Gas-Particle Partitioning of Carbonyls in Simulation Chamber Studies of Secondary Organic Aerosol Formation

John Wenger, Robert Healy, Kristina Kuprovsksyte, Shouming Zhou

Department of Chemistry and Environmental Research Institute
University College Cork
Ireland
Gas/Particle Partitioning

• Many organic compounds partition between gas and particle phase

\[K_p = \frac{[\text{particle phase}]}{[\text{gas phase}][\text{aerosol}]} \]

• \(K_p = [\text{particle phase}]/[\text{gas phase}][\text{aerosol}] \)
Denuder-Filter Sampling

- Denuder tube coated with XAD-4 resin
- Filter
- Sorbent

Particle phase

Gas phase

Typically used for non-polar organic compounds

Air Flow
Secondary Organic Aerosol (SOA)

- Aim: to apply denuder-filter sampling to studies of SOA formation
- Secondary organic fraction represents up to 70% of the organic fraction of fine aerosols
- Composition of SOA?
- Formation mechanisms?
- Main species contributing to SOA?
Biogenic Precursors of SOA

Acyclic Triolefins
- Myroene
- Ocimene

Oxygenated Terpenes
- Linalool
- Terpinene-4-ol

Bicyclic Olefins
- Δ^3-Carene
- α-Pinene
- β-Pinene
- Sabinene

Cyclic Diolactone
- Limonene
- α-Terpinene
- γ-Terpinene
- Terpinolene

Sesquiterpenes
- β-Caryophyllene
- α-Humulene

Anthropogenic Precursors of SOA

SOA Formation

Emission of Volatile Organic Compounds

- Alkanes (>C7)
- Aromatics
- Alkenes (>C6)
- ~100 compounds

SOA Precursors

Reaction with OH, O₃, NO₃

Low volatility products
- Multifunctional oxygenates

Gas-particle Partitioning

High volatility products
- Carbonyls
Derivatization of oxygenated organics

FIGURE 1. Derivatization reactions. (Top) PFBHA derivatizes a carbonyl group. (Bottom) BSTFA derivatizes an $-\text{OH}$ group in acids and alcohols.

Yu et al. ES&T 1998, 32, 2357-2370
Glyoxal derivatized

MW = 448

Fragment mass = 181

More than one isomer possible- (multiple peaks)
Example: OH + Limonene SOA

<table>
<thead>
<tr>
<th>ID</th>
<th>Nomenclature</th>
<th>Structure</th>
<th>MW (g mol⁻¹)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Lactic acid</td>
<td></td>
<td>116</td>
<td>0.14</td>
</tr>
<tr>
<td>10</td>
<td>2-hexanollic acid</td>
<td></td>
<td>116</td>
<td>0.24</td>
</tr>
<tr>
<td>21</td>
<td>Malic acid</td>
<td></td>
<td>116</td>
<td>2.85</td>
</tr>
<tr>
<td>23</td>
<td>Fumaric acid</td>
<td></td>
<td>112</td>
<td>0.01</td>
</tr>
<tr>
<td>26</td>
<td>3,6-Dioxohexanoic acid</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Hexanoic acid</td>
<td></td>
<td>146</td>
<td>0.01</td>
</tr>
<tr>
<td>30</td>
<td>Ketolimonone acid</td>
<td></td>
<td>180</td>
<td>0.23</td>
</tr>
<tr>
<td>31</td>
<td>7-Hydroxylimonononic acid</td>
<td></td>
<td>184</td>
<td>0.07</td>
</tr>
<tr>
<td>32</td>
<td>Norlimonene acid</td>
<td></td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3-Isopropyl-1,3-dihydroxybutanol</td>
<td></td>
<td>148</td>
<td>0.24</td>
</tr>
<tr>
<td>37</td>
<td>4-Isopropyl-1-methyl-1,5-dihydroxy-2-oxocyclohexene</td>
<td></td>
<td>186</td>
<td>2.25</td>
</tr>
<tr>
<td>38</td>
<td>Ketonolimonene acid</td>
<td></td>
<td>174</td>
<td>0.40</td>
</tr>
<tr>
<td>42</td>
<td>Limonic acid</td>
<td></td>
<td>188</td>
<td>0.14</td>
</tr>
<tr>
<td>47</td>
<td>2-Isopropylpentanedioic acid</td>
<td></td>
<td>174</td>
<td>0.20</td>
</tr>
<tr>
<td>53</td>
<td>Ketolimonone acid</td>
<td></td>
<td>168</td>
<td>0.29</td>
</tr>
<tr>
<td>57</td>
<td>5-Hydroxylimononic acid</td>
<td></td>
<td>200</td>
<td>0.06</td>
</tr>
<tr>
<td>65</td>
<td>7-Hydroxylimononic acid</td>
<td></td>
<td>200</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Jaoui et al., ES&T, 2006, 40, 3819-3828
Denuder-Filter Sampling at UCC

