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What is Community-Academic Research Links? 

Community Academic Research Links (CARL) is a community engagement initiative 

provided by University College Cork to support the research needs of community and 

voluntary groups/ Civil Society Organisations (CSOs). These groups can be grass roots 

groups, single issue temporary groups, but also structured community organisations. 

Research for the CSO is carried out free of financial cost by student researchers. 

 

CARL seeks to: 

• provide civil society with knowledge and skills through research and 

education;  

• provide their services on an affordable basis;  

• promote and support public access to and influence on science and 

technology;  

• create equitable and supportive partnerships with civil society organisations;  

• enhance understanding among policymakers and education and research 

institutions of the research and education needs of civil society, and  

• enhance the transferrable skills and knowledge of students, community 

representatives and researchers (www.livingknowledge.org). 

 

What is a CSO? 

We define CSOs as groups who are non-governmental, non-profit, not representing 

commercial interests, and/or pursuing a common purpose in the public interest. These 

groups include: trade unions, NGOs, professional associations, charities, grass-roots 

organisations, organisations that involve citizens in local and municipal life, churches 

and religious committees, and so on. 

 

Why is this report on the UCC website? 

The research agreement between the CSO, student and CARL/University states that 

the results of the study must be made public through the publication of the final 

research report on the CARL (UCC) website. CARL is committed to open access, and 

the free and public dissemination of research results. 
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How can I find out more about the Community-Academic Research Links 

and the Living Knowledge Network? 

The UCC CARL website has further information on the background and operation of 

Community-Academic Research Links at University College Cork, Ireland. 

http://carl.ucc.ie. You can follow CARL on Twitter at @UCC_CARL. All of our 

research reports are accessible free online here: http://www.ucc.ie/en/scishop/rr/.  

 

CARL is part of an international network of Science Shops called the Living Knowledge 

Network. You can read more about this vibrant community and its activities on this 

website: http://www.scienceshops.org and on Twitter @ScienceShops. CARL is also a 

contributor to Campus Engage, which is the Irish Universities Association engagement 

initiative to promote community-based research, community-based learning and 

volunteering amongst Higher Education students and staff.  

 

Are you a member of a community project and have an idea for a research 

project? 

We would love to hear from you! Read the background information here 

http://www.ucc.ie/en/scishop/ap/c&vo/  and contact us by email at carl@ucc.ie.  

 

Disclaimer 

Notwithstanding the contributions by the University and its staff, the University gives 

no warranty as to the accuracy of the project report or the suitability of any material 

contained in it for either general or specific purposes. It will be for the Client Group, 

or users, to ensure that any outcome from the project meets safety and other 

requirements. The Client Group agrees not to hold the University responsible in 

respect of any use of the project results. Notwithstanding this disclaimer, it is a matter 

of record that many student projects have been completed to a very high standard and 

to the satisfaction of the Client Group. 
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ABSTRACT 

Marshes provide suitable habitats for larval development of nuisance and vector mosquitoes 

worldwide. Ecological and ecotoxicological consequences of traditional methods have forced 

mosquito management to less destructive approaches such as Open Marsh Water Management 

(OMWM); a technique that promotes larval control by tidal flushing and giving native 

predatory fish access to isolated larval habitats. However, management schemes such as 

OMWM are rare in European marshes and non-existent in Ireland. Ballyvergan marsh is a 

coastal marsh located on the south-east coast of Ireland that supports populations of three-

spined stickleback, Gasterosteus aculeatus, within a tidal creek and Aedes and Culex mosquito 

larvae (Subfamily: Culicinae) in isolated, brackish pools. A field study was conducted to 

determine the biological control potential of three-spined sticklebacks against mosquito larvae 

by investigating 1) the predator-prey interactions between three-spined sticklebacks and 

Culicinae larvae in three different sub-habitats of the marsh 2) the functional response of three-

spined sticklebacks in brackish and freshwater 3) the consumption rates as a function of group 

size. All experiments were conducted in controlled in situ conditions using 10L plastic buckets 

with mesh windows. Sticklebacks showed strong biological control potential, consuming 

larvae across different sub-habitats of the marsh. A Type Ⅱ functional response in brackish and 

freshwater was identified with an estimated maximum consumption rate of 429 ± 32 larvae per 

pair of sticklebacks in 24 hours. It is suggested that management methods, such as OMWM 

would control local mosquito populations in Ballyvergan marsh through predation by three-

spined sticklebacks. There is an increasing emphasis on the need to apply ecologically sound 

mosquito control solutions, as the risk of re-emerging vector-borne diseases in Europe 

continues to rise with climate change.  
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INTRODUCTION 

There are over 3,500 species of mosquitoes in the world (Wang et al., 2012), approximately 

100 of which are vectors for human diseases such as malaria, chikungunya, dengue, zika virus 

disease and West Nile fever (WHO, 2020a) Mosquito-borne diseases infect up to 700 million 

people across 100 countries, with approximately 2.7 million fatal cases each year (Ghosh et al., 

