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Abstract 
We test whether firm idiosyncratic risk is priced in a large cross-section of U.K. stocks. A 
distinguishing feature of our paper is that our tests allow for a conditional relationship between 
systematic risk (beta) and returns, i.e., conditional on whether the excess market return is 
positive or negative. We find strong evidence in support of a conditional beta/return relationship 
which in turn reveals conditionality in the pricing of idiosyncratic risk. We find that idiosyncratic 
volatility is significantly negatively priced in stock returns in down-markets. Although perhaps 
initially counter-intuitive, we describe the theoretical support for such a finding in the literature. 
Our results also reveal some role for liquidity, size and momentum risk but not value risk in  
explaining the cross-section of returns.  
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1. Introduction 

Idiosyncratic, or non-systematic, risk arises due to asset price variation that is specific to a 

security and is not driven by a systematic risk factor common across securities. It is typically 

estimated using a pricing model of returns with common risk factors and obtained as the residual 

unexplained variation. In this paper we revisit the question of whether idiosyncratic risk is priced 

in a large cross-section of U.K. stocks. A distinguishing feature of our paper is that we 

incorporate a conditional relationship between systematic risk (beta) and return in our tests for 

which we find strong evidence. This in turn reveals conditionality in the pricing of idiosyncratic 

risk. We control for other stock risk characteristics such as liquidity (which we decompose into 

systematic and idiosyncratic liquidity), size, value and momentum risks which may explain some 

idiosyncratic risk.  

 

The role of idiosyncratic risk in asset pricing is important as investors are exposed to it 

for a number of reasons, either passively or actively. These include portfolio constraints, 

transaction costs that need to be considered against portfolio rebalancing needs or belief in 

possessing superior forecasting skills1. Assessing if and how idiosyncratic volatility is priced in 

the cross-section of stock-returns is relevant in order to determine if compensation is earned from 

exposure to it. Controlling for systematic risk factors and other stock characteristics, if the 

expected risk premium for bearing residual risk is positive, it may support holding idiosyncratic 

difficult-to-diversify stocks and other undiversified portfolio strategies. Conversely, negative 

pricing of idiosyncratic risk clearly points to increased transaction costs to achieve a more 

granular level of portfolio diversification to offset it.  Idiosyncratic risk is important and large in 

magnitude, and accounts for a large proportion of total portfolio risk.2 A better characterization 

of it will improve the assessment of portfolio risk exposures and the achievement of risk and 

return objectives.  

1 Portfolio constraints include the level of wealth, limits on the maximum number of stocks held or restrictions from 
holding specific stocks or sectors. Funds with a concentrated style willingly hold a limited number of stocks. Even 
large institutional portfolios benchmarked to a market index typically hold a subset of stocks and use techniques to 
minimize non-systematic exposures. 
2 Campbell et al. (2001) for a US sample find firm-level volatility to be on average the largest portion (over 70%) of 
total volatility, followed by market volatility (16%) and industry-level volatility (12%). Our results are broadly 
consistent, with the firm-level component accounting on average for over 50% of total variance, with the rest evenly 
split between the market and industry components.  
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Traditional pricing frameworks such as the CAPM imply that there should be no 

compensation for exposure to idiosyncratic risk as it can be diversified away in the market 

portfolio. However, this result has been challenged both theoretically and empirically. 

Alternative frameworks relax the assumption that investors are able or willing to hold fully 

diversified portfolios and posit a required compensation for idiosyncratic risk. Merton (1987) 

shows that allowing for incomplete information among agents, expected returns are higher for 

firms with larger firm-specific variance. Malkiel and Xu (2002) also theorise positive pricing of 

idiosyncratic risk using a version of the CAPM where investors are unable to fully diversify 

portfolios due to a variety of structural, informational or behavioural constraints and hence 

demand a premium for holding stocks with high idiosyncratic volatility. In empirical testing 

several studies find a significantly positive relation between idiosyncratic volatility and average 

returns; Lintner (1965) finds that idiosyncratic volatility has a positive coefficient in cross-

sectional regressions as does Lehmann (1990) while Malkiel and Xu (2002) similarly find that 

portfolios with higher idiosyncratic volatility have higher average returns.  

 

However, the direct opposite perspective on the pricing of idiosyncratic risk, that of a 

negative relation between idiosyncratic volatility and expected returns, has also been theorised 

and supported by empirical evidence. One theory links the pricing of firm idiosyncratic risk to 

the pricing of market volatility risk. Chen (2002) builds on Campbell (1993 and 1996) and 

Merton’s (1973) ICAPM to show that the sources of assets’ risk premia (risk factors) are the 

contemporaneous conditional covariances of its return with (i) the market, (ii) changes in the 

forecasts of future market returns and (iii) changes in the forecasts of future market volatilities. 

In particular, this third risk factor, which the model predicts has a negative loading, indicates that 

investors demand higher expected return for the risk that an asset will perform poorly when the 

future becomes less certain, i.e., higher (conditional) market volatility3. Ang et al (2006) argue 

that stocks with high idiosyncratic volatilities may have high exposure to market volatility risk, 

which lowers their average returns, indicating a negative pricing of idiosyncratic risk in the 

3 Conversely, assets with high sensitivities (covariance) to market volatility risk provide hedges against future 
market uncertainty and will be willingly held by investors, hence reducing the required return.    
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cross-section. If market volatility risk is a (orthogonal) risk factor, standard models of systematic 

risk will mis-price portfolios sorted by idiosyncratic volatility due to the absence of factor 

loadings measuring exposure to market volatility risk. In empirical testing on US data, Ang et al. 

(2006) find that exposure to aggregate volatility risk accounts for very little of the returns of 

stocks with high idiosyncratic volatility (controlling for other risk factors) which, they say, 

remains a puzzling anomaly4. We add to this literature by investigating the pricing of 

idiosyncratic volatility in a large sample of U.K. stocks in conditional market settings and 

controlling for other risk factors and stock characteristics in the cross-section.    