- 5-channel glass denuder
- Coated with XAD-4 resin
- Denuder and filter doped with pentafluorobenzyl hydroxyl amine (PFBHA) to convert polar carbonyls to oximes
Trapping Efficiency Tests

- Range of carbonyls introduced to chamber (10 - 200 ppbv)

Trapping efficiency = \(100 \times \left(1 - \frac{C_{\text{out}}}{C_{\text{in}}}\right)\)
XAD-4 vs XAD-4/PFBHA

Benzaldehyde

Trapping Efficiency (%)

Time (min)

XAD-4
XAD-4 + PFBHA

\[\text{Benzaldehyde} \]
XAD-4 vs XAD-4/PFBHA

Methylglyoxal

Trapping Efficiency (%)

Time (min)

Temime et al., ES&T, 2007, 41, 6514-6520
Atmospheric Simulation Chamber at UCC

- on-line GC
- NOx and O₃ analysers
- denuder – filter, GC-MS
- Particle Sizer and counter

- FEP foil (6000 litres)
- Dry purified air
- Atmospheric P and T
- Humidity control
p-xylene photo-oxidation experiment

- Aerosol mass yield = 3.84%
p-xylene photo-oxidation

H-abstraction

OH addition

OH addition

ring cleavage

Reactions:

1. H-abstraction
2. OH addition
3. OH addition
4. Ring cleavage
GC-MS Analysis of p-xylene extracts (filter)

Reconstructed ion chromatogram (m/z 181) of a filter extract from XYL_NOx_1
1: glyoxal 2: methylglyoxal 3: oxopropanedial 4: 2,3-dioxobutanal 5: 3-hexene-2,5-dione
6: 2-hydroxy-3-oxobutanal 7: 2,3-dioxobutanal 8: oxopropanedial.
Denuder-Filter vs Filter Alone

- Glyoxal
- Methylglyoxal
- Hexenedione
- P-tolualdehyde

GC-MS response

- Denuder Filter
- Filter alone
GC-MS Analysis of p-xylene extracts (filter)

<table>
<thead>
<tr>
<th>Relative humidity (%)</th>
<th>XYL_NOx_1</th>
<th>XYL_NOx_2</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>3.88 ± 0.26</td>
<td>4.37 ± 0.70</td>
</tr>
<tr>
<td>24</td>
<td>3.72 ± 0.12</td>
<td>3.47 ± 0.74</td>
</tr>
<tr>
<td>2-hydroxy-3-oxobutanal</td>
<td>0.66 ± 0.06</td>
<td>0.79 ± 0.14</td>
</tr>
<tr>
<td>2,3-dioxobutanal</td>
<td>5.22 ± 0.11</td>
<td>6.19 ± 0.57</td>
</tr>
<tr>
<td>3-hexene-2,5-dione</td>
<td>0.38 ± 0.04</td>
<td>0.31 ± 0.03</td>
</tr>
<tr>
<td>p-tolualdehyde</td>
<td>not observed</td>
<td>0.84</td>
</tr>
<tr>
<td>Total identified</td>
<td>15.92 ± 0.87</td>
<td>18.41 ± 2.52</td>
</tr>
</tbody>
</table>

% Contribution to SOA mass
Gas/Particle Partitioning Values

- K_p calculated both theoretically:

\[
K_{p \text{theoretical}} = \frac{f_{om} \times 760 \times R \times T}{MW_{om} \times \gamma_{om} \times P^o_L \times 10^6}
\]

- MW_{om} = Average molecular weight of organic species in particles (=120)
- f_{om} = fraction of particle that is organic (= 1)
- γ_{om} = Activity coefficient (assumed =1)
- P^o_L = sub-cooled vapour pressure

Pankow, Atmos Environ, 1994
Gas/Particle Partitioning Values

- K_p calculated both theoretically:

\[K_{p_{\text{theoretical}}} = \frac{f_{om} \times 760 \times R \times T}{MW_{om} \times \gamma_{om} \times P_{L}^\circ \times 10^6} \]

Pankow, Atmos Environ, 1994

- and experimentally:

\[K_{p_{\text{exp}}} = \frac{C_{\text{particle}}}{C_{\text{gas}} \times [\text{aerosol}]} \]
Gas/Particle Partitioning Values