2012; Rozendaal, 1997). While the majority of vector mosquito populations are established in 

tropical and subtropical regions (WHO, 2020b), the risk of locally transmitted outbreaks of 

mosquito-borne diseases are becoming more progressive in continental Europe, particularly in 

the Mediterranean (Papa, 2019). Invasive species Aedes aegypti and Aedes albopictus are an 

ongoing threat to continental Europe, bringing increased risk of dengue and chikungunya 

outbreaks (Akiner et al., 2016). Invasive Aedes mosquitoes are usually introduced 

anthropogenically via the travel and trade industry, and if conditions are right, the species can 

establish local populations (Akiner et al., 2016). Multiple factors such as high ecological and 

physiological plasticity, land use change, increased urbanisation and climatic factors such as 

temperatures and precipitation all contribute to the successful colonisation of invasive vectors 

(Brugueras et al., 2020; Wilke et al., 2020). Predictions of a future wetter and warmer climate 

between 2030-2050 will potentially bring an increased risk of colonisation of Aedes albopictus 

in central western Europe, including the UK (Caminade et al., 2012). The effects of climate 

change also increase the risk of disease carried by native mosquito populations. Warmer air 

temperatures are correlated to outbreaks of West Nile fever in higher latitudes, where endemic 

outbreaks do not normally occur (Paz et al., 2013). Within the last two years, human cases of 

locally transmitted West Nile virus have emerged in north-east Germany from native 

populations of Culex mosquitoes as a result of viral overwintering (Holicki et al., 2020; 

Kampen et al., 2020).  

While malaria, a disease caused by protozoic parasites has not made it past the tropics and 

subtropics in recent years, evidence suggests that Plasmodium vivax malaria, was once endemic 

in the UK from the 14th century until the early 20th century. Although it was not known to be 

malaria at the time, the disease was termed as a tertian or quartan ague denoting the intermittent 

fevers that occurred every third or fourth day. These fevers are now known as diagnostic 

symptoms of malaria. In the 17th and 18th century, some reports of ague were associated with 

hot summers in marshy areas (Chin and Welsby, 2004; Hutchinson and Lindsay, 2006).  

Malaria in the UK began to decline from the 19th century, likely as a result of marsh drainage, 

improved standard of living and the availability of antimalarial drugs such as quinine. Increased 



6 
 

travel and trade paired with climate change means that the chances of re-emerging indigenous 

malaria in the next few decades is not unlikely (Chin and Welsby, 2004). While marsh 

mosquitoes do not pose serious human health risks at current, mosquitoes in coastland areas 

are often considered nuisance species that can reduce quality of life as well as result in local 

economic loss in relation to tourism and agriculture. In these cases, control of nuisance species 

in populated areas should be considered (Cheng, 1976; Rey et al., 2012). Because mosquitoes 

are dependent on an aquatic larval stage, pools and inundated depressions in marshes provide 

suitable habitats for the oviposition of coastal mosquitoes. Controlling mosquitoes by targeting 

the larval stages are highly effective if habitats are large and are easily modified (CDC, 2020). 

In addition, larvae found in marshes occur in high densities and in predictable habitats, making 

larval control the rational management method over adult control. The practice of intensive 

larval control can be dated back to the early 20th century, where it was particularly prevalent 

along the Atlantic Coast of North America (Clarke et al., 1984). Early control methods often 

involved source reduction, chemicals and the use of larvivorous fish.  

Source Reduction: Source reduction methods involve physical manipulation of marsh in order 

to impede oviposition. Mosquito impoundment describes the process in which a dike is 

constructed around the perimeter of the marsh so that the  area can be temporarily flooded 

during the breeding season (Rey and Connelly, 2001). Grid-ditching involves the formation of 

parallel drainage ditches 50-100m apart across the entire marsh in order to drain pools and 

depressions that provide suitable habitats for oviposition and larval development. Grid-ditching 

was the prevalent form of source reduction control in the early 20th century in North America 

and by 1930, 90% of saltmarshes along the Atlantic coast had been ditched. However, both 

management methods often have many ecological consequences. Impoundment can change 

species composition and prevents access of estuarine fish (Montague et al., 1987). Grid 

ditching reduces access to food and habitat use of coastal birds (Clarke et al., 1984) while also 

affecting hydrology, surface elevations and soils (Vincent et al., 2012).    

Biological Control: Biological control of mosquitoes aims to keep populations to an 

‘acceptable’ level that protects humans, conserves biodiversity and does not cause any eco-

toxicological effects (Becker et al., 2010). Fish are the biggest predators of mosquito larvae in 

saltmarshes and therefore have been used as suitable biological control agents (Cheng, 1976). 

The western mosquitofish Gambusia affinis and the eastern mosquitofish Gambusia holbrooki, 

both native to the United States, are the most widely used larvivorous fish in mosquito 

biocontrol since the early 20th century (Kumar and Hwang, 2006). However, they have become 
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globally invasive from regions in the United States (Laha and Mattingly, 2007; Leyse and 

Lawler, 2004), to the Mediterranean in Europe (Cabrera-Guzmán et al., 2017; Rincón et al., 

2002) and to Australia (Kerezsy and Fensham, 2013), threatening biodiversity loss of native 

fishes and amphibians. In an effort to avoid such detrimental effects, the use of native 

larvivorous fish as an alternative control method has led to some successful outcomes  

(Bonifacio et al., 2019; Chandra et al., 2008). 