 

Much like the mixed theoretical predictions concerning the pricing of idiosyncratic risk, 

empirical findings around the idiosyncratic volatility puzzle (negative relation between 

idiosyncratic risk and returns) are also quite mixed. For instance, Malkiel and Xu (2002), Chua et 

al.(2010), Bali an Cakici (2008) and Fu (2009) find a positive relationship between idiosyncratic 

volatility and returns, arguing the puzzle does not exist while Ang et al. (2006, 2009), Li et al. 

(2008) and Arena et al. (2008) find that the puzzle persists, reporting evidence of a negative 

relationship. Furthermore, a conditional idiosyncratic component of stock return volatility is 

found to be positively related to returns by Chua et al. (2010) and Fu (2009), while conflicting 

results are found in Li et al. (2008). Despite the use of a variety of theoretical models of agents’ 

behaviour, pricing models and testing techniques, the debate is still open as to whether 

idiosyncratic risk is a relevant cross-sectional driver of return, and if it is, whether the 

relationship with returns is a positive or a negative one. The contribution of our paper may be 

viewed in this context as an attempt to shed further light on these open and persistent questions. 

There is also evidence that several additional cross-sectional risk factors interact with residual 

risk effects, such as momentum, size and liquidity suggesting that a large part of it might be 

4 Jacobs and Wang (2004) develop a consumption-based asset pricing model in which expected returns are a 
function of cross-sectional (across individuals) average consumption growth and consumption dispersion (the cross-
sectional variance of consumption growth). The model predicts (and the evidence supports) a higher expected return 
the more negatively correlated the stock’s return is with consumption dispersion. An intuitive interpretation is that 
consumption dispersion causes agents to perceive their own individual risk to be higher. Hence a stock which is 
sensitive to consumption dispersion offers a hedge, will be willingly held and consequently has a lower required 
return. Stocks with high idiosyncratic volatilities may have high exposure to consumption dispersion, which lowers 
their average returns, indicating a negative pricing of idiosyncratic risk in the cross-section 
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systematic rather than idiosyncratic (Malkiel and Xu (1997, 2002), Campbell et al. (2001), 

Bekaert et al. (2012) and Ang et al. (2009)). 

 

There is a problem when researchers test the CAPM empirically using ex-post realized 

returns in place of ex-ante expected returns, upon which the CAPM is based. When realized 

returns are used Pettengill et al. (1995) argue that a conditional relationship between beta and 

return should exist in the cross-section of stocks. In periods when the excess market returns is 

positive (negative) a positive (negative) relation between beta and returns should exist. Pettengill 

et al. (1995) propose a model with a conditional relationship between beta and return and find 

strong support for a systematic but conditional relationship. Lewellen and Nagel (2006) show, 

however, that the conditional CAPM is not a panacea and does not explain pricing anomalies like 

value and momentum.  

 

The majority of empirical work deals with U.S. data. Morelli (2011) examines the 

conditional relationship between beta and returns in the UK market. The author highlights the 

importance of this conditionality for only then is beta found to be a significant risk factor. Given 

the evidence of a conditional beta/return relationship established in the literature, our paper 

makes a further contribution by incorporating this conditionality in re-examining the pricing of 

idiosyncratic risk. We focus on a UK dataset while obtaining results of general interest in terms 

of methodological approach and empirical results.  

 

The paper is set out as follows: section 2 describes the selection and treatment of data 

while section 3 describes our testing methodology. Results are discussed in section 4 while 

Section 5 concludes.  

 

2. Data Treatment and Selection   

Our starting universe includes all stocks listed on the London Stock Exchange between January 

1990 and December 2009 – a period long enough to capture economic cycles, latterly the 

‘financial crisis’ and alternative risk regimes. We collect monthly prices, total returns, volume, 

outstanding shares and static classification information from Datastream. We also daily prices in 
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order to compute quoted spread, a liquidity measure, as well as 1-month GBP Libor rates.  

Serious issues with international equity data have been highlighted in the literature (Ince and 

Porter, 2006). These include incorrect information, both qualitative (classification information) 

and quantitative (prices, returns, volume, shares etc), a lack of distinction between the various 

types of securities traded on equity exchanges, issues of coverage and survivorship bias, 

incorrect information on stock splits, closing prices and dividend payments, problems with total 

returns calculation and with the time markers for beginning and ending points of price data and 

with handling of returns after suspension periods. Ince and Porter (2006) also flag problems 

caused by rounding of stock prices and with small values of the return index. Most (not all) of 

the problems identified are concentrated in the smaller size deciles and this issue would 

significantly impact inferences drawn by studies focusing on cross-sectional stock 

characteristics. We thus apply great care to mitigate these problems by defining strict data 

quality filters to improve the reliability of price and volume data and to ensure results are 

economically meaningful for investors. First, we review all classification information with a mix 

of manual and automatic techniques, including a cross-check of all static information against a 

second data source, Bloomberg.5. Second, we cross-check all time-series information (prices, 

returns, shares, volume) against Bloomberg, correcting a large number of issues and recovering 

data for a significant number of constituents that were missing6. These data filters result in a 

comprehensive sample of 1,333 stocks. Full details of our data cleaning procedures are available 

on request.   

 

5 “Manual” means, in many cases, a name-by-name, ISIN-by-ISIN check of the data, or the retrieval and 
incorporation of data from company websites.  As commonly done, in this first step we exclude (i) investment trusts 
and other types of non-common-stock instruments, eliminating securities not flagged as equity in Datastream, (ii) 
securities not denominated in GBP, (iii) unit trusts, investment trusts, preferred shares, American depositary 
receipts, warrants, split issues, (iv) securities without adjusted price history, (v) securities flagged as secondary 
listings for the company, (vi) stocks identified as non-UK under the Industry Classification Benchmark (ICB) 
system, (vii) securities without a minimum return history of 24 months and (viii) non-common stock constituents, 
mis-classified as common-stock, by searching for key words in their names - for instance, collective investment 
funds are have been identified and excluded.  
6 The error rate in Datastream and the much higher reliability of stock-level data in Bloomberg raises the question of 
why we do not simply use Bloomberg as our data source. There are various reasons including that only Datastream 
allows queries for bulk data with a common characteristic (i.e. all stocks listed on the London exchange) and 
licensing issues.  
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3. The Pricing of Idiosyncratic Risk: Theory and Empirical Methods   

