Epidemiological research has highlighted the detrimental effects of airborne particulate matter (PM) on human health. However, there is still a wide debate over which characteristics of PM are responsible for the adverse health effects. The sources of PM are fairly well understood, but their trace element composition and mechanism by which they exert their toxic effects still remains unclear. To a first approximation, the smaller the particle the further it will penetrate the lung so the greater the toxicity.

PM is generally classified by two factors: SIZE and (more recently) CHEMICAL COMPOSITION.

The size classification is as follows: PM$_{10}$ (particulate matter with a diameter less than 10 µm) and PM$_{2.5}$ (that less than 2.5 µm). Chemical analysis shows PM to comprise many inorganic, organic and elemental materials, several of which are toxic. For example, solubilized metal ions such as zinc have been found to be linked to lung injury and polyaromatic hydrocarbons (PAHs) exhibit carcinogenic and or mutagenic properties, which cause marked stress on lung tissue. Hence the necessity for integrated collection/analysis/toxicology projects of the type described here.}

Aims

- Collection of PM$_{10-2.5}$ and PM$_{2.5}$ in Cork (Roadside, Urban Background and Rural sites)
- “Total” physico-chemical analysis method development to determine composition

Methodology

1. Sample Collection
2. Sample preparation
3. Sample Analysis

Selected Results (Year 1)

ICP-AES Analysis: metal components

Metals Analysed: Ca, Mn, Fe, Ni, Zn, Mg, Cr, V, Cd, Cu, Pb, As, Ti, Al, Si

- Higher concentrations of lead were found at the city centre site when compared to Heatherton Park
- Cu, Fe, and Mg were found to follow similar trends throughout each of the months analysed suggesting the same crustal sources

Scanning Electron Microscope Analysis: sizing the particulate components

Acknowledgements

- Dr. A. Whittaker, Dr. J. Lopez and Dr. J. Wenger
- Cork City Council
- EPA RTDI Doctoral Scholarship Programme