Modern control practices: Although early mosquito control methods resulted in the ecological 

destruction of marshes, the foundations of these methods are still in use today. Open Marsh 

Water Management (OMWM) is a term that refers to the physical manipulation of marsh 

habitat to make it less amenable to mosquito populations. OMWM has been a successful, less 

destructive method of controlling mosquitoes along the Atlantic coast of North America since 

the 1960’s and combines source reduction and biological control. OMWM systematically 

creates permanent pools and radial ditches within the marsh habitat to reduce mosquito 

populations by enhancing tidal circulation among oviposition/larval sites and providing access 

to local predatory fish, thus facilitating biocontrol. It is far less destructive than traditional grid 

ditching and restores surface water levels (Wolfe, 1996). A simpler management design called 

‘runnelling’, is a common method used in Australia in which wide, shallow ditches are dug to 

connect small mosquito breeding depressions to a tidal water source. (Dale et al., 1993, 1989; 

Dale and Knight, 2006). The key aim of both methods is to connect isolated pools that support 

mosquito larvae but are not accessible to predatory fish, to fluvial or tidal waters via artificially 

dug channels, thus allowing fishes to colonise pools and consume larvae. Application of 

OMWM and ‘runnelling’ are well established and documented in the United States and 

Australia. However, resources for the management of salt marsh mosquitoes in continental 

Europe and the British Isles are scarce (Medlock and Vaux, 2011) and there is currently no 

evidence of mosquito control practice in Irish marshes. While control of mosquitoes in Ireland 

may not seem like an urgent issue, increased nuisance levels and risk of diseasing bearing 

mosquitoes in the future is likely as a direct and indirect result of changing climatic conditions 

(Blagrove et al., 2016; Medlock and Vaux, 2011).  

The three-spined stickleback, Gasterosteus aculeatus, is a small, teleost fish found on every 

continent across the northern hemisphere in saline, brackish and freshwaters (Bell and Foster, 

1994; Wootton, 1976). They are generally categorised into anadromous or resident freshwater 

types. However, sticklebacks in intertidal zones such as salt marshes are often resident species 

and do not migrate into freshwaters (Arai et al., 2020). Due to their extensive geographical and 
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habitat ranges, sticklebacks show a high degree of variation in morphological, physiological 

and behavioural traits between populations (Bell and Foster, 1994; Mccairns and Bernatchez, 

2012; Rind et al., 2020). Stickleback morphotypes are determined by local adaptations in 

response to abiotic and biotic conditions. Food availability is just one of many selective 

pressures that causes distinct morphotypes through local adaptation (Bell and Foster, 1994; 

Willacker et al., 2010). As a result, diet and feeding behaviour of different stickleback morphs 

lie along a benthic-limnetic continuum, feeding from a wide variety of benthic 

macroinvertebrates to pelagic zooplankton (Baker et al., 2008; Willacker et al., 2010). Three-

spined sticklebacks are present in Irish saltmarshes year-round, becoming more common 

during the months of May-November with the highest abundance during the summer months 

following the breeding season (Koutsogiannopoulou and Wilson, 2007; O’Sullivan, 1984, 

1983). However, resources on the biology and ecology of Irish sticklebacks such as their 

feeding behaviour and diet is limited. Information on the use of sticklebacks for biological 

control of mosquitoes is also limited, despite that they have been reported to consume mosquito 

larvae when offered as a prey item (Medlock and Snow, 2008). Furthermore, sticklebacks 

demonstrate some similar characteristics of mosquitofish (Gambusia spp.) that make them 

successful biocontrol agents, including a high tolerance to hypoxic conditions and organic 

pollution (Katsiadaki et al., 2007; Regan et al., 2017; Stoffels et al., 2017). Other characteristics 

that sticklebacks share with general larvivorous fish include an upturned mouth and teeth, a 

small body size that is fusiform in shape, tolerance to stressful environmental conditions and 

they are highly agile in shallow water (WHO, 2003). 

This study investigates the control potential of Ireland’s native three-spined stickleback 

Gasterosteus aculeatus on Culicinae mosquito larvae under controlled conditions in 

Ballyvergan Marsh located in Youghal, Co. Cork. We quantified the predator-prey interactions 

and the biological control potential between stickleback and mosquito populations by 

determining: 

1) whether sticklebacks will consume mosquito larvae in different sub-habitats of the 

marsh  

2) the consumption rate of sticklebacks as a function of prey density (functional response) 

in fresh and brackish water  

3) the consumption rate of sticklebacks as a function of stickleback group size  
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METHODS AND MATERIALS 

Site Description 

Ballyvergan marsh is Irelands largest freshwater coastal marsh (158 ha) located in Youghal, 

Co. Cork (Goodwillie, 1986) and is listed as a proposed Natural Heritage Area (pNHA) under 

the National Parks and Wildlife Services for its significant value as a wildlife habitat (fig. 1). 

An ecological assessment report conducted by Wild Work, a SECAD initiative, in 2017 

identified increased saline influences in the south-east end of the marsh. A compromised sluice 

gate that is no longer in operation rapidly fills a tidal creek during each high tide, filling old 

drainage ditches that now form secondary channels, leading to tidal pools (fig. 2). The study 

area was located in the south-east end of the marsh that is subject to saline influence from the 

tidal creek (fig. 2).  

 

Satellite imagery of the general location of Ballyvergan marsh on a national scale (A) and 

the pNHA boundary of Ballyvergan marsh (B).  

B A 

Fig. 1 

Fig. 2 Satellite image of the study area in the south-east end of Ballyvergan marsh. 

The tidal, isolated and permanent pools represent the study sites.  



10 
 

Shallow pools and depressions of stagnant, brackish water throughout the marsh provided 

suitable habitats for Culicinae larvae (predominantly Aedes, but Culex were also identified). 