We use a two-step procedure similar to Fama and MacBeth (1973) to test for the pricing of 

cross-sectional risk factors7. In our first step we estimate a time series regression of the form 

(Fama and French, 1992) 
 

                    i,t i i m,t i t i t i,tR R h HML s SMB= α +β + + + ε ,     i = 1,2…n                       (1) 

 

where i,tR  is the excess return (over the risk free rate) on stock i at time t,  m,tR  is the excess 

return on the market portfolio, iβ  represents the systematic risk of stock i, tHML , the 

difference in returns between high versus low book to market equity stocks, is a value risk factor 

at time t, ih  is the value risk factor loading on stock i, tSMB , the difference in returns between 

small versus big stocks, is a size risk factor at time t while is  is the size risk factor loading on 

stock i8. i,tε  represents idiosyncratic variation in stock i and n is the number of stocks in the 

cross-section. (In some tests we examine the CAPM version of [1], i.e., without the value and 

size risk factors). We estimate [1] each month using a backward looking window of 24 months, 

rolling the window forward one month at a time9.  We collect the series of iβ̂ , iĥ  and iŝ  each 

month and generate estimates of the idiosyncratic risk of stock i, denoted iσ̂ ,  using the series of 

the residuals i,tε̂ based on four alternative approaches as follows: 

 

(i)  the standard deviation of the series of i,tε̂  over the 24 months rolling window, 

7 We provide only a brief outline of this well-known procedure here.   
8 The monthly returns for the HML factor are obtained from Kenneth French’s website, available at 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, while we compute SMB by sorting stocks 
into size deciles based on market capitalization and taking the spread in return between the top and bottom decile 
portfolios.  
9 The data frequency, backward looking window length and forward rolling frequency vary in previous literature. 
For instance, Malkiel and Xu (2002) and Spiegel and Wang (2005) employ monthly data with a backward looking 
window of 60 months, Li et al.(2008) use windows of 3, 6 and 12 months, Hamao et al.(2003) use monthly data over 
a 12 month window. A number of studies such as Ang et al.(2009) and Bekaert et al.(2007) use daily data over one 
month. Brockman et al.(2009) use both daily data and monthly data. We use monthly data for consistency with our 
following cross-sectional analysis and a window length of 24 months as sufficiently long to ensure reliable risk 
estimators in each window but short enough to capture changing risk over time.  
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(ii)  the fitted value at t-1 from a GARCH(1,1) model fitted to the series of i,tε̂ over the 24 

months window,     

(iii) generating each month a forecast of the conditional volatility of i,tε̂ from a GARCH(1,1) 

model fitted over the 24 month window,   

(iv)  the fitted value from an EGARCH(1,1) model fitted to the series of i,tε̂ over the 24 

months window10.  

 

    

In the second stage, a cross-sectional regression is estimated each month of the form 

 

                                       i ,t 0,t 1,t i ,t 1 2,t i ,t 1 i,t
ˆ ˆR u− −= γ + γ β + γ σ +                                       (2) 

 

where i,tu  is a random error term. Subscript t-1 denotes that iβ̂  and iσ̂ are estimated in the 24 

month window up to time t-1. It is advisable to obtain systematic and idiosyncratic risk estimates 

from [1] from month t-1 through month t-24 and then relate these to security returns in month t  

in [2] in order to mitigate the Miller-Scholes problem.11  This procedure provides estimates 0,tγ̂ , 

1,tγ̂  and 2,tγ̂ each month t. Under CAPM, H10: γ =0,tˆ 0 , γ =20 1,t M,tˆH : R  and H30: γ =2,tˆ 0 . 

Under normally distributed i.i.d. returns, γ
γ

γ
=
σj

j

j
ˆ

ˆ

ˆ
t  , j = 0,1,2, is distributed as a student’s t-

distribution with T-1 degrees of freedom where T is the number of observations, γ jˆ  and γσ jˆ are 

the means and standard deviations respectively of the time series of the cross-sectional 

10 In cases (i) to (iv) for robustness we also run tests where idiosyncratic risk is estimated using a backward looking 
12 month window instead of 24 month and report a selection of results in Section 4.    
11 Miller and Scholes (1972) find that individual security returns are marked by significant positive skewness so that 
firms with high average returns will typically have large measured total or residual variances as well. This suggests 
caution when using total or residual variance as an explanatory variable, as substantiated in practice by Fama and 
MacBeth (1973) who found total risk added to the explanatory power of systematic factor loadings in accounting for 
stock mean returns only when the same observations were used to estimate mean returns, factor loadings and total 
variances. Similar results were obtained by Roll and Ross (1980) in their tests of the Arbitrage Pricing Theory 
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coefficients estimated monthly. The CAPM asserts that systematic risk is positively priced and 

this may be tested empirically by 0 1ˆH : 0γ =  versus A 1ˆH : 0γ > .     

 

However, there is a problem when researchers test the model empirically using ex-post 

realized returns rather than the ex-ante expected returns upon which the CAPM is based. When 

realized returns are used Pettengill et al. (1995) argue that a conditional relationship between 

beta and return should exist in the cross-section of stocks. This arises because the model 

implicitly assumes that there is some non-zero probability that the realized market return, m,tR , 

will be less than the risk free rate, i.e., m,t fR R<  as well as some non-zero probability that the 

realized return of a low beta security will be greater than that of a high beta security12.  

 

Pettengill et al. (1995) propose a conditional relationship between beta and return of the 

form  

 

                                    i ,t 0,t 1,t i 2,t i i ,t
ˆ ˆR D (1 D)= λ + λ β + λ − β + ε                                      (3) 

 

where i,tR  is the realised excess return on stock i in month t, D is a dummy variable equal to one 

(zero) when the excess market return is positive (negative). Equation (3) is estimated each 

month. The model implies that either 1,tλ  or 2,tλ will be estimated in a given month depending 

on whether the excess market return is positive or negative. The hypotheses to be tested are 

1,0 1 1,A 1
ˆ ˆH : 0,H : 0λ = λ >  and 2,0 2 2,A 2

ˆ ˆH : 0,H : 0λ = λ < where 1λ̂  and 2λ̂  are the time series 

averages of the cross-sectional coefficients estimated monthly. These hypotheses can be tested 

by the t-tests of Fama and MacBeth (1973).  Our final testing model incorporating a conditional 

beta/return relationship, idiosyncratic risk and the rolling backward looking estimation window 

is of the following form,    

 

12 We provide a fuller review of the analytics of the conditional CAPM in an appendix to the paper. 
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i ,t 0,t 1,t i ,t 1 2,t i ,t 1 3,t i ,t 1 i,t
ˆ ˆ ˆR D (1 D)− − −= λ + λ β + λ − β + λ σ + ε                            (4) 

 

where i,tε  is a random error term. The time series averages of the lambda coefficients are then 

calculated and statistical significance tested. 

