inertial subrange scaling and is indicated

by gu = % (Tennekes and Lumley, 1972).

Typical power spectra of velocity and temperatur
spectra have been frequency smoothed for presentation; in their original form they are quite
jumpy. Note that they follow the expected -5/3 scaling over a wide range of wavenumbers.
Typical second order structure functions for velocity and temperature are shown in Figures
3.50 and 5b. As expected they both follow the 2/3 scaling. Figures 3.6a and 6b are typical
velocity and temperature third order structure functions. They both follow the r! scaling for
the short lag portion which is expected to scale inertially. The third order structure functions
are considered to be a more stringent test of the inertial subrange (Katul et al., 1995a). The
second and third order structure functions do not require smoothing as the time averaging

process provides stable measures that vary smoothly with r.

e are shown in Figures 3.4a, and 4b. These

3.3.2 Normalized dissipation rates for TKE

From the computed power spectra, log transformation of (3.24) allows the straightforward
determination of ¢ from the regressed intercept of log(E) vs log(k). A similar approach to the
second order structure function provides an estimate of e. Due to the uncertain nature of the
actual values of o, and 57 and the susceptibility of power spectra and the secon:
function to intermittency effects on the inertial subrange scaling,
the third order structure function. A comparison
et al. (1996). Here we focus on the third order approac
third order structure function, the &, results for the 1
increments of —z/L and presented in

d order structure
we place more confidence in
of the three methods was made by Albertson
h and compute ¢ from (3.28). For the:
80 data files are binned in equal log
Figure 3.7. The scaling forms of {3.12). were fit to the
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Figure 3.4:
Sofn'c P 4;t (j) S[)czmgle power spectrum. of longitudinal velocity from one of the measured 3D
op). (b) Sample power spectrum of temperature fluctuations (bottom).

unbinned third order structure functi issipati
ety ure function based dissipation estimates of Albertson et al. (1996),

% = 061 z
= <004 (3.30a)
3. = 035 (—i>_§+228 <_i 2
L n(-7) o< —- <12 (3.30b)
2. = 181(-2) z
I —Z>20 (3.30¢)
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gure 3.6: (o) Sample third order structure function of longitudinal velocity (top). (b) Sample
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Sample second order structure function of temperature fluctuations (bottom).

3«3 Normalized dissipation rates of temperature

nr:t;ief i)tfel;n];)fcszrature spectra, logr transformation of (3.25) allows the straightforward deter-
- €9 r.c;m the regressed intercept of log (Ep) vs log(k), with £ known from the above
ue~t0- ! ;Jemx ar gp%)roach to.the segond order structure function provides an estimate of
" t.uncertamgf ass?cxated with the constants in the spectral and the second order
0 ction methods - (Kiely .et al., 1996), we determine the constants for (3.18) using
ird order structure function (3.29) based results. A comparison of the three inertial

'8¢ methods was made by Kiely et al. (1996). The three sublayer model for ®., (3.16) was

These are shown by a solid line in Figure 3.7, with production represented by [(1-18 lz/L|)—1/4‘
z/L] and the normalized dissipation model of WCT71 is shown for comparison. It is clear from our
results in Figure 3.7, that in the DSL the dissipation rate is significantly less than production;
in the DCSL the dissipation rate is about equal to production, and in the FCSL the dissipation
rate slightly exceeds production. We present (3.30) as a scaling form for TKE dissipation rates
based on the three sublayer model.
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Figure 3.7: Dimensionless TKE dissipation function plotted vs. the stability parameter -z/L.
The circles represent the mean values of the data in each bin and the bars denote +/- one
standard deviation of the data in the bins. The dissipation rates were computed from the third
order structure functions. The fit § sublayer model is shown with a solid line. The normalized
production is shown with dot-dash and the dissipation model of WC71 is shown with a dotted
line.