<table>
<thead>
<tr>
<th></th>
<th>p-tolualdehyde</th>
<th>Hexenedione</th>
<th>Glyoxal</th>
<th>Methylglyoxal</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_p theoretical</td>
<td>3.2x10^{-07}</td>
<td>1.3x10^{-06}</td>
<td>9.8x10^{-10}</td>
<td>2.0x10^{-09}</td>
</tr>
<tr>
<td>K_p experimental</td>
<td>4.3x10^{-06}</td>
<td>3.8x10^{-05}</td>
<td>4.2x10^{-05}</td>
<td>3.3x10^{-05}</td>
</tr>
<tr>
<td>$K_p_{exp/theory}$</td>
<td>13</td>
<td>29</td>
<td>43238</td>
<td>16963</td>
</tr>
</tbody>
</table>

• Glyoxal and methylglyoxal K_p several orders of magnitude higher than expected

(vapour pressures from SPARC on line calculator- University of Georgia)
Experiments at PSI Chamber

Healy et al., ACP, 2008, 8, 3215-3230
Denuder-Filter Configurations

- Setup 2 allows for the trapping efficiency of the tube to be tested for each experiment.
Denuder vs Filter Extracts

Gas phase breakthrough

Glyoxal
Methylglyoxal

Gas phase

Particle phase
Photooxidation of Isoprene

![Graph showing the photooxidation of isoprene](image-url)

- Isoprene
- Methacrolein + MVK

Axes:
- Y-axis: Isoprene (ppbV) and Carbonyls (ppbV)
- X-axis: Time (min)
Photooxidation products

glycolaldehyde
methacrolein
methyl vinyl ketone
hydroxyacetone
methylglyoxal
glyoxal
C5 carbonyl
C4 hydroxycarbonyl
Gas/Particle Partitioning Values

<table>
<thead>
<tr>
<th></th>
<th>glycolaldehyde</th>
<th>Hydroxyacetone</th>
<th>Glyoxal</th>
<th>Methylglyoxal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_p_{\text{theoretical}}$</td>
<td>3.6×10^{-07}</td>
<td>7.2×10^{-07}</td>
<td>9.8×10^{-10}</td>
<td>2.0×10^{-09}</td>
</tr>
<tr>
<td>$K_p_{\text{experimental}}$</td>
<td>2.2×10^{-05}</td>
<td>1.5×10^{-05}</td>
<td>4.4×10^{-05}</td>
<td>6.7×10^{-06}</td>
</tr>
<tr>
<td>$K_p_{\text{exp/theory}}$</td>
<td>59</td>
<td>20</td>
<td>45538</td>
<td>3476</td>
</tr>
</tbody>
</table>

- methacrolein, methylvinylketone not detected in particle phase
- Glyoxal and methylglyoxal K_p several orders of magnitude higher than expected
Photooxidation of 1,3,5-TMB
Gas/Particle Partitioning Values

<table>
<thead>
<tr>
<th></th>
<th>2-methyl-4-oxo-2-pentenal</th>
<th>Methylglyoxal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_p_{\text{theoretical}}$</td>
<td>9.3x10^{-07}</td>
<td>2.0x10^{-09}</td>
</tr>
<tr>
<td>$K_p_{\text{experimental}}$</td>
<td>1.8x10^{-04}</td>
<td>1.2x10^{-05}</td>
</tr>
<tr>
<td></td>
<td>*1.3x10^{-04}</td>
<td>*2.0x10^{-05}</td>
</tr>
<tr>
<td>$K_p_{\text{exp/theory}}$</td>
<td>190</td>
<td>6256</td>
</tr>
</tbody>
</table>

Obtained using PTR-MS with denuder and heated inlet to vapourize SOA; Hellen et al, ES&T, (2008), 42, 7347-7353.
SOA Formation mechanisms

1. Emission of Volatile Organic Compounds
 - Alkanes (>C7)
 - Aromatics
 - Alkenes (>C6)
 - ~100 compounds

2. SOA Precursors
 - Reaction with OH, O₃, NO₃
 - Low volatility products
 - Multifunctional oxygenates

3. High volatility products
 - Carbonyls

4. Partitioning
 - Gas-particle

5. Heterogeneous Reactions*

K_p exp ≈ K_p calc

K_p exp >> K_p calc
Acid-catalyzed Oligomerization-uptake of glyoxal to particles

Liggio et al.,
ES&T, 2005,
39, 1532-1541
Conclusions

• Small dicarbonyls (glyoxal and methyl glyoxal) partition to the particle phase much more than expected from vapour pressure calculations. Consistent with oligomerization hypothesis (in chambers at least!).