 

3.1 Additional Control Variables in the Cross-sectional Regressions.  

A number of other cross-sectional variables have been shown to interact with residual risk and 

we attempt to control for these by augmenting [4]. Factors such as size, value, liquidity and 

momentum have been documented in the literature. Malkiel and Xu (1997) report evidence of a 

strong relationship between idiosyncratic volatility and size, suggesting that the two variables 

may be partly capturing the same underlying risk factors. Similar findings are reported in 

Malkiel and Xu (2002), Chua et al. (2010) and Fu (2009). Spiegel and Wang (2005) show that 

liquidity interacts strongly with idiosyncratic risk while a strong relationship between 

momentum returns and idiosyncratic volatility has been documented in Ang et al.(2006), Li et al. 

(2008) and Arena et al.(2008).   

 

We augment [4] with the size and value risk factor loadings estimates from [1], again 

estimated between t-1 and t-24. For robustness we also examine the role of size as measured by a 

standardised measure of market capitalization at time t. The literature contains several alternative 

measures of liquidity, Foran et al. (2014a). We adopt two measures including the quoted spread 

and turnover, which have been found to explain the cross-section of UK equity returns, Foran et 

al. (2014b). The quoted spread is the difference between the closing bid and ask prices expressed 

as a percentage of the midpoint of the prices. We calculate the daily average each month. For 

month m and stock s it is given by  

 

                       

s ,m A Bn
s,t s,t

s,m
t 1s,m s,t

P P1Q *
n m=

−
= ∑

                             (5) 
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where  
A
s,tP  is the ask price on day t for stock s, 

B
s,tP   is the bid price on day t for stock s, s,mn  

is the number of daily observations in month m and  
A B

s,t s,t s,tm (P P ) / 2= +  is the midpoint of 

the bid-ask prices. Higher levels of quoted spread are associated with lower levels of liquidity. 

Turnover is defined as the volume of shares traded per period divided by the total number of 

shares outstanding. Higher levels of turnover are associated with higher liquidity. As turnover 

varies over time at both the market-wide level and at stock level, we also decompose it into a 

systematic component and an idiosyncratic component. We decompose turnover by estimating a 

time series regression for each stock of the form  

 

                                         i,t 0 1 MKT,t i,tTURN TURN= ϕ + ϕ + θ     (6) 

 

over a 24 month backward looking window and rolling the window forward one month at a time 

as before. i,tTURN  is the turnover of stock i at time t, MKT,tTURN  is the market-cap weighted 

average of individual stocks’ turnover at time t. While 1ϕ   measures the sensitivity of each 

stock’s turnover to market-wide turnover, i,tθ  is a measure of turnover that is unique to each 

firm. We augment [4] at time t with 1ϕ̂ estimated over t-1 to t-24 and with i,t 1
ˆ

−θ . We find for the 

most part that time-variation in stock turnover comes from the systematic component.  

 

We measure momentum as the stock’s cumulative return over the past 3 months.  This is 

the measurement period that yields the most significant winners/losers spread in Li et al. (2008). 

Finally, two recent papers question the existence of the idiosyncratic risk pricing puzzle and 

propose additional control variables in testing its existence. Bali, Cakici and Whitelaw (2011) 

argue that including the maximum daily return over the previous month reverses the negative 

relationship while Huang et al. (2010) argue that the puzzle disappears on controlling for short 

run (one month) return reversal, i.e., the return at t-1, though this variable is likely to interact 

with momentum here. We further augment [4] with these additional control variables13.    

13 We thank an anonymous referee for this suggestion.  
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In Table 1 we provide descriptive statistics of the stock returns, beta and idiosyncratic 

volatility while in Figure 1 we chart the cross-sectional average idiosyncratic volatility (averaged 

across stocks using market capitalisation weights) over time. For example, from Table 1, the 

time series and cross-sectional average stock return is 1.17% per month with a large standard 

deviation of 13.71%. The average market beta is 1.027 from the CAPM version of [1] (averaged 

over the rolling 24 month windows and across stocks), falling to 0.938 in the Fama and French 

(1992) model in [1]. The means of the idiosyncratic volatility measures are broadly similar 

ranging from 6.96% per month in the case of ‘IVOL-FF-EGARCH’, which denotes the value at 

t-1 from an EGARCH(1,1) model fitted to the series of i,tε̂ over the backward looking 24 months 

window from t-1 to t-24, to 9.18% in the case of ‘IVOL-CAPM’, which denotes  the standard 

deviation of residuals from a CAPM version of [1] estimated over the backward looking 24 

month window. Figure 1 also reveals a similar trend in idiosyncratic volatility over time between 

the alternative measures, rising in the late 1990s around events such as the Russian debt default 

and Asian currency crises and rising again from 2008 during the more recent financial crisis.    

 

[Table 1 about here] 

[Figure 1 about here]  

 

4. Empirical Results 

We estimate the cross-sectional regressions in [4] each month t. These regressions examine the 

pricing of systematic risk, β , idiosyncratic risk, σ , as well as other risk factors including 

liquidity, value, size and momentum while also specifying some other control variables. As 

described in Section 3, β̂ and σ̂  are estimated over the previous 24 months (and also over the 

previous 12 months in robustness tests). We present results in Tables 2, 3 and 4. Initially, in 

Table 2 we estimate an unconditional cross-sectional regression each month over the entire 

sample period and ignore the possible conditional beta/return relationship. In Tables 3 and 4 we 

estimate various forms of [4] which models the beta/return relation as conditional: Table 3 
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reports results for down-markets while Table 4 presents results for up-markets14. We build an 

array of models, gradually introducing cross-sectional factors and robustness tests. For each 

model we report the time series averages of the coefficients from the monthly cross-sectional 

regressions with their p values below. In all our time series regression in [1] as well as our cross-

sectional regressions in [4] all standard errors are Newey-West (1987) adjusted (lag order 2).    

