
MEASUREMENT OF THE SPECIFIC LATENT HEAT OF FUSION OF ICE

Apparatus

Ice, water, calorimeter, lagging, beakers, kitchen paper, digital thermometer reading to 0.1 $^{\circ}$ C and electronic balance.

Procedure

- 1. Place some ice cubes in a beaker of water and keep taking the temperature with the thermometer until the ice-water mixture reaches 0 °C.
- 2. Find the mass of the calorimeter m_{cal} .
- 3. Half fill the calorimeter with water warmed to approximately 10 °C above room temperature. Find the combined mass of the calorimeter and water m_2 . The mass of the water m_w is $m_2 m_{cal}$.
- 4. Record the initial temperature θ_1 of the calorimeter plus water.
- 5. Surround the ice cubes with kitchen paper or a cloth and crush them between wooden blocks dry them with the kitchen paper.
- 6. Add the pieces of dry crushed ice, a little at a time, to the calorimeter. Do this until the temperature of the water has fallen by about 20 °C.
- 7. Record the lowest temperature θ_2 of the calorimeter plus water plus melted ice. The rise in temperature of the ice $\Delta \theta_1$ is $\theta_2 - 0$ °C and the fall in temperature of the calorimeter plus water $\Delta \theta_2$ is $\theta_1 - \theta_2$.
- 8. Find the mass of the calorimeter plus water plus melted ice m_3 . The mass of the melted ice m_i is $m_3 m_2$.

Results

Mass of the calorimeter	$m_{\rm cal}$	=	
Mass of the calorimeter plus water	m_2	=	
Mass of the water	$m_{ m w}$	=	$m_2 - m_{\rm cal} =$
Initial temperature of the calorimeter plus water	$ heta_1$	=	
Final temperature of the calorimeter plus water plus melted	θ_2	=	
ice			
Rise in temperature of the ice		=	$\theta_2 - 0$ °C =
	$\Delta heta_1$		
Fall in temperature of the calorimeter plus water		=	$\theta_1 - \theta_2 =$
	$\Delta \theta_2$		
Mass of the calorimeter plus water plus melted ice	m_3	=	
Mass of the melted ice	$m_{\rm i}$	=	$m_3 - m_2 =$

Calculations

Assume heat losses cancel heat gains. Given that the specific heat capacity of water c_w and the specific heat capacity of copper c_c are already known, the latent heat of fusion of ice *l* may be calculated from the following equation:

Energy gained by ice = energy lost by calorimeter + energy lost by the water.

 $m_{\rm i}l + m_{\rm i}c_{\rm w}\Delta\theta_1 = m_{\rm cal}c_{\rm c}\Delta\theta_2 + m_{\rm w}c_{\rm w}\Delta\theta_2$

Notes

If a polystyrene container is used in place of the copper calorimeter, the energy gained by the ice is equal to the energy lost by the water. The energy equation now reads: $m_i l + m_i c_w \Delta \theta_1 = m_w c_w \Delta \theta_2$.

To avoid melting the crushed ice, transfer it with a plastic spatula.