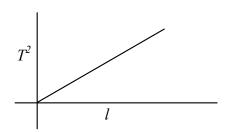

INVESTIGATION OF THE RELATIONSHIP BETWEEN PERIOD AND LENGTH FOR A SIMPLE PENDULUM AND HENCE CALCULATION OF g^*

Apparatus

Pendulum bob, split cork, string and timer.



Procedure

- 1. Place the thread of the pendulum between two halves of a cork or between two coins and clamp to a stand.
- 2. Set the length of the thread at one metre from the bottom of the cork or coins to the centre of the bob.
- 3. Set the pendulum swinging through a small angle ($<10^{\circ}$). Measure the time t for thirty complete oscillations.
- 4. Divide this time t by thirty to get the periodic time T.
- 5. Repeat for different lengths of the pendulum.
- 6. Draw a graph of T^2 against length l and use the slope to calculate a value for g.

Results

l/m	t/s	T/s	T^2/s^2
1.00			
0.9			
0.8			

$$T^{2} = 4\pi^{2} \frac{l}{g}$$

$$\Rightarrow \frac{T^{2}}{l} = \frac{4\pi^{2}}{g} = \text{slope}$$

$$\Rightarrow g = \frac{4\pi^{2}}{(\text{slope})}$$