 

Across all three tables, models 1-8 report results for monthly cross-sectional regressions 

of stock returns on a constant, market risk (denoted ‘beta’) and alternative estimates of 

idiosyncratic risk as follows: (i) ‘IVOL-FF’ denotes the standard deviation of residuals from the 

Fama and French (1992) model in [1] estimated over a backward looking 24 month window 

from t-1 to t-24, while ‘IVOL-CAPM’ is similarly estimated but built on the CAPM version of 

[1], i.e., without the value and size risk factors. ‘IVOL-FF-12m’ is estimated similarly to ‘IVOL-

FF’ except it is based on a backward looking window of 12 months. ‘IVOL-FF-GARCH’ 

denotes the fitted value at t-1 from a GARCH(1,1) model fitted to the series of i,tε̂ over the 24 

months window from [1], while ‘IVOL-CAPM-GARCH’ is estimated similarly from the 

residuals of the CAPM version of [1]. ‘F-IVOL-FF-GARCH’ is obtained by fitting a 

GARCH(1,1)  to the variance of the residuals in [1] over a 24 month backward looking window 

and generating each month a forecast of the conditional volatility, while ‘F-IVOL-CAPM-

GARCH’ is estimated similarly based on the residuals from the CAPM version of [1]. Finally, 

‘IVOL-FF-EGARCH’ denotes the value at t-1 from an EGARCH(1,1) model fitted to the series 

of i,tε̂ over the backward looking 24 months window.   

 

In model 9 through 25 we introduce the other risk factors and control variables in the 

cross-sectional regressions and report robustness test results around idiosyncratic risk measures.  

14 In [4] we estimate: i,t 0,t 1,t i ,t 1 2,t i ,t 1 3,t i ,t 1 i,t
ˆ ˆ ˆR D (1 D)− − −= λ + λ β + λ − β + λ σ + ε .  Here only the 

i,t i,t 1
ˆR / −β is conditional. The i,t i,t 1ˆR / −σ relation is unconditional. However, in effect, testing the conditional 

i,t i,t 1
ˆR / −β relation involves estimating it in down-markets and up-markets separately. Similarly, it may be 

enlightening to examine a conditional i,t i,t 1ˆR / −σ relation and indeed a conditional relationship between return 
and the other risk including value, size, liquidity and momentum. Our results in Table 2 are based on unconditional 
tests while Tables 3 and 4 report results for down-markets and up-markets respectively.     
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‘TURN’, ‘Beta-TURN’, and ‘I-TURN’ denote total turnover, systematic turnover and 

idiosyncratic turnover respectively while Quoted Spread is also specified as a further measure of 

liquidity. ‘H’ and ‘S’ represent the value and size risk factor loadings from [1] again estimated 

over a backward looking window of 24 months, while ‘Mkt Val std’ denotes a stock’s 

standardised market capitalisation in month t.   A momentum factor, denoted ‘mom 3m’ is also 

specified to allow for momentum effects in performance, this is the stock’s cumulative return 

over the past 3 months. Finally, as described in Section 3, two additional control variables are 

specified, i.e., ‘Return Reversal’ and ‘Max Daily Return’ which have been found to be relevant 

in the literature. Bali et al. (2011), Huang et al. (2010).       

 

 Our results across Tables 2 to 4 point to a number of striking findings. First, there is 

strong evidence of a conditional beta/return relationship as predicted and found by Pettengill et 

al. (1995). Under the column denoted ‘Beta’ we observe from Table 3 (down-markets) a negative 

beta/return relation which is consistently statistically significant at the 1% significance level 

across all models. From Table 4 (up-markets) we observe a positive beta/return relation which, 

again, is consistently statistically significant at the 1% significance level across all models. This 

finding is strongly robust to the specification in the cross-sectional regressions of the alternative 

estimates of idiosyncratic risk as well other risk and control variables. In results not tabulated, 

the coefficients on beta risk in down-markets versus up-markets are significantly different from 

each other at 5% significance. In Table 2, which combines down-markets and up-markets in 

unconditional tests, we see that the beta/return relation varies from positive to negative and  is 

not significant at 5% significance – this is a feature of the averaging over the up and down-

market cycles and disguises the beta/return conditionality.  

 

A second striking finding across Tables 2 to 4 is that our results support (i) a conditional 

relationship between idiosyncratic risk and return and (ii) the idiosyncratic risk puzzle, i.e., that 

idiosyncratic risk is negatively priced in the cross-section of stocks. From Table 3 (down-

markets), the relation is negative and statistically significant at the 5% significance level in all 

models and for all measures of idiosyncratic risk. However, in Table 4 (up-markets), the relation 

is positive in all models, except one, but statistically insignificant in all models, except two. It is 
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statistically insignificant for all measures of idiosyncratic risk except IVOL-GARCH and IVOL-

FF-EGARCH.  The coefficients on idiosyncratic risk in down-markets versus up-markets are 

significantly different from each other at 5% significance (results not tabulated for brevity). In 

the unconditional test results in Table 2, the relation between idiosyncratic risk and return is 

negative across all models but predominantly statistically insignificant. These two findings 

around the pricing of beta risk and idiosyncratic risk are key contributions of our paper and 

underline the importance of modelling the beta/return as conditional.   

 

[Table 1, Table 2 and Table 3 about here]                 

 

Among the additional cross-sectional and control variables, our results indicate that 

turnover as a measure of liquidity is, counter-intuitively, positively priced in stock returns. 