least squares fit to the unbinned third order structure function derived dissipation results, and
resulted in the following model (Kiely et al., 1996)

o, = 0.8 ~-Z<004 (3.31a)
L
8, = 011 (—3)_5 0.12<-2 <12 (3.31b)
L L
9., = 0.11 (—3>_§ ~Z520 (3.31c)
L L

which is shown in Figure 3.8 along with the Businger-Dyer model of production. The dimen-
sionless dissipation rate scales with a single convective power law over an extended range of
-z/ L, thus simplifying greatly the calculation of sensible heat flux from ¢ and supporting the
application of the single power law for flux calculations over the entire range of -z/L > 0. This
is similar to the extended convective scaling found for the standard deviation of temperature
fluctuations (e.g. Albertson et al., 1995a).

3.4 Dissipation-Flux Model

Recall that the pitfalls in the traditional spectral or second order structure function dissipation
methods have been described to include: the uncertainty of the empirical constants for the
second order subrange scaling of velocity and scalars; the requirement of a two step process of

-~
-1
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first estimating € from u and then g from € and inertial subrange scaling of §; possible errors
due to the jumpiness of the spectra when examined over a narrow range of wavenumbers; and,
the need for an iterative solution of heat fluxes. We avoid all of these problems with the present
approach.

With the application of third order structure functions and the use of Taylor’s hypothesis we
may obtain estimates of the dissipation rates from single lag values of the structure functions

5 D() .
3 Dusl)
6 =~y (3.32b)
3 Du(n)
g = -7 (3.32¢)

.

where 7(=r/U) is the time lag corresponding to r. Note that 7 must be chosen to correspond
to spatial lags that fall in the inertial subrange. We write the flux equations for the sensible heat
and evaporative fluxes by making the substitution of (3.32) into (3.20) and (3.22) to obtain

H = (0.11)%pc, (%)g(kz)% [—%D—i’?r (3.33a)
E = p[(().ll)_l (%>%<w9 > (ko) [—ZD%U(T)H (3.33b)

where the time average in the structure functions Dygg(7) and Dy, (1) can be computed directly
by a data logger for a single time lag 7. This is possible because the third order structure
function is smooth enough to provide accurate estimates of the intercept from the known slope
with just one point on the curve.

As described above the friction velocity may be computed for moderate values of -z/L using

i 5 D)), 17

This approach for determining the fluxes of H, E and u. has several advantages over the
classical method of computing fluxes from dissipation rates: (i) it does not require potentially
error-inducing data treatment as with the Fourier transform, (ii) it does not rely on regressions
over a range of wavenumbers as needed with jumpy power spectra, (iii) it does not rely on
uncertain spectral scaling constants (i.e. a, and fg), and (iv) it is free of iteration.

3.5 Evaluation of Model Performance

To test the above described model we present sensible and latent heat flux estimates using the
model and compare them to direct measurements from eddy correlation. The flux comparisons
are for time periods not covered by the data files used to fit the dissipation rate scaling forms
of &, and &.,. The sensible heat flux comparison covers a three day period during which a
wide range of H was encountered. The comparison is shown in Figure 3.9. Note that the model
estimates from (3.33a) match the eddy correlation measurements to within the 10% stated
accuracy range for eddy correlation. The latent heat flux comparison is made for a day with
fast response humidity measurements available and a wet surface, to test the model over a wide
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range of LE. Only one day of data is available for this comparison. The comparison of model
estimates of LE using (3.33b) to eddy correlation measurements of LE is shown in Figure 3.10.
This agreement is also considered excellent.
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Figure 3.8: Dimensionless temperature dissipation function plotted vs. the stability parameter
-z/L. The circles represent the mean values of the data in each bin and the bars denote +/-
one standard deviation of the data in the bins. The dissipation rates were computed from the
mized third order structure functions. The fit 3 sublayer model is shown with o solid line and
the normalized production is shown with a dashed line.