• Monofunctional carbonyl compounds much less likely to undergo reactive uptake

• Models that incorporate Kp for oxidation products should use compound-specific values (Johnson et al., 2005, 2006; Jenkin et al., 2004).
Future Directions

• On-tube derivatization of acids/phenols

• Further chamber experiments on oxygenated aromatics, PAHs and BVOCs

• What happens in the real atmosphere?
Sampling site
Denuder-filter sampling

Quartz fibre filters (2)
(PFBHA-treated)

Annular denuder
(XAD-4 coated & PFBHA-treated)

(KI-coated denuder)

Cyclone
(PM$_{2.5}$ fraction)

Inlet

To pump
GC-MS data (denuder & filter extracts) after sampling for 24 hr
23-24th September 2008

* Impurities or column peaks
Carbonyls at Tivoli Docks

<table>
<thead>
<tr>
<th></th>
<th>Gas phase conc.</th>
<th>Particle phase conc.</th>
<th>Detection limit for standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ng/m³ (ppbv)</td>
<td>ng/m³</td>
<td>ng</td>
</tr>
<tr>
<td>MVK</td>
<td>1087 (0.38)</td>
<td>*</td>
<td>3.5</td>
</tr>
<tr>
<td>Methacrolein</td>
<td>380 (0.13)</td>
<td>*</td>
<td>1.0</td>
</tr>
<tr>
<td>Glycolaldehyde</td>
<td>1006 (0.48)</td>
<td>*</td>
<td>4.0</td>
</tr>
<tr>
<td>Hexanal</td>
<td>409 (0.10)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Heptanal</td>
<td>144 (0.03)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>263 (0.06)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>p-Tolualdehyde</td>
<td>55 (0.01)</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Nonanal</td>
<td>404 (0.07)</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Decanal</td>
<td>343 (0.05)</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Glyoxal</td>
<td>77 (0.03)</td>
<td>?</td>
<td>0.6</td>
</tr>
<tr>
<td>Methylglyoxal</td>
<td>69 (0.02)</td>
<td>?</td>
<td>0.3</td>
</tr>
<tr>
<td>Dimethylglyoxal</td>
<td>102 (0.03)</td>
<td>?</td>
<td>0.6</td>
</tr>
<tr>
<td>3,5-dimethylbenzaldehyde</td>
<td>73 (0.01)</td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

Sampling for 24 hours at 16.7 L/min. Weather conditions dry, mainly cloudy, light wind from SW.
First studies on SOA formation from naphthalene
Odum yield curves

\[Y = \sum_{i=1}^{n} Y_i = M_0 \sum_{i=1}^{n} \left(\frac{a_i \times K_i}{1 + M_0 \times K_i} \right) \]
Aerosol yield parameters

<table>
<thead>
<tr>
<th></th>
<th>One compound model</th>
<th>Two compounds model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(K)</td>
</tr>
<tr>
<td>(\text{RH}=0,)</td>
<td>0.1636</td>
<td>0.0113</td>
</tr>
<tr>
<td>(\text{HC/NOx}=1.0-1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{RH}=0,)</td>
<td>0.2198</td>
<td>0.0125</td>
</tr>
<tr>
<td>(\text{HC/NOx}=3.0-4.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{RH}=25,)</td>
<td>0.2324</td>
<td>0.0081</td>
</tr>
<tr>
<td>(\text{HC/NOx}=1.0-1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{RH}=50,)</td>
<td>0.2548</td>
<td>0.0095</td>
</tr>
<tr>
<td>(\text{HC/NOx}=1.0-1.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

• Robert Healy, Shouming Zhou
• Kristina Kuprovskyte, Ashley Allshire
• Brice Temime (now in Marseille)
• Josef Dommen, Axel Metzger et al. (PSI)
XAD-4 vs XAD-4/PFBHA

2,6-dimethylbenzoquinone

Trapping Efficiency (%)

Time (min)
Glyoxal trimer dissolved in solvent mix vs dissolved in methanol
Kp calculations

\[Kp_{\text{theoretical}} = \frac{f_{om} \times 760 \times R \times T}{MW_{om} \times \gamma_{om} \times P^o_L \times 10^6} \]

- \(MW_{om} \) = Average molecular weight of organic species in particles (=120)
- \(f_{om} \) = fraction of particle that is organic (=1)
- \(\gamma_{om} \) = Activity coefficient (assumed =1)
- \(P^o_L \) = sub-cooled vapour pressure
- Adsorption to particle surface not considered for Kp values
Polymerization reactions in aromatics-SOA polymer—”backbone”
Gas-phase Carbonyl yields for p-xylene

methylglyoxal 35%
methylbutenedial 3%

Glyoxal 30%
Hexenedione 5%

P-tolualdehyde 10%
Minimize Artefacts

- Direct filter sampling is prone to artefacts
- Adsorption of gases to filter - Positive artefact
- Desorption of semi-volatiles – Negative artefact
- Denuder-filter sampling minimizes artefacts
- Mainly used for non-polar organic compounds that partition between both gas and particle phases, e.g. PAHs