However, this finding holds in the unconditional full sample and in up-markets but not in down-

markets. The unusual positive pricing of liquidity in UK stock returns is consistent with past 

findings among (unconditional) studies of the UK market, Foran et al. (2014b), Lu and Hwang 

(2007) and may arise because of an interaction between liquidity and momentum risk: our 

unconditional test results in Table 2 suggest that turnover (liquidity) and momentum represent 

distinct effects where they are both statistically significant variables. However, this is not the 

case in the conditional test results in Tables 3 and 4. Foran et al. (2014c) also report evidence of 

an interaction between liquidity and momentum risks. When we decompose turnover into a 

systematic and idiosyncratic component, however, we find that neither is statistically significant 

in the cross-sectional regressions. We reach a similar conclusion regarding the quoted spread 

measure of liquidity. Our conditional testing approach also reveals a mixed effect for size risk on 

stock returns: in the combined sample of down-markets and up-markets, the size risk factor 

loading is not a significant determinant of returns but in up-markets alone it is positive and 

significantly priced in all models tested. We find no evidence for the pricing of value risk. 

Finally, our max daily return control variable, (highest value of daily return over the past month) 

is not statistically significant while the return reversal variable is unexpectedly positively signed 

(and generally statistically significant), suggesting it may be picking up a momentum effect 

rather than a return reversal effect.              
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In summary, we find strong evidence in support of the Pettengill et al. (1995) argument 

that the relationship between stock returns and beta is conditional on whether the excess return in 

the market is positive or negative. Furthermore, we confirm the findings of Morelli (2011) who 

finds that only under this conditionality is beta found to be a significant determinant of stock 

returns. Critically, our results also point to conditionality in the pricing of idiosyncratic risk and 

uphold the idiosyncratic risk puzzle. Although perhaps initially counter-intuitive, this finding is 

consistent with the theory put forward by Chen (2002) and Ang et al (2006) as outlined in 

Section 2 which predicts that idiosyncratic volatility risk is negatively priced due to its link with 

market volatility risk. The Chen (2002) model predicts a negative loading on the covariance 

between a stock’s return and changes in the forecasts of future market volatilities indicating that 

investors demand compensation in the form of higher expected return for the risk that an asset 

will perform poorly when the future becomes less certain. Ang et al (2006) argue that stocks with 

high idiosyncratic volatilities may particularly exhibit this characteristic. Our results strongly 

indicate that this negative pricing effect is further accentuated in down-markets when investors 

need to pursue high levels of diversification to offset it.      

 

 

5. Conclusion 

Using a large and long sample of UK stock returns we re-examine the role of idiosyncratic risk 

in asset pricing. A distinguishing feature of our approach is that we allow for a conditional 

relationship between beta risk and returns in our tests. We find strong evidence for this 

conditional beta/ return relationship. In unconditional tests, the beta/return relation is not 

significant. The conditional testing framework also reveals a conditional relationship between 

idiosyncratic risk and returns where, in addition, the idiosyncratic risk puzzle is upheld, i.e., a 

negative idiosyncratic risk/return relation. This negative relation exists in down market cycles – a 

highly significant findings which is robust to alternative measures of idiosyncratic risk and 

several model specifications which allow for additional risk factors and control variables. Our 

findings support some extant theories that predict that idiosyncratic volatility risk is negatively 
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priced due to its link with market volatility risk. In the case of size and liquidity risk exposures, 

our results again suggest that pricing is conditional on up-markets versus down-markets although 

we leave a fuller investigation of this to future research.     
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Table 1. Descriptive statistics for systematic and idiosyncratic risk - pooled sample.  
 

Variables Mean Median 

 
Standard 
Deviation 

    Return 1.17% 0.80% 13.71% 
Beta 1.027 0.939 1.102 
Beta FF 0.938 0.885 0.919 
IVOL-CAPM 9.18% 7.75% 5.73% 
IVOL-CAPM-GARCH 7.62% 6.55% 4.70% 
F-IVOL-CAPM-GARCH 7.71% 6.58% 4.88% 
IVOL-FF 8.39% 7.08% 5.50% 
IVOL-FF-12m 8.36% 6.89% 6.02% 
IVOL-FF-GARCH 8.72% 7.12% 6.69% 
IVOL-FF-EGARCH 6.96% 5.12% 9.24% 
F-IVOL-FF-GARCH 8.82% 7.14% 6.93% 

The Table 1 shows descriptive statistics for beta and idiosyncratic volatility pooled across stocks and over time.  
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Table 2.  Regressions of returns on cross-sectional stock characteristics: unconditional tests.  

IVOL- F-IVOL- Max
IVOL- CAPM- CAPM- IVOL-FF- IVOL-FF- IVOL-FF- F-IVOL-FF Beta- Quoted Mkt Val Return Daliy 

Model Constant Beta CAPM GARCH GARCH IVOL-FF 12m GARCH EGARCH GARCH TURN TURN I-TURN Spread H S std Mom 3m Reversal Return 
1 0.01 -0.002 -0.01

0.00 0.21 0.46
2 0.01 -0.001 -0.02

0.00 0.26 0.20
3 0.008 -0.001 -0.02

0.00 0.26 0.20
4 0.008 -0.002 -0.02

0.01 0.16 0.44
5 0.008 -0.002 -0.02

0.00 0.15 0.32
6 0.01 0.00 -0.03

0.00 0.24 0.14
7 0.01 0.00 -0.01

0.01 0.17 0.47
8 0.008 -0.001 -0.02

0.00 0.22 0.21
9 0.01 0.00 -0.01 0.01

0.01 0.19 0.49 0.00
10 0.01 0.00 -0.01 0.00

0.00 0.10 0.80 0.23
11 0.01 0.00 -0.02 0.01

0.00 0.19 0.44 0.54
12 0.01 0.00 -0.02 0.01

0.00 0.08 0.25 0.76
12 0.01 -0.002 -0.02 0.01 0.00 0.00

0.01 0.14 0.42 0.00 0.19 0.51
13 0.01 -0.002 -0.027 0.01 0.00 0.00

0.00 0.20 0.10 0.00 0.18 0.35
14 0.01 -0.001 -0.022 0.01 0.00 0.00

0.01 0.29 0.21 0.00 0.27 0.31
15 0.01 0.00 -0.03 0.01 0.00

0.00 0.34 0.14 0.00 0.27
16 0.01 0.00 -0.03 0.01 0.00 0.01

0.01 0.94 0.09 0.00 0.04 0.08
17 0.01 0.00 -0.03 0.01 0.00 0.02

0.01 0.27 0.09 0.01 0.24 0.00
18 0.01 0.00 -0.03 0.01 0.00 0.02 0.02

0.01 0.19 0.04 0.02 0.24 0.00 0.20
19 0.01 0.00 -0.03 0.01 0.00 0.00 0.02 0.02

0.01 0.11 0.03 0.02 0.26 0.37 0.00 0.16
20 0.01 0.00 -0.01 0.01 0.00 0.00 0.02 0.02