3.6 Discussion and Conclusions

We have presented measurements from 180 velocity/temperature files in the ASL over a wide
range of atmospheric stabilities (three decade range of —z/L). Average dissipation rates of
TKE and temperature variance were computed using third order structure functions. We
place more confidence in this approach as it is devoid of empirical constants and also since
the temnperature dissipation rate does not require a priori knowledge of the TKE dissipation
rate. These dissipation rates are evaluated in the context of the three sublayer model of
Kader and Yaglom (1990). The new empirical functions developed show that in the DSL the
dissipation rates of TKE are constant and therefore independent of z, and are significantly less
than production. In the DCSL and in the FCSL the dissipation rates of TKE follow yet exceed
production, as defined by the empirical function of Wyngaard and Coté (1971). The dissipation
rate of temperature variance in our fit to the three sublayer model are shown to scale with a
single convective power law over a broad range of stability.

We use these dissipation rate scaling forms to develop a simple technique for computing the
fluxes of momentum, sensible heat, and water vapor, in a direct one step method. This is in
contrast to the traditional, iterative dissipation approach of computing fluxes. Sensible heat
flux was estimated from dissipation measurements independent of those used to fit the &,
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Figure 3.9: A comparison of the sensible heat fluz predictions from the presented dissipation
model (Hyiss) with direct measurements from eddy correlation (H,,).
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Figure 3.10: 4 'com‘jnarz'son of the latent heat fluz predictions from the presented dissipation
model (LEgiss) with direct measurements from eddy correlation (LE,.).

function. These estimates match direct measurements from eddy correlation to within the
accuracy of the eddy correlation equipment. A similar comparison was made between latent

h.eaF flux estimates from the dissipation model and direct eddy correlation measurements with
similarly good results.
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In conclusion, we present a simple dissipation method of computing fluxes which is as accurate
as the eddy correlation method, and arguably more accurate and simple than the traditional
iterative dissipation approach.

Acknowledgments

The authors wish to thank Anthony Cahill and Mike Mata for their assistance in the field
and Scott Tyler for his logistical help at Owens Valley. This research has been supported
and financed, in part, by the National Science Foundation (EAR-93-04331), CA State Salinity
Drainage Task Force, Kearney Foundation, CA Water Resources Centre (W-182), the UC Davis
Superfund grant (5 P42ES04699-07), and the NASA Graduate Student Fellowship in Global
Change Research program. The support of University College Cork and the Fulbright Program
is acknowledged by the Cork author.

3.7 References

Albertson JD, Parlange MB, Katul GG, Chu C-R, Stricker H, Tyler S (1995) Sensible
heat flux from arid regions: A simple flux-variance method. Water Resour Res 31: 969-973
Albertson JD, Kiely G, Parlange MB, Eichinger WE (1996) The average dissipation
rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. Journal
of Geophysical Research

Andreas EL (1998) Using scintillation at two wavelengths to measure path-averaged heat
fluxes in free convection. Boundary Layer Meteorol 54: 167-182

Anselmet F, Gagne Y, Hopfinger EJ, Antonia RA (1984) Higher order velocity structure
functions in turbulent shear flows. J Fluid Mech 140: 63-89

Antonia RA, Chambers AJ, Phong-Anant D, Rajagopalan S (1979) Properties of
spatial temperature derivatives in the stmospheric surface layer. Boundary-Layer Meteorol 17:

101-118

Brutsaert W (1982) Evaporation into the Atmosphere. Kluwer Academic Publishers 299pp
Brutsaert W (1986) Catchment scale evaporation and the atmospheric boundary layer. Water
Resour Res 22, suppl., 395-455

Businger JA (1966) Transfer of momentum and heat in the planetary boundary layer. Proc
Symyp Arctic Heat Budget and Atmos Circulation, Rand Corp. RM-5233-NSF, pp.305-332

Champagne FH, Friehe CA, LaRue JC, Wyngaard JC (1977) Flux measurements, flux
estimation techniques, and fine-scale turbulence measurements in the unstable surface layer
over land. J Atmos Sci 34: 515-530

Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic tur-
bulence. J Appl Phys 22: 469-473

Deacon EL (1959) The measurement of turbulent transfer in the lower atmosphere. Adv
Geophys 6: 211-228

Deacon EL (1988) The streamwise Kolmogorov constant. Boundary Layer Meteorol 42: 9-17

Durand P, De Sa L, Druilhet A, Said F (1991) Use of the inertial dissipation method
for caleulating turbulent fluxes from low-level airborne measurements. J Atmos Ocean Tech 8:

7884

R

Surface Fluxes of Momentum, Heat, and Water Vapor 81

DeLeonibus PS, Simpson LS (1987) Dissipation observations of drag coefficients over the
open ocean. IEEE J Oceanic Eng OE-12: 296-300

Dyer AJ (1974) A review of flux-profile relations. Boundary-Layer Meteorol 1: 363-372

Dyer AJ (1967) Measurements of evaporation and heat transfer in the lower atmosphere by
an automatic eddy-correlation technique. Quart J Roy Meteorol Soc 93: 501-508

Edson JB, Fairall CW, Mestayer PG, Larssen SE (1991) A study of the inertial-
dissipation method for computing air-sea fluxes. J Geophys Res 96C: 10689-10711
Eichinger WE, Cooper DI, Holtkamp DB, Karl RR Jr., Quick CR, Till JJ (1993)

Derivation of water vapour fluxes from lidar measurements. Boundary-Layer Meteorol 63: 39—
64

Fairall CW, Edson JB, Larsen SE, Mestayer PG (1990) Inertial-dissipation air-sea mea-
surements: A prototype system using realtime spectral computations. J Atmos Ocean Tech 7
425-453

Fairall CW, Larsen SE (1986) Inertial-dissipation methods and turbulent fluxes at the
air-ocean interface. Boundary-Layer Meteorol 34: 287-301

Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface
layer: A review and an experimental re-examination in the field. Boundary-Layer Meteorol 60:

49-76

Hicks BB, Dyer AJ (1972) The spectral density technique for the determination of eddy
fluxes. Quart J R Met Soc 98: 838-844

Hill RG, Ochs GR, Wilson JJ (1992) Measuring surface layer fluxes of heat and momentum
using optical scintillation. Boundary-Layer Meteorol 58: 391-408

Hogstrom U (1990) Analysis of Turbulence Structures in the Surface Layer with a Modified
Similarity Formulation for near Neutral Conditions. J Atmos Sci 47: 1949-1972

Kader BA (1988) Three-level structure of an unstably stratified atmospheric surface layer.
v Atmos Ocean Phys 24: 907-919 (English translation)

Kader BA (1992) Determination of momentum and heat fluxes by spectral method.
Boundary-Layer Meteorol 61: 323-347

Kader BA, Perepelkin VG (1984) Profiles of the mean velocity and temperature in the
near surface layer of the atmosphere under conditions of neutral and unstable stratification.
Loy Atm Ocean Phys 20: 112-119. (English Translation)

Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified
turbulent boundary layers J Fluid Mech 212: 637—662

Kaimal JC, Finnigan JJ (1994) Atmospheric Boundary Layer Flows: Their Structure and
Measurement, Oxford University Press 289pp

Katul GG, Parlange MB, Albertson JD, Chu C-R (1995a) Local isotropy and anistropy
in the sheared and heated atmospheric surface layer. Boundary-Layer Meteorol 72 123-148

Katul GG, Chu C-R, Parlange MB, Albertson JD, Ortenburger TA (1995b) The
large scale spectral characteristics of stratified atmospheric surface layer flows. J Geophys Res,
in press

Kiely G, Albertson JD, Parlange MB, Eichinger WE (1996) On the scaling of the
average dissipation rate of temperature variance in the atmospheric surface layer. Boundary-
Layer Meteorol, submitted



