Real-time Measurements of Single Particle Composition at Cork Harbour, Ireland

Robert Healy, Stig Hellebust, Arnaud Allanic, Ivan Kourtchev, David Healy, Ian O’Connor, John Wenger, John Sodeau
Department of Chemistry and Environmental Research Institute
University College Cork, Cork, Ireland

Introduction

Although many studies investigating the chemical composition of individual particles have been performed in various remote and urban environments, in-port sites have received comparatively little attention. Emissions from shipping traffic in particular remain relatively unconstrained and may impact severely upon local and regional air quality and health in port cities [1]. The focus of this campaign was to investigate the internal and external mixing state of ambient particles in Cork Harbour, Ireland, with particular interest in the contribution from ship exhaust. A TSI 3800 aerosol time-of-flight mass spectrometer (ATOFMS) was co-located with a suite of real-time instrumentation at an in-port site for three weeks in August 2008. Over 500,000 positive and negative ion particle mass spectra were generated and divided into various classes using the K-means algorithm [2]. Approximately 2.5% by number of the particles observed were apportioned to ship exhaust, exhibiting composition in line with recent in situ ship exhaust measurements [3]. The vast majority of these particles lie in the ultrafine mode and thus are expected to have human health implications. Furthermore, 2.5% by number is considered to be very much a lower limit as the majority of the particles lie below the measurable size range of the aerodynamic lens of the ATOFMS.

Sampling Site & Instrumentation

The sampling site at the Tivoli Docks, Cork Harbour was chosen based on its position northeast of the port terminal and shipping berths. The prevailing winds are southwesterly and the closest berth is located 200 m to the southwest of the site. The ATOFMS and SMPS (scanning mobility particle size, TSI 3081) instruments were located in an adapted temperature-controlled truck. The ATOFMS was fitted with an aerodynamic lens (TSI AFL100) for the measurement of particles in the size range 100-3000 nm in real time. Particles are sized using two orthogonally positioned continuous wave lasers and ionized using a Nd:YAG laser (266 nm). The resulting positive and negative ions are then analysed using two time-of-flight mass spectrometers. The SMPS collected particle number concentrations and size distributions in the range 20-600 nm every 3 min. A TEOM (tapered element oscillating microbalance, Thermo model 1400) was also located on-site for the measurement of PM$_{10}$ mass concentration averaged every 30 min. Wind speed, wind direction, temperature, humidity and rainfall were measured using a Casella NOMAD weather station. The instruments were located on site for three weeks from 07-28/08/2008.

Single Particle Composition

558,740 mass spectra were generated by the ATOFMS during the three week campaign. These spectra were initially reduced to 50 classes using the K-means algorithm [2]. Those 50 classes were further reduced to seven main particle types based on the similarity of their temporal trends, size distributions and mass spectra. Standard spectra for coal, peat and wood smoke were collected during a separate experiment by burning each fuel in turn and analysing the resulting particles. Population of each particle class as a fraction of the total number of particles ionized by the ATOFMS

The largest contribution by number to the particles observed was domestic heating, with particles attributed to coal, peat and wood burning accounting for 63% of the overall number. The temporal trend for the domestic heating particles peaked, as expected, from 19:00-22:00 every evening, with no obvious dependence on wind direction indicating a diffuse local source. Road dust exhibited a daily temporal trend consistent with traffic, while ship exhaust particles exhibited sharp temporal events.

Future Work and Acknowledgments

Although signature ATOFMS dual ion mass spectra have been obtained for ship exhaust, coal, peat and wood burning particles the ATOFMS aerodynamic lens used for this campaign precluded the determination of ultrafine particle composition. A second aerodynamic lens (TSI AFL30) can be used at the Tivoli Docks site to determine any compositional differences between ultrafine and accumulation mode particles from the same source. The fraction by number of particles measured by the ATOFMS for each class can not be used as a quantitative measurement. However, the ATOFMS temporal trends will be used together with other real-time data including PM$_{2.5}$, NO$_x$, ozone, SO$_x$, sulfate and EC/OC mass concentrations for source apportionment. Positive matrix factorisation using all of the variables available will be performed in order to determine the contribution of each source to local air quality. Many thanks to the Environmental Protection Agency and the Higher Education Authority for providing the funding for this project as well as the Cork Port Authority and Cork City Council for their collaboration and valuable input.