0.03 0.08 0.16 0.02 0.21 0.64 0.00 0.21
21 0.01 0.00 -0.02 0.01 0.00 0.00 0.02 0.02

0.02 0.07 0.26 0.02 0.27 0.50 0.00 0.25
22 0.01 0.00 -0.03 0.01 0.00 0.00 0.02 0.03

0.01 0.11 0.02 0.02 0.29 0.39 0.00 0.09
23 0.01 0.00 -0.03 0.01 0.00 0.00 0.02 0.02

0.01 0.10 0.03 0.02 0.31 0.36 0.00 0.16
24 0.01 0.00 -0.02 0.01 0.00 0.00 0.02 0.02

0.01 0.09 0.15 0.02 0.29 0.43 0.00 0.23  
Table 2 shows the results of our two-step asset pricing tests. In the first step, each month for each stock we run a time series regression of stock returns on 
market, size and value risk factors over the previous 24 months to estimate risk factor loadings. We estimate alternative measures of idiosyncratic risk from the 
residuals of this regression. In the second step we regress stock returns on beta and idiosyncratic risk as well as on factors for liquidity, value, size and 
momentum risk as well as other control variables in a cross-sectional regression. We roll this two-step procedure forward one month at a time. Full details of the 
24 models are outlined in the text. For each model we report the time series average of the coefficients in the monthly cross-sectional regressions with p-values 
below.   
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Table 3.  Regressions of returns on cross-sectional stock characteristics: Down-markets.  

IVOL- F-IVOL- Max
IVOL- CAPM- CAPM- IVOL-FF- IVOL-FF- IVOL-FF- F-IVOL-FF Beta- Quoted Mkt Val Return Daliy 

Model Constant Beta CAPM GARCH GARCH IVOL-FF 12m GARCH EGARCH GARCH TURN TURN I-TURN Spread H S std Mom 3m Reversal Return 
1 -0.02 -0.012 -0.09

0.00 0.00 0.01
2 -0.02 -0.012 -0.10

0.00 0.00 0.00
3 -0.018 -0.012 -0.10

0.00 0.00 0.00
4 -0.022 -0.010 -0.11

0.00 0.00 0.00
5 -0.021 -0.010 -0.12

0.00 0.00 0.00
6 -0.02 -0.01 -0.12

0.00 0.00 0.00
7 -0.02 -0.01 -0.08

0.00 0.00 0.00
8 -0.021 -0.010 -0.11

0.00 0.00 0.00
9 -0.02 -0.01 -0.09 0.01

0.00 0.00 0.01 0.36
10 -0.02 -0.01 -0.08 0.00

0.00 0.00 0.01 0.07
11 -0.02 -0.01 -0.09 0.01

0.00 0.00 0.01 0.44
12 -0.02 -0.01 -0.12 -0.01

0.00 0.00 0.00 0.86
12 -0.02 -0.012 -0.07 0.01 0.00 0.00

0.00 0.00 0.03 0.40 0.69 0.02
13 -0.02 -0.012 -0.098 0.00 0.00 0.00

0.00 0.00 0.00 0.40 0.63 0.07
14 -0.02 -0.011 -0.101 0.01 0.00 0.00

0.00 0.00 0.00 0.34 0.62 0.46
15 -0.02 -0.01 -0.10 0.01 0.00

0.00 0.00 0.00 0.35 0.61
16 -0.02 -0.01 -0.11 0.01 0.00 0.05

0.00 0.00 0.00 0.38 0.41 0.00
17 -0.02 -0.01 -0.10 0.00 0.00 0.04

0.00 0.00 0.00 0.47 0.94 0.00
18 -0.02 -0.01 -0.10 0.00 0.00 0.04 -0.01

0.00 0.00 0.00 0.76 0.88 0.00 0.66
19 -0.02 -0.01 -0.09 0.00 0.00 0.00 0.04 -0.01

0.00 0.00 0.00 0.80 0.95 0.07 0.00 0.71
20 -0.02 -0.01 -0.06 0.00 0.00 0.00 0.04 -0.01

0.00 0.00 0.00 0.73 0.90 0.03 0.00 0.59
21 -0.02 -0.01 -0.06 0.00 0.00 0.00 0.04 -0.02

0.00 0.00 0.04 0.76 0.99 0.03 0.00 0.42
22 -0.02 -0.01 -0.10 0.00 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.75 0.96 0.14 0.00 0.81
23 -0.02 -0.01 -0.10 0.00 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.79 0.93 0.14 0.00 0.86
24 -0.02 -0.01 -0.07 0.00 0.00 0.00 0.04 -0.01

0.00 0.00 0.01 0.76 0.97 0.06 0.00 0.53  
Table 3 shows the results of our two-step asset pricing tests in down-markets only. In the first step, each month for each stock we run a time series regression of 
stock returns on market, size and value risk factors over the previous 24 months to estimate risk factor loadings. We estimate alternative measures of 
idiosyncratic risk from the residuals of this regression. In the second step we regress stock returns on beta and idiosyncratic risk as well as on factors for liquidity, 
value, size and momentum risk as well as other control variables in a cross-sectional regression. We roll this two-step procedure forward one month at a time. 
Full details of the 24 models are outlined in the text. For each model we report the time series average of the coefficients in the monthly cross-sectional 
regressions with p-values below.   
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Table 4.  Regressions of returns on cross-sectional stock characteristics:  Up-markets. 