82 J.D. Albertson, G. Kiely and M.B. Parlange

Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for

very large Reynolds number Dokl Akad Nauk SSSR 30: 301-305

Leavitt E, Paulson CA (1975) Statistics of surface layer turbulence over the tropical ocean.
J Phys Oceanogr 5: 143-156

McBean GA, Stewart RW, Miyake M (1971) The turbulent energy budget near the surface.
J Geophys Res 76: 6540-6549

McBean GA, Elliott JA (1975) The vertical transport of kinetic energy by turbulence and
pressure in the boundary layer. J Atmos Sci 32: 753-766

Marsden RF, McBean GA, Proctor BA (1993) Momentum and sensible heat fluxes
calculated by the dissipation technique during the Ocean Storms Project. Boundary-Layer
Meteorol 63: 22-38

Monin AS, Yaglom AM (1975) Statistical Fluid Mechanics Vol. II, J. Lumley (Ed.), MIT
Press, 874pp

Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv Akad Naul
SSSR, Ser Georgr i Geofiz 13: 58-69

Panton RL (1984) Incompressible Flow, Wiley-Interscience, 780pp

Parlange MB, Eichinger WE, Albertson JD (1995) Regional scale evaporation and the
atmospheric boundary layer. Reviews of Geophysics 33: 99-124

Skupniewicz CE, Davidson KL (1991} Hot-film measurements from a small buoy: Surface
wind estimates using the inertial dissipation method. J Atmos Ocean Tech 8: 309-322

Stull R (1988) An Introduction to Boundary Layer Meteorology, Kluwer Academic Press, 666pp

Taylor RJ (1961) A new approach to the measurement of turbulent fluxes in the lower atmo-
sphere. J Fluid Mech 10: 449-458

Tennekes H, Lumley J (1972) A First Course in Turbulence, MIT Press, 300pp

Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature
variance in the atmospheric surface layer. J Atmos Sci 28: 190-201

Further Reading

Brutsaert W (1982) Evaporation into the Atmosphere. Kluwer Academic Publishers, 299pp
Parlange MB, Eichinger WE, Albertson JD (1995b) Regional scale evaporation and the
atmospheric boundary layer. Reviews of Geophysics 33: 99-124

Stull R (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Press,
666pp

Wyngaard JC (1990) Scalar fluxes in the planetary boundary layer - Theory, modeling, and
measurement. Boundary-Layer Meteorol. 50: 49-75

Chapter 4

Introduction to Numerical Weather
Prediction Data Assimilation

Phillipe Courtier

ECMWF, Shinfield Park
Reading, Berkshire RG2 9AX
UK

4.1 The Problem

In numerical weather prediction data assimilation consists of the process which estimates the
initial conditions of the forecast using all the available information. A description of the current
observing system can be found in McGrath (1993); around 105 elementary pieces of information
are currently used over 24 hours by the operational data assimilation systerm.

The current operational ECMWT model (Simmons, 1991) has a horizontal resolution of 90 km
and covers the whole globe. On the vertical the atmosphere is sampled with 31 levels from the
Suiface up to 10 hPa. The number of degrees of freedom of the model is then of the order of
107,

Over 24 hours, the estimation problem is clearly underdetermined. The time dimension is
thus a critical element of any data assimilation system: it is essential to carry forward in time

information from past observations using the forecast model since it is the best information
Propagator available.

We have identified the main difficulties of data assimilation:
- large dimension problem

- time dimension critical but non linear dynamic

- observations of variable nature and quality

The purpose of this paper is to provide the theoretical basis of the algorithms used in operational
- Meteorology together with some recent developments. Most of the material presented here is
well documented in the meteorological literature (Lorenc, 1986; Ghil and Manalotte-Rizzoli
1991; Daley, 1991) or in other fields under the generic name of inverse problems (Tau‘a,ntola,,7

- 1987).