These pools were isolated from any tidal flushing and were not connected by the tidal creek, a 

habitat that supports shoals of three-spined stickleback.  

Observations and salinity measurements during several walkovers of the marsh in August and 

September 2020, identified three distinct pool types (fig. 2). The first was a permanent shallow 

pool sheltered by common reed, Phragmites australis, in the lower marsh. This pool had the 

lowest salinity of 10.9 mS/cm suggesting that it is supplied by a freshwater source. However, 

it was still relatively brackish and had a secondary channel connected to the tidal creek 

indicating some saline influence. Three-spined sticklebacks were caught and identified in the 

permanent pool by using a hand-held net and sweeping along the vegetation. Further into the 

marsh, a tidal pool was identified, characterised by a lack of tall, sheltering vegetation both 

within and surrounding the pool. It was located in close proximity to the tidal creek and had a 

higher salinity measurement of 32.4 mS/cm, which matched that of the creek. Sweep samples 

did not show any evidence for the presence of three-spined sticklebacks or mosquito larvae. 

Scattered around the marsh, a third pool type was identified. These pools were generally 

smaller in size, completely cut off from the tidal creek or any secondary channels and 

dominated by sedges and/or floating algae. Samples found mosquito larvae, but no evidence of 

colonisation by three-spined sticklebacks. A summary of the observations and findings is 

presented in Table 1.  

 

Pool Description 
Salinity 

(mS/cm) 
Sticklebacks Mosquitoes 

Permanent 
Large, shallow pool, sheltered by reed 
bed. Furthest distance from tidal creek 10.0 Yes No 

Tidal 
Large, shallow pools, highly exposed. 
Close proximity to the tidal creek, 
connected via secondary channels 

32.4 No No 

Isolated 
Cut off from any tidal channels. 
Dominated by dry/dead sedges and/or 
floating algae 

14.0 No Yes 

 

 

Table 1. Summary of the descriptive observations of the three pool types, including salinity (mS/cm) 

and presence of sticklebacks and/or mosquito larvae during the site walkover  
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Materials  

To quantify the predator-prey interactions and investigate the biological control potential of 

three-spined sticklebacks against mosquito larvae, the study consisted of three controlled in-

situ experiments. The experiments were completed in 10 litre plastic buckets with 8 x 16cm 

cut-out windows that were covered using net curtain fabric with a 1mm sized mesh. The fabric 

was secured to the cut-out with a certified fish-safe waterproof glue. This allowed the buckets 

to keep both fish and larvae in a contained environment during the study, while the mesh 

windows permitted water exchange to keep abiotic conditions homogenous with the 

surrounding pool. 

Procedure for collecting sticklebacks and mosquito larvae 

Sticklebacks were collected from the tidal creek by standing on the bank and sweeping under 

the overhanging vegetation using a hand-held net and transported in a closed container with 

water from the tidal creek to each treatment site. Before being added to buckets at a treatment 

site, the required number of sticklebacks were removed and placed in a separate container of 

water from the tidal creek. They were then acclimated to the given pool by gradually adding 

water every few minutes from the treatment site into the container. The sticklebacks were 

released back into the tidal creek after each experiment was carried out. For each experiment, 

a large sample of larvae of various instar were collected from a selected, isolated pool by 

dipping a small plastic container under the surface. The larvae were filtered out using a fine 

mesh aquarium net and placed into a bucket of water for transportation to each treatment site.  

Experimental Design and Methodology 

     1. Predator-prey interactions under three pool types 

Predator-prey interactions were quantified under three treatments; the permanent pool, the tidal 

pool and the isolated pool, identified during the walkovers. Due to an extended dry period from 

August-September, many areas of the marsh had temporarily dried out, leaving insufficient 

accessible isolated pools for replication. As a result, only one pool of each type was used in the 

experiment. Experimental buckets were randomly placed in pairs (one as the test bucket, one 

as the control bucket) and pseudo-replicated three times within each pool (fig. 3) A large stone 

was placed in the bottom of each bucket to secure it in place. Twenty larvae were added to both 

test and control buckets, followed by a pair of sticklebacks in each test bucket. After a 48-hour 

trial period, the remaining larvae in the test and control buckets at each treatment site were 

counted. This process was repeated two more times to achieve a total of three trials.  
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 2. Consumption rates as a function of prey density in freshwater vs brackish water 

The efficiency of three-spined sticklebacks as a biological control agent was quantified by 

establishing their functional response under two treatments; fresh water and brackish water in 

a secluded part of the marsh. Each treatment had seven buckets of increasing larval densities 

{50, 100, 200, 300, 400, 600, 1000 individuals per bucket}. As counting was a time-consuming 

process, the trial with the largest density of 1000 individuals/bucket was run separately. Pairs 

of previously collected sticklebacks were randomly selected, acclimated and placed into all 

buckets for 24 hours. After the trial period, sticklebacks were removed and remaining larvae 

were counted and recorded. The same process was simultaneously completed in the freshwater 

buckets. A total of four trials were conducted, using newly randomised pair combinations of 

sticklebacks each time. When all trials were finished, the same procedure was as applied using 

the final density of 1000 larvae. Again, both freshwater and brackish water trials were run 

simultaneously.  

