

FEEDBACK FROM RADIO AGN THE CASE OF 4C 31.04

RAFFAELLA MORGANTI ZSOLT PARAGI TOM OOSTERLOO ROBERT SCHULZ ...

AGN – HOST GALAXY INTERPLAY

These are rare!

GALACTIC-SCALE IMPACT OF RADIO JETS

Jet-ISM interaction more common

e.g. Maccagni et al. 2017, Gupta et al. 2006

Turbulence, multi-phase outflows

e.g. Zovaro et al 2019, Santoro et al. 2020, Molyneux et al. 2019, Venturi et al. 2021

Cold gas is affected significantly!

e.g. Alatalo et al. 2015, Feruglio et al. 2015, Oosterloo et al. 2018, Morganti et al. 2021, Murthy et al. 2022

THEORETICAL STUDIES OF GALACTIC-SCALE IMPACT OF RADIO JETS

Impact depends on:

Clumpy gas distribution

Radio power, age, morphology

e.g. Bicknell et al. 2007, Wagner et al. 2012, Mukherjee et al. 2016,2018

For atomic gas, relevant spatial scales achieved only with VLBI

NEUTRAL ATOMIC GAS

traced via HI 21-cm absorption

Can go to **high spatial resolution** and redshifts

Easier to constrain the kinematics

Complements emission studies at other wavelengths providing better constraints.

Morganti & Oosterloo, 2018

ATOMIC GAS AT PARSEC SCALES

Hydra A: Taylor et al. 1996

3C 236: Schulz et al. 2018

Velocity [km/s]

Right Ascension (J2000)

ATOMIC GAS AT PARSEC SCALES Infalling gas

PKS 2322-123: Taylor et al. 1999

ATOMIC GAS AT PARSEC SCALES OUTFLOWING (CLUMPY) GAS CLOUDS

4C 12.50: Morganti et al. 2013

3C 236: Schulz et al. 2018

Need to increase the sample size and the range of parameters covered

Giroletti et al. 2003, A&A

4C 31.04

▶ z = 0.0602

- Compact Steep Spectrum source
- $L_{5GHz} = 10^{25} \text{ W/Hz}$
- ~100 pc; 500 to 3000 yr old
- Very asymmetric morphology

Evidence for strong jet-ISM interaction: disturbed ionised gas, warm molecular gas

Condition of cold gas?

Zovaro et al. 2019

Struve & Conway 2012, A&A

HI ABSORPTION: VLA, VLBA

- VLA: Unresolved absorption
- ► VLBA:
 - Well resolved HI absorption.
 - Two components:
 - Narrow (FWZI ~30 km/s): cloud> 100 pc away
 - Broad (FWZI ~300 km/s): closer to the nucleus and only against the eastern lobe

Struve & Conway 2012, A&A

HI ABSORPTION: VLA, VLBA

- VLA: Unresolved absorption
- ► VLBA:
 - Well resolved HI absorption.
 - Two components:
 - Narrow (FWZI ~30 km/s): cloud> 100 pc away
 - Broad (FWZI ~300 km/s): closer to the nucleus and only against the eastern lobe

HI ABSORPTION: VLA, VLBA

- VLA: Unresolved absorption
- ► VLBA:
 - ► Well resolved HI absorption.
 - Two components:
 - Narrow (FWZI ~30 km/s): cloud> 100 pc away
 - Broad (FWZI ~300 km/s): closer to the nucleus and only against the eastern lobe

A possible circumnuclear gas disc

Murthy et al. in preparation

HI ABSORPTION (WSRT)

Wide blue-shifted wing **Outflow?** Where is it located? Need more sensitive pc-scale observations with a wider band

Murthy et al. in preparation

HI ABSORPTION: GLOBAL VLBI

More sensitive observations with wider band

- ~13 hr on-source
 16 MHz band
 Resolution:

 12 mas x 3 mas
 (~12pc x 3pc)
- HI column density:
 ~ 2 x 10²¹ cm⁻²

High velocity dispersion (>50 km/s) Especially at the eastern hotspot

POSITION - VELOCITY PLOTS

Murthy et al. in preparation

HI ABSORPTION: GLOBAL VLBI

Broad absorption:~130 km/s blue-shifted Against both lobes; filament connecting the two No velocity gradient (over ~100 pc)!

Zovaro et al. 2019, MNRAS

ZOOMING OUT TO KPC SCALES: OTHER PHASES

Dust lane along the radio axis perpendicular to the radio axis

Garcia-Burillo et al. 2007, A&A

ZOOMING OUT TO KPC SCALES: COLD GAS

1.4 kpc HCO+ disc Not dynamically relaxed

ZOOMING OUT TO KPC SCALES: COLD GAS

CO(1-0) with NOEMA
~10 kpc disc
Warped
Edge-on,
regularly rotating

Murthy et al. in preparation

ZOOMING OUT TO KPC SCALES: COLD GAS

Two kinematically distinct structures!

- kpc-scale warped disc
- sub-kpc scale structure (is it a disc?)

Murthy et al. in preparation

AN EXPANDING SHELL OF COLD GAS? Driven by radio jets!

CO (unresolved; sub-kpc)

INPUTS TO MODELS OF JET – ISM INTERACTION

0.8 Myr

Observations suggest that this also happens in cold gas!

Mukherjee et al. 2018

Murthy et al. 2022b, Nature Astronomy

INPUTS TO MODELS OF JET – ISM INTERACTION

0.8 Myr

Murthy et al. 2022b, Nature Astronomy

INPUTS TO MODELS OF JET – ISM INTERACTION

0.8 Myr

Molecular gas in 4C 31.04 shows high turbulence even at kpc scales!

Murthy et al. 2022b, Nature Astronomy

Also seen in other CSS sources: B2 0258+35 (but ionised gas)

Gomes et al. 2016

SIGNIFICANCE FOR FEEDBACK

- Significant feedback by radio jets on cold gas at (sub) kpc scales
 - Even at a very early stage of evolution
 - Not only direct-impact outflows but also on larger scales relative to the source size

FUTURE:

- Increase the sample size, expand to lower luminosities
- More sophisticated models
- AC 31.04: Higher spatial resolution CO observations

GALACTIC-SCALE IMPACT OF RADIO SOURCES

- ▶ 4C 31.04, *z* = 0.0602:
- Highly turbulent nuclear gas
- Expanding shell of cold (atomic and molecular gas)
- All driven by radio jets!
- Confirms some of the predictions of models and also provides new insights!

Radio AGN also provide significant feedback to their host galaxies at (sub) kpc scales!