Rapid Antidepressant Response to Ketamine in Treatment-resistant Depression is Not Dependent on Normalising Kynurenine Pathway Metabolism

Clarke G1,2, Naughton M1, O'Shea R1, Dowling J3, Walsh A4, Ismafilotes F5, Shorten G1, Scott L1, Cryan JF2,3, Dinan TG1,2
1. Department of Psychiatry, University College Cork, Cork, Ireland; 2. Alimentary Pharmacobiomics Centre, University College Cork; 3. School of Medicine, University College Cork; 4. Department of Anaesthesia and Intensive Care Medicine, University College Cork; 5. Department of Anatomy & Neuroscience, University College Cork

1. Introduction

The delay in onset of action and the fact that a substantial proportion of patients fail to achieve remission after antidepressant therapy are serious limitations of current standard of care treatments for major depression. Recently, the NMDA receptor antagonist ketamine has emerged as a fast acting antidepressant with therapeutic potential for treatment-resistant depression (TRD) cohorts but its clinical use is hampered by its psychotomimetic properties [2]. Biological markers of the rapid antidepressant response associated with ketamine are urgently required to understand its mechanism of action and to facilitate the rational design of rapidly acting antidepressants without the deleterious side effect profile and abuse potential. The kynurenine pathway has been suggested as a putative target for ketamine [3].

2. Hypothesis & Aims

Hypothesis: Ketamine treatment rapidly reverses abnormal kynurenine pathway metabolism and that this effect mediates the clinical improvement in TRD. Aim: To monitor the production of kynurenine from tryptophan at multiple time points following ketamine infusion.

3. Methods

Age- and gender-matched patients with TRD (N = 17) and healthy controls (N = 20) were recruited. Severity of depression was assessed using the Hamilton Depression Rating Scale (HDRS). 76% of the TRD cohort had a diagnosis of major depressive episode—recurrent with melancholia and 6% had a diagnosis of major depressive episode with melancholia using the MINI-Neuropsychiatric Interview. Patients who showed a 50% or greater HDRS reduction were classified as responders. 1-3 infusions of ketamine (0.5mg/kg) were administered to TRD patients at visits one week apart. Blood samples were collected at baseline in all participants and within the TRD cohort at 2 hours, 24 hours and 1 week following the first infusion and at 2 hours and 1 week following each subsequent infusion as per timeline below.

Table 1: Study Participants

<table>
<thead>
<tr>
<th></th>
<th>Healthy Controls</th>
<th>TRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sex</td>
<td>8 males, 2 females</td>
<td>8 males, 2 females</td>
</tr>
<tr>
<td>Age</td>
<td>45.80 (SD = 12.7)</td>
<td>49.30 (SD = 12.1)</td>
</tr>
<tr>
<td>Baseline HDRS</td>
<td>-</td>
<td>20.90 (SD = 5.1)</td>
</tr>
</tbody>
</table>

4. Results

Kynurenine in TRD

Ketamine treatment did not reduce the elevated kynurenine concentrations in the TRD cohort at any time point following the first or subsequent ketamine infusions (p > 0.05). Moreover, there was no effect of repeated ketamine infusion on tryptophan concentrations or the kynurenine:tryptophan ratio at any time point evaluated (A-C). In a separate TRD cohort, ECT treatment also improved symptoms but did not normalise kynurenine pathway metabolism as indicated by the kynurenine:tryptophan ratio (D).

5. Discussion & Conclusions

- Ketamine was associated with a significant and rapid reduction in depressive symptoms in a majority of patients.
- Increased tryptophan metabolism along the kynurenine pathway may be a hallmark of TRD.
- A positive treatment outcome in TRD is not dependent on normalising kynurenine pathway abnormalities.
- Future studies should assess whether kynurenine pathway abnormalities can be used to optimise treatment selection strategies for particular patient subgroups.

6. Acknowledgements & Disclosure

The Alimentary Pharmacobiomics Centre is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (Grant numbers 07/IN.1/1474, 09/IN.1/1729, 12/IN.1/1214 and 13/IN.1/1485) and by the Health Research Board (MRM) through Health Research Awards (grants no. HRG/08/023, TID, PIC and GC, and HHR in 2012/13, 2013/14). The centre has conducted studies in collaboration with several companies including Glaxo, Pfizer, Wyeth and Merck Sharp. SFI is also funded by the European Community’s Seventh Framework Programme (grant no. FP7-2007-2013, grant agreement 201193); JCS is supported by a NASA's Young Investigator Grant from the Brain and Behavior Research Foundation (grant number 201177). The content of the paper was neither influenced or constrained by this support and the authors declare no conflict of interest. Thanks to Marieme Jullie for assistance with image preparation.