     3.  Consumption rates as a function of stickleback group size  

Both previous experiments involved using pairs of sticklebacks, however, sticklebacks are 

naturally found in larger shoal sizes. This experiment aimed to quantify any effects that group 

size may have on control efficiency. The percentage total of larvae consumed by ten different 

group sizes {1, 2, 4, 6, 8, 12, 16, 22, 28, 34} during a 15-minute feeding period was quantified 

in brackish water. Three buckets were set up in the tidal pool as short trial times made it 

impossible to run all group sizes simultaneously. Instead, four rounds of different group sizes 

per trial were required (Round 1 = groups 1, 34; Round 2 = groups 2, 4, 28; Round 3 = groups 

6, 8, 22; Round 4; groups 12, 16). Each group was made up of randomly selected individuals 

and placed into a bucket of 50 larvae. After 15 minutes, sticklebacks were removed, remaining 

larvae were counted and the percentage of larvae consumed was calculated. This was repeated 

Fig. 3 Experimental set-up of the predator-prey interactions between three-spined sticklebacks 

and Culicinae larvae in the permanent (A), tidal (B) and isolated (C) pools in Ballyvergan 

marsh. 
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until all rounds in the trial were completed. The trial was replicated three more times, once a 

day over the following three days.  

Procedure for counting larvae  

As the first and third experiment required small samples of larvae per bucket (≤50 larvae), dip 

samples were taken from the bucket of collected larvae and placed in a white sampling tray. 

The required number of larvae were counted in the sampling tray before being added to a 

designated bucket. After each round or trial, sticklebacks were removed using a fine mesh 

aquarium net and placed in a plastic container of water. The container was checked for any 

larvae that may have been caught in the net with the sticklebacks. Buckets were left for several 

minutes to allow the sediments to settle before being lifted out slowly, keeping an upright 

position to allow most the water to drain out without larvae sticking to the sides of the mesh. 

The remaining water was quickly poured through the aquarium net and emptied in a white 

sampling tray, where the remaining larvae were counted and recorded. 

For the second experiment that required multiple large larvae samples (˃50 larvae), the larvae 

were counted by pouring a sample of water from one container into another, while counting 

larvae as they passed through the spout. This was found to be the most efficient way to count 

larger quantities of larvae as accurately as possible. The counted larvae were filtered through 

the aquarium net and placed into a designated experimental bucket. After each trial, the 

remaining larvae were counted in the same manner.  

Abiotic parameters and Invertebrate Composition 

Salinity (mS/cm), dissolved oxygen (% saturation) and temperature (°C) measurements were 

also taken from each treatment site. Six measurements of each parameter were taken in the 

permanent, tidal and isolated pool to calculate an average reading.  Invertebrate composition 

of each pool type was also described to better understand the sub-habitats. Three invertebrate 

samples from each pool were collected by dabbing a hand-held net for 15 seconds along a 

random section of the pond perimeter. The invertebrate samples were placed into plastic bags 

with 70% alcohol for later identification. Due to COVID-19 restrictions, access to the lab was 

limited so the samples were identified at home, using a hand lens. 
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Statistical Analysis 

Due to small number of replicates, Shapiro Wilk tests for normality and Levene’s test for equal 

variances were performed for each dataset to confirm non-parametric distributions. Mann 

Whitney U tests were carried out to analyse the difference in the number of larvae remaining 

between the test and control buckets for each pool to confirm if sticklebacks were consuming 

mosquito larvae. This was followed up by Kruskal-Wallis tests to determine whether 1) there 

was a significant difference in larvae consumption across pool types and 2) to analyse the 

distribution of the control buckets across pool types. A Kruskal Wallis test with pairwise 

comparisons was also conducted to determine whether there were significant differences in the 

percentage of mosquitoes consumed between stickleback group sizes. All tests were conducted 

in SPSS.  

 

RESULTS 

Predator-prey interactions under three pool types 

After 24 hours, the test buckets with sticklebacks had an average of 2, 2 and 1 larvae remaining 

in the permanent, tidal and isolated pool, respectively (Table 2). In the control buckets with no 

stickleback, the average number of remaining larvae were 16, 17 and 18 in the permanent, tidal 

and isolated pool, respectively (Table 2).  

 

Pool Type Replicate 
TRIAL 1  TRIAL 2 TRIAL 3  Average 

Test Control Test Control Test Control Test Control 

Permanent 

1 6 14 2 14 1 14 

2 16 2 0 18 1 15 0 16 

3 3 20 0 15 2 - 

Tidal  

1 3 16 5 15 0 20 

2 17 2 0 15 5 20 2 - 

3 0 20 0 16 0 - 

Isolated 

1 0 16 2 20 3 20 

1 18 2 1 20 0 19 4 18   

3 0 18 1 17 0 15 

Table 2. Number of larvae left after 48 hours in test (stickleback) and control (no stickleback) buckets, 

and calculated averages of remaining larvae for each pool. Averages were rounded to the nearest 

whole number. Blank cells represent ineligible replicates due to disturbance of bad weather.  
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A clear difference in the number of larvae left between all test and control buckets was 

identified (table 2, fig. 4), suggesting that sticklebacks are successful at attacking and 

consuming larvae in all three pool types. Differences in the number of larvae consumed by 

sticklebacks between each pool type were negligible, suggesting that stickleback feeding 

behaviour and consumption rates are not limited by different sub-habitats found in the marsh. 