IVOL- F-IVOL- Max
IVOL- CAPM- CAPM- IVOL-FF- IVOL-FF- IVOL-FF- F-IVOL-FF Beta- Quoted Mkt Val Return Daliy 

Model Constant Beta CAPM GARCH GARCH IVOL-FF 12m GARCH EGARCH GARCH TURN TURN I-TURN Spread H S std Mom 3m Reversal Return 
1 0.03 0.005 0.03

0.00 0.00 0.22
2 0.03 0.005 0.03

0.00 0.00 0.17
3 0.025 0.005 0.03

0.00 0.00 0.13
4 0.026 0.004 0.04

0.00 0.00 0.14
5 0.026 0.004 0.04

0.00 0.00 0.10
6 0.03 0.00 0.03

0.00 0.00 0.15
7 0.03 0.004 0.04

0.00 0.00 0.02
8 0.027 0.004 0.03

0.00 0.00 0.14
9 0.02 0.00 0.03 0.01

0.00 0.00 0.22 0.00
10 0.03 0.00 0.04 0.00

0.00 0.01 0.10 0.90
11 0.03 0.00 0.03 0.00

0.00 0.00 0.24 0.88
12 0.03 0.00 0.05 0.02

0.00 0.01 0.03 0.60
12 0.03 0.005 0.02 0.01 0.00 0.00

0.00 0.00 0.49 0.00 0.16 0.00
13 0.03 0.005 0.017 0.01 0.00 0.00

0.00 0.00 0.43 0.00 0.17 0.00
14 0.03 0.005 0.028 0.01 0.00 0.00

0.00 0.00 0.21 0.00 0.31 0.04
15 0.03 0.00 0.02 0.01 0.00

0.00 0.00 0.26 0.00 0.31
16 0.03 0.01 -0.01 0.02 0.00 0.00

0.00 0.00 0.59 0.33 0.05 0.01
17 0.03 0.00 0.02 0.01 0.00 0.01

0.00 0.00 0.38 0.00 0.13 0.22
18 0.03 0.00 0.01 0.01 0.00 0.01 0.04

0.00 0.00 0.63 0.00 0.15 0.28 0.07
19 0.02 0.00 0.00 0.01 0.00 0.00 0.01 0.04

0.00 0.01 0.84 0.00 0.13 0.01 0.20 0.06
20 0.02 0.00 0.02 0.01 0.00 0.00 0.01 0.04

0.00 0.00 0.20 0.00 0.09 0.01 0.14 0.07
21 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.04

0.00 0.01 0.81 0.00 0.11 0.01 0.17 0.07
22 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.04

0.00 0.01 0.60 0.00 0.14 0.01 0.17 0.07
23 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.04

0.00 0.01 0.55 0.00 0.18 0.01 0.19 0.08
24 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.04

0.00 0.01 0.70 0.00 0.12 0.01 0.17 0.08  
Table 4 shows the results of our two-step asset pricing tests in up-markets only. In the first step, each month for each stock we run a time series regression of 
stock returns on market, size and value risk factors over the previous 24 months to estimate risk factor loadings. We estimate alternative measures of 
idiosyncratic risk from the residuals of this regression. In the second step we regress stock returns on beta and idiosyncratic risk as well as on factors for liquidity, 
value, size and momentum risk as well as other control variables in a cross-sectional regression. We roll this two-step procedure forward one month at a time. 
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Full details of the 24 models are outlined in the text. For each model we report the time series average of the coefficients in the monthly cross-sectional 
regressions with p-values below.   
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Figure 1.  Average idiosyncratic volatility, aggregated across stocks using a market-cap weighted average 
 

 
Figure 1 plots value-weighted averages of the alternative idiosyncratic volatility measures overtime.  
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APPENDIX 

 

For a point in time, t, the realized market return comes from a distribution of possible returns. 

Similarly, the realized return on a security i comes from a distribution of possible returns. The 

CAPM asserts that the mean or expected values of these distributions are related as follows: 

 

     i,t f i,t m,t fE(R ) R [E(R ) R )]= +β −           A1 

where i,tE(R )  is the expected return on security i at time t. fR  is the known return on a risk 

free asset over time t, i,tβ is the security beta at time t  and m,tE(R )  is the expected market 

return at time t. The model implicitly assumes that m,t fE(R ) R>  as otherwise all investors 

would hold the risk free asset. Therefore, the model implies that in the cross-section of security 

returns i,tE(R ) is a positive function of i,tβ . There is a problem, however, when researchers test 

the model using realized returns instead of expected returns. This arises because the model also 

implicitly assumes that there is some non-zero probability that m,t fR R<  , where m,tR  is the 

realized market return  as otherwise no investor would hold the risk free asset. The CAPM itself 

does not describe a relationship between i,tR  and  i,tβ  when m,t fR R<  as it does the positive 

relationship between  i,tE(R ) and i,tβ . A further implication of the CAPM is that while a high 

beta security has a higher expected return than a low beta security to compensate for higher 

systematic risk, there must be some non-zero probability that the realized return of the low beta 

security will be greater than that of the high beta security as otherwise no investor would hold 

the low beta security. Pettengill et al (1995) suggest a reasonable inference is that this realization 

occurs when m,t fR R< . The implication of this is that there should be a positive (negative) 

relationship between beta and realized return when the excess market return is positive 

(negative). While the CAPM does not imply this relationship, the relationship is consistent with 

the market model, Jensen et al. (1972). This proposes  

 

 i,t i,t i,tR E(R ) U(R )= +   A2 
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where the realized (excess) return on security i is the sum of an expected component and an 

unexpected component, i,tU(R ) . A key assumption is the unexpected component is linearly 

related, through i,tβ , to the unexpected market (excess) return m,t m,tR E(R )−  as follows  

 

       i,t i,t m,t m,t i,tU(R ) [R E(R )]= β − + ε           A3 

 

where m,t m,tR E(R )− and i,tε are normally distributed, uncorrelated, zero-mean random 

variables. By substitution this gives   

 

 i,t i,t i,t m,t m,t i,tR E(R ) [R E(R )]= +β − + ε   A4 

 

By the CAPM, i,t i,t m,tE(R ) E(R )= β  and by further substitution  

 

 
i,t i,t m,t i,t m,t m,t i,t

i,t i,t m,t i,t

R E(R ) [R E(R )]
R R

= β +β − + ε

= β + ε
   A5 

 

This formulation implies a positive (negative) relationship between beta and realized return when 

the excess market return is positive (negative).  

 

27 


	2. Data Treatment and Selection
	3. The Pricing of Idiosyncratic Risk: Theory and Empirical Methods
	5. Conclusion
	References

