

Correlations of the multiwavelength emission in the blazar CTA 102 during 2016-2018

Sang-Hyun Kim and Sang-Sung Lee KASI (Korea Astronomy and Space Science Institute) UST (University of Science and Technology, Korea)

15th EVN Symposium & Users Meeting Cork, Ireland, 12.July.2022

What is interesting about CTA 102?

Q1. Location of the γ -ray emission region?

"Cross-correlation analysis" reveals the location of the γ -ray emission site

Q2. Physical mechanisms responsible for the γ -ray emission?

Fermi Large Area Telescope

Credits: NASA

Neil Gehrels Swift Observatory

<image>

Credits: NASA E/PO, Sonoma State University, Aurore Simonnet

Optical

(Left) Bok Telescope (Right) Kuiper Telescope

Credits: Steward Observatory of the University of Arizona

OVRO 40m Credits: NRAO/AUI/NSF

Metsähovi 14m Credits: Aalto University

IRAM 30m Credits: DiVertiCimes

SMA Credit: J. Weintroub

ALMA Credits: ESO/C. Malin

* A dashed line in the γ -ray light curve means the criteria for a flare.

Power Spectral Density (PSD)

• PSD(ν) $\propto \nu^{-\beta}$

• $\beta \geq 1$ at all ν

Frequency band	PSD β	PDF κ	PDF θ	PDF σ	PDF μ
(1)	(2)	(3)	(4)	(5)	(6)
Radio 15 GHz	$2.18\substack{+0.29 \\ -0.26}$			0.05 ± 0.01	$3.26\substack{+0.09\\-0.04}$
Radio 37 GHz	$1.73^{+0.24}_{-0.20}$			0.19 ± 0.02	3.23 ± 0.06
Radio 89 GHz	$2.24_{-0.38}^{+0.42}$			$0.47^{+0.05}_{-0.06}$	$3.31^{+0.21}_{-0.23}$
Radio 230 GHz	$1.52\substack{+0.62\\-0.50}$			$0.59\substack{+0.07\\-0.08}$	2.29 ± 0.22
Radio 343 GHz	$1.33\substack{+0.63\\-0.61}$			$0.64\substack{+0.09\\-0.11}$	1.63 ± 0.23
Optical R	$1.53^{+0.30}_{-0.28}$	$2.55\substack{+0.02\\-0.15}$	$0.72\substack{+0.04\\-0.02}$		
Optical V	$1.86\substack{+0.35\\-0.30}$	$2.77\substack{+0.01\\-0.20}$	0.48 ± 0.02		
X-rays	$0.96\substack{+0.44\\-0.41}$			0.72 ± 0.10	$1.40\substack{+0.17 \\ -0.18}$
γ -rays	1.24 ± 0.17	$1.21\substack{+0.04 \\ -0.06}$	0.63 ± 0.03		

Probability Density Function (PDF)

- Gamma Distribution Optical & γ-rays
- Log-Normal Distribution Radio & X-rays

		Gamma		Log-Normal	
Frequency band	PSD β	PDF κ	PDF θ	PDF σ	PDF μ
(1)	(2)	(3)	(4)	(5)	(6)
Radio 15 GHz	$2.18^{+0.29}_{-0.26}$			0.05 ± 0.01	$3.26\substack{+0.09\\-0.04}$
Radio 37 GHz	$1.73_{-0.20}^{+0.24}$			0.19 ± 0.02	3.23 ± 0.06
Radio 89 GHz	$2.24_{-0.38}^{+0.42}$			$0.47\substack{+0.05\\-0.06}$	$3.31\substack{+0.21\\-0.23}$
Radio 230 ${ m GHz}$	$1.52\substack{+0.62\\-0.50}$			$0.59\substack{+0.07 \\ -0.08}$	2.29 ± 0.22
Radio 343 $\rm GHz$	$1.33\substack{+0.63\\-0.61}$			$0.64\substack{+0.09\\-0.11}$	1.63 ± 0.23
Optical R	$1.53\substack{+0.30\\-0.28}$	$2.55\substack{+0.02 \\ -0.15}$	$0.72\substack{+0.04\\-0.02}$		
Optical V	$1.86\substack{+0.35\\-0.30}$	$2.77\substack{+0.01\\-0.20}$	0.48 ± 0.02		
X-rays	$0.96\substack{+0.44\\-0.41}$			0.72 ± 0.10	$1.40\substack{+0.17 \\ -0.18}$
γ -rays	1.24 ± 0.17	$1.21\substack{+0.04 \\ -0.06}$	0.63 ± 0.03		

Discrete Cross-correlation Function (DCF)

Model implementation is described in Emmanoulopoulos+2013

*

FRRSS Method by Peterson+1994

Radio - Radio Correlations

Radio - γ -ray Correlations

Radio - γ -ray Correlations

Optical/X-ray - γ -ray Correlations

Around "**zero**" time lag for the γ -ray - Optical emission!

External Compton scattering - Flare 3's mechanism

Flux-Flux Relation $F_{IC} \propto F_{syn}^m$

$$F_{IC} \propto F_{syn}^m \Rightarrow \log F_{IC} \sim 1 \times \log F_{syn}$$

γ -ray Correlations: Flare 6

 γ -ray shows significant correlations with other frequencies!

Summary

- The γ -ray emission from CTA 102 is "**significantly**" correlated with the emission at X-ray, optical, and mm-wavelengths during the period of Dec 2012 Oct 2018.
- We are not sure that Flare 3 has radio counterparts, but infer a cospatial origin of Flare 3 and the optical emission, indicating the external Compton scattering origin for this flare.
- Flare 6 precedes ejection of a new jet component, suggesting that this flare is produced near the radio core.

Thank you for your attention!

15th EVN Symposium & Users Meeting - Backup Slides

The blazar CTA 102 - Our previous study

15th EVN Symposium & Users Meeting - Backup Slides

Radio - γ -ray Correlations: Flare 2

* r_p : Linear Pearson correlation coefficient Confidence level = $1 - p_{value}$

 γ -ray Correlations: Flare 6

15th EVN Symposium & Users Meeting - Backup Slides

Jet component's name	$t_{\rm var}$ [d]	$\delta_{ m var}$	β_{app} [c]	Г	θ [deg]
M3 M4	$186^{+27}_{-26}\\104^{+22}_{-24}$	$11.48^{+1.79}_{-1.73}\\30.76^{+6.65}_{-7.36}$	$8.57^{+0.42}_{-0.37}\\15.76^{+2.33}_{-2.80}$	$8.98^{+0.50}_{-0.47}\\19.43^{+2.72}_{-3.07}$	$4.80^{+0.96}_{-0.93}\\1.51^{+0.53}_{-0.59}$