Negligible differences were also observed in the number of larvae remaining across treatments 

(fig. 4), suggesting that mosquito larvae can survive in all three pool types. Low variability in 

test buckets, within and across each pool was evident. Despite the outlier in the permanent 

pool, the number of larvae left in each stickleback bucket were consistently less than 6 

individuals (fig. 4). This low variability suggests that predator-prey interactions are consistent 

within and between pools. 

 

These observations were strongly supported by Mann Whitney U tests and a Kruskal Wallis 

test. There was a significant difference (P<0.05) in the number of larvae remaining after 48 

hours between the test buckets (n1) and control buckets (n2) (U = 0, n1 = 9, n2 = 8, p <0.05; U 

= 1.0, n1 = 9 n2 = 7, p <0.05; U = 0, n1 = n2 = 9, p <0.05, in the permanent, tidal and isolated 

pools, respectively). There was no significant difference in the number of larvae consumed 

Boxplot showing the distribution of remaining larvae in test and control buckets in 

each pool type.  

Fig. 4 
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between each pool type (𝑋2
2 = 0.231, N = 27, p = 0.891). There was also no significant 

difference in the number of larvae left in the control bucket (𝑋2
2 = 5.189, N = 24, p = 0.075) 

 Consumption rates as a function of prey density in freshwater vs brackish water 

 

The relationship of stickleback consumption to increasing larval densities showed a Type II 

functional response, for both brackish and freshwater (fig 5), suggesting that sticklebacks are 

efficient at seeking out mosquito larvae at low densities. Sticklebacks also consumed a large 

number of individuals with an estimated maximum average consumption rate of 429 ± 32.29 

larvae, per pair of sticklebacks, in 24 hours (table 3). Feeding rates began to slow down at a 

density of 400 larvae per bucket and plateau after 600 larvae per bucket (fig. 5). Overlapping 

error bars (fig. 5), indicate no difference in the functional response between freshwater and 

brackish water, suggesting that sticklebacks from the tidal creek are not sensitive to salinity 

changes and can attack and consume larvae at optimum levels throughout different sub-habitats 

in the marsh.  

Fresh Brackish Fresh Brackish Fresh Brackish Fresh Brackish Fresh Brackish 

50 42 43 39 46 49 46 48 48 45±2 46±1

100 85 87 82 98 91 93 96 95 89±3 93±2

200 179 188 188 177 191 177 195 197 188±3 185±5

300 252 258 273 268 288 271 289 269 276±9 267±3

400 296 353 322 322 379 358 358 286 339±18 330±17

600 350 351 488 427 475 442 403 373 429±32 398±22

1000 439 523 388 371 363 338 427 391 404±18 406±41

Density
Trial 1 Trial 2 Trial 3 Trial 4 Average ± SE

Line graph showing the number of larvae consumed per two sticklebacks as a function of 

the total number of mosquito larvae offered (density) in fresh and brackish water 

 

Table. 3. The number of mosquito larvae consumed by sticklebacks at different densities in 

freshwater and brackish water. 

Fig. 5 
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Consumption rates as a function of stickleback group size  

 

When offered 50 larvae for 15 minutes, the percentage of total larvae consumed increased with 

group size (fig. 6), suggesting that sticklebacks are more efficient and faster at consuming 

larvae in larger group sizes. From fig. 5, the most efficient group size seems to be 22 individuals 

with 96% ± 3.77% of larvae consumed in 15 minutes, however, we cannot conclude this as the 

optimal size. A Kruskal Wallis and post hoc tests showed the percentage of larvae consumed 

in a group of 22 sticklebacks, is not significantly different from a minimum group size of 8 

individuals (i.e., it is only significantly different from group with 1-6 individuals). However, 

small group sizes of 2-6 sticklebacks still consume a high percentage of larvae (e.g., two 

sticklebacks consumed an average of 58.5% of a total of 50 larvae which equates to 29 larvae 

in 15 minutes). As group sizes increase, the number of larvae consumed per capita decreases. 

This suggests that only a small number of sticklebacks are required to control smaller larvae 

populations while large groups of sticklebacks will successfully consume greater populations. 

Lone sticklebacks are not efficient at consuming larvae (6% ± 1.43 % of larvae consumed).  

 

Group 
size 

Trial 1 Trial 2 Trial 3 Trial 4 
average % consumed ± 

SE 

1 10% 4% 6% 4% 6.0 ± 1.41 

2 66% 36% 72% 60% 58.5 ± 7.89 

4 60% 66% 56% 50% 58.0 ± 3.37 

6 56% 48% 36% 74% 53.5 ± 7.97 

8 58% 88% 80% 74% 75.0 ± 6.35 

12 88% 70% 70% 58% 71.5 ± 6.18 

16 72% 88% 90% 84% 83.5 ± 4.03 

22 86% 100% 88% 100% 93.5 ± 3.77 

28 76% 90% 90% 80% 84.0 ± 3.56 

34 80% 98% 92% 86% 89.0 ± 3.87 

Table 4. The % total of larvae consumed by lone and grouped sticklebacks when offered 50 larvae 

for 15 minutes.  
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Salinity, dissolved oxygen and temperature 

Pool Type Salinity (mS/cm) 
Dissolved O2                     

(% saturation) 
Temp (°C) 

Permanent 10.9 49.4 11.3 

Tidal 27.3 75.1 10.6 

Isolated 13.4 43.4 11.1 

 

The highest salinity and dissolved oxygen measurements were recorded in the tidal pool (27.3 

mS/cm) and dissolved oxygen saturation (75 %), suggesting that it is subject to flushing from 

the tidal creek. There does not seem to be a major difference in the abiotic parameters between 

the isolated and permanent pool (table 5), in which larvae and sticklebacks were found 

respectively. This suggests that dissolved oxygen, salinity and temperature do not limit 

sticklebacks from colonising larval habitats. Similarly, it suggests that these parameters do no 

limit larval development in the permanent pool, where sticklebacks occur. It also shows that 

sticklebacks can colonise pools with low dissolved oxygen levels (49.4 % saturation).  

