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Abstract

In this project, we develop a novel route to overcome current problems with
designing quantum technologies. The key idea is to combine shortcuts-to-
adiabaticy and quantum thermodynamics. The potential for this merging is nearly
self-explanatory: ideal thermodynamic processes are based on adiabatic
processes which give maximum efficiency but unfortunately require infinite
operation time; on the other hand, shortcuts-to-adiabaticy are techniques to
speed-up adiabatic processes, e.g. the transport of Bose-Einstein condensate in
anharmonic traps [1]. In line with this key idea, the technique of enhanced
shortcuts to adiabaticity has been developed [2-3] and applied, for example, to
spin squeezing in internal bosonic Josephson junctions [4]. In addition, quantum
heat engines based on Bose-Einstein condensates have been studied. In detail, a
novel quantum heat engine based on a spin-orbit-and Zeeman-coupled Bose-
Einstein condensate has been proposed. The work and heat involved as well as
the associated efficiency have been discussed [5]. Moreover, quantum control of
the dynamics of a classical piston coupled to a Rabi-coupled Bose-Einstein
condensate has been developed and optimised; the work involved in this has also
been examined [6].

Quantum Control via Enhanced Shortcuts to Adiabaticity!2-4

Enhanced Shortcuts to Adiabaticity (eSTA): Goal: Design control scheme for quantum
systems where STA cannot be applied directly. Idea: Merge Shortcuts to Adiabaticity (STA)
with ideas from numerical optimal control (GRAPE algorithm) to design new analytical
control schemes
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Modification derived based on time-dependent
perturbation theory while taking into account the
properties of the STA solution for the ideal system

Important: the modification of the control function can be calculated only by
using the STA scheme of the unperturbed system H!
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By applying eSTA: improved fidelity and improved robustness!

Hamiltonian of an internal

bosonic Josephson Junction:

Higyy(t) = Ut)J? — hQJ,

Coherent squeezing and Fidelity:

Imperfection:
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STA: black, dashed line

eSTA: red, solid line
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Transport of Bose-Einstein condensate (BEC) in anharmonic traps!!]
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Quantum Thermodynamic Stirling cyclel™

Working medium: Bose-Einstein condensate (BEC) with spin-orbit and Zeeman coupling:

Optimal design of the time-dependent direction of
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1.2 Expansion/Compression: Efficiency:
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Model: Rabi-coupled Bose-Einstein condensate coupled to a “classica

VAN

condensate

piston:
Rabi coupling phase:
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Rabi field to control position and velocity of the piston Optimised: red, solid lines
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