 

Fig. 6. Bar chart showing the average percentage of larvae consumed at 10 different group sizes.  

Table 5. Invertebrate abundance and composition in the isolated, tidal and permanent pool 

used in the study.  
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Table 5.  Average salinity (mS/cm), dissolved oxygen (% saturation) and temperature (°C) 

measurements taken in the permanent, tidal and isolated pool during the first experiment.  
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Invertebrate composition  

Distinct differences in invertebrate composition between study sites was evident as each pool 

showed different dominant families (table 5). The isolated pool was dominated by Gammaridae 

(69% composition), the tidal pool by Corixidae (81% composition) and the permanent pool by 

Chironomidae larvae (44% composition) (table 5). Gammaridae was the only family found in 

each pool, however, their percentage composition was highly varied between each pool type. 

Gammaridae was the most common in the isolated pool whereas only one individual was found 

in the tidal pool. A total of 10 families were identified.  

 

 

Pool Type Taxon Name Common name 
Developmental 

stage 
Abundance %  

  

  Isolated 
      

 

Family Gammaridae Gammarids/scuds adult 132 69% 

Family Dytiscidae Diving beetle larvae 19 10% 

Family Culicidae Mosquito larvae 18 9% 

   pupae 2 1% 

Family Gyrinidae Water beetle adult 12 6% 

Class Collembola Springtail adult 4 2% 

Family Helodidae Marsh beetle larvae 2 1% 

Family Psychodidae Drain fly larvae 1 1% 

       

 Total abundance    190  

 

Tidal 
      

     Family  Corixidae   Water Boatmen adult 25 81% 

    Genus Sigara     

 Family Palaemonidae Ditch shrimp adult 3 10% 

    Genus  Palaemonetes     

 Family  Veliidae Riffle bugs nymph 2 6% 

 Family Gammaridae Gammarids/scuds adult 1 3% 

       

Total abundance    31  

 

Permanent 
      

 Family Chironomidae  Non-biting midges larvae 18 44% 

 Family Gammaridae  Gammarids/scuds adults 11 27% 

 Family  Dytiscidae Diving beetle larvae 5 12% 

 Class Collembola Springtail adult 5 12% 

 Family Gyrinidae Water beetle adult 2 5% 

       

Total abundance    41  

Table 6. Invertebrate abundance and composition percentage (% of individuals from the total 

abundance) in the isolated, tidal and permanent pool. 
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DISCUSSION 

Three-spined sticklebacks are efficient predators of Culicinae larvae and will consume larvae 

across different sub-habitats and salinities, including isolated pools where colonisation by 

sticklebacks does not occur. Mosquito larvae can also survive across different sub-habitats of 

the marsh; despite this, they only occur in distinct isolated pools. A minimum of two 

sticklebacks per group is required for effective control and larger group sizes will attack a 

higher percentage of larvae during a given time. Acknowledging pseudo-replicates and small 

sample sizes, it is evident that three-spined sticklebacks demonstrate strong potential for the 

biological control of mosquito larvae in Ballyvergan marsh. Furthermore, sticklebacks show 

consistency in the functional response between fresh and brackish water, and also a high 

tolerance to low dissolved O2 levels and fluctuating salinities. This suggests that three-spined 

sticklebacks can provide biological control of mosquito larvae in freshwater, brackish or 

coastal waters that are subject to nuisance mosquito populations.   

Although sticklebacks were not found in the tidal pool, it is likely that they do have access as 

suggested by the corresponding salinity of the tidal creek, measured during initial walkovers. 

Furthermore, ditch shrimp (Palaemonetes) were only present in the tidal pool and were also 

observed to be abundant in the creek. Sticklebacks do not occur in the isolated pool because it 

is not accessible from the tidal creek, as suggested by the negligible differences in the abiotic 

parameters and the absence of any connecting channels.   

Since larvae only occur in habitats where sticklebacks cannot colonise, predator-prey 

interactions may be a driving force for gravid females when selecting a suitable habitat for 

oviposition. It has been found that Culex females use chemosensory cues to detect fish 

kairomones when selecting a suitable site for oviposition (Cohen and Silberbush, 2020). 

However, it is important to note that a series of other environmental factors are known to 

influence the suitability of larval habitats. Chemosensory cues are also used by gravid females 

to provide information on food availability, suitable conditions and competition (Afify and 

Galizia, 2015). Habitats chosen by saltmarsh mosquitoes are often characterised by areas with 

an abundance of dead, emergent or floating vegetation and not affected by tidal flushing 

(Medlock and Vaux, 2011). Some Aedes larval habitats are correlated with specific vegetation 

species (Gislason and Russell, 1997; Rowbottom et al., 2017; Service, 1968). These 

observations were also made in Ballyvergan marsh as mosquitoes only occurred in stagnant 

pools with lots of dry, emerging sedges and/or floating algae.  
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The combination of a voracious appetite represented by the functional response and high 

consumption rates in larger group sizes, implies that sticklebacks have the potential to control 

large numbers of larvae within a short period of time. The group size that shows maximum 

control efficiency could not be quantified in this study as resources and time were limited. The 

functional response curve that sticklebacks are effective at seeking out larvae even when larvae 

populations are low. However, the search efficiency at a low density under experimental 

conditions may not reflect true behaviour, as the white background of the bucket contrasts with 

the dark coloured larvae, potentially making it easier to spot prey. 

It was proven that sticklebacks are effective predators of mosquito larvae in Ballyvergan marsh 

under controlled conditions. However, it is not guaranteed that these predator-prey interactions 

will have the same outcome under ‘natural’ conditions. Future studies involving connecting 

some of the isolated pools to the tidal creek by digging shallow trenches should be pursued to 

validate the findings in this study. It is also important to note, that when considering habitat 

modification such as OMWM, the effects on non-target species must be carefully taken into 

account (James-Pirri et al., 2011) and management must be applied and altered on a case to 

case basis (Wolfe, 1996). Although differences in invertebrate composition between each pool 

was evident, the importance and function of the invertebrate communities is unknown. 

Macroinvertebrates are reliable indicators of the ecological condition of saltmarshes  

(Weilhoefer, 2011; Wildsmith et al., 2011) and community functional composition provides 

information regarding food webs, trophic levels (Nordstrom et al., 2015) and nutrient cycling 

(Constable, 1999; Kraeuter, 1976). Therefore, an extensive study of invertebrate composition 

throughout the marsh may help to determine the impact of habitat modification on marsh 

function. Another future study could investigate the selectivity of sticklebacks towards 

mosquito larvae against other available prey in the marsh. If sticklebacks do not show a 

preference for mosquito larvae, their efficiency as a biological control predator is reduced. 

However, sticklebacks are potentially not the only predators of Culicinae larvae in Ballyvergan 

marsh. Ditch shrimp and diving beetles have been shown to be predatory invertebrates of 

mosquito larvae in UK marshes (Medlock and Snow, 2008). As ditch shrimp were observed to 

be highly abundant in the tidal creek, future research on the predator-prey interactions between 

ditch shrimp and mosquito larvae may potentially enhance control results. To ensure that the 

use of sticklebacks in Ballyvergan for mosquito control is sustainable, an investigation into the 

ecology of local sticklebacks is necessary. Understanding whether sticklebacks in Ballyvergan 

are resident in the permanent pool and tidal creek or migrate into nearby freshwater streams is 
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essential to disclose their breeding sites. This may be of conservation concern as steady 

populations of sticklebacks would be required to guarantee prolonged control. Wider 

conservation interests need to be considered when considering larval control practices as 

marshes serve numerous valuable ecosystem functions and services.  

Coastal marshes play a key role in combatting climate change issues as they provide protection 

from coastal erosion and from flooding during severe weather events (Möller et al., 2014). 

They also have potential for storing atmospheric CO2 (Chmura, 2013). Due to their high 

ecological and economic value and in response to climate change, the creation and restoration 

of salt marshes are increasingly being practiced across north-west Europe (Boorman and 

Hazelden, 2017; Medlock and Vaux, 2011). Managed realignment is a soft engineering tool 

that describes the process in which reclaimed land is returned to an intertidal zone for the 

benefit of flood protection, restored biodiversity loss and  mitigation of rising sea levels and 

coastal squeeze (Medlock and Vaux, 2015; Pétillon and Garbutt, 2008). While creating and 

restoring saltmarshes serve important functions in response to climate change, it may also 

promote suitable larval habitats and potentially bring an increased risk of nuisance and vector 

mosquitoes (Medlock and Vaux, 2015, 2013, 2011). Climatic conditions are changing in favour 

of nuisance and potentially disease bearing mosquitoes. Recent studies in the UK have found 

the common saltmarsh mosquito, Aedes detritus, to be a potential vector for Japanese 

encephalitis and West Nile virus  (Blagrove et al., 2016; Mackenzie-Impoinvil et al., 2015). 

While there are no records of past endemic mosquito-borne human diseases in Ireland, a history 

of malarial fevers in Youghal during the late 19th/ early 20th century was reported by the 

landowner of Ballyvergan marsh (personal communication).  

The direct and indirect consequences of climate change on mosquito populations are apparent, 

and opportunity for larval control of potential nuisance or vector species should not be 

overlooked. Ballyvergan marsh provides important regulatory abiotic services (Doran and T. 

O’Higgins, 2020) and is an important habitat for migratory birds (Cullen and Smiddy, 2008; 

Smiddy et al., 2007). There is an economic and social significance for the control of nuisance 

mosquitoes in Ballyvergan, as the marsh neighbours the touristic seaside town of Youghal and 

is located next to a mobile-home park. The marsh is also surrounded by grazing land and 

residential housing. An approved Greenway that is currently in the early stages of development, 

will provide better access to Ballyvergan marsh and attract a greater number of tourists to the 

marsh itself and the surrounding areas of Youghal. Integrative marsh management is a 

technique that aims to achieve the goals of both larval control and marsh restoration (Rochlin 
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et al., 2012), and may be of interest in Ballyvergan due to its far-reaching ecosystem services. 

Targeting mosquito larvae populations through the predation of three-spined sticklebacks while 

maintaining the marsh’s ecological and ornithological value should be considered for future 

management plans. 
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