The nature of radio emission from the tidal disruption event AT2019dsg

A visualisation of AT2019dsg, found coincident with high-energy neutrino IC191001A. Image credits: DESY, Science Communication Lab.

Prashanth Mohan

Shanghai Astronomical Observatory

"High-resolution VLBI Observations of and Modeling the Radio Emission from the Tidal Disruption Event AT2019dsg", Mohan P., An T., Zhang Y.-K., Yang J., Yang X-L., Wang A., 2022, ApJ, 927, 74.

Tidal disruption event (TDE)

Nature

Disruption of a star at \approx tidal radius R_t of a galactic supermassive black hole (SMBH, with a Schwarzschild radius $R_S = 2GM_{\bullet}/c^2$). $R_t \approx 24 R_S$ (SMBH mass $M_{\bullet} = 10^6 M_{\odot}$) and $R_t \approx 1.1 R_S$ (SMBH mass $M_{\bullet} = 10^8 M_{\odot}$).

Observational signatures

- Thermal flare (optical/UV) from accretion onto SMBH or from the forming accretion disk (shocked regions at periphery). Bright optically thick photospheric emission for months with peak luminosity of $10^{43} - 10^{44}$ erg s⁻¹.
- Association with existing active
 galactic nuclei or dormant galactic
 nuclear region.
- Declining optical/UV light curve (months) with canonical index of -5/3.
- Outflow: during super-Eddington accretion phase, supported by disk based radiation pressure, or launched as unbound debris.
- Afterglow emission (including radio): non-thermal nature; internal shocks in outflow or interaction with surrounding circum-nuclear medium (CNM).

Physical properties

- Total energy released: 10⁴⁸ 10⁵² erg over lifetime of months - years.
- Surrounding medium: number density (*n*) and distribution ($n \propto r^{-\alpha}$).
- **Microphysical parameters (shocked CNM):** particle and magnetic field energy density fractions (ϵ_e, ϵ_B), injection index *p*.
- Nature of the central engine: accretion transitioning through phases and potentially supporting a (non-) relativistic outflow.
- TDE system and geometry: SMBH and stellar mass, approach distance and orbit, evolution (of disrupted streams and accreting material).

Discovered by ZTF on 2019 April 9 in a host galaxy at *z* = 0.051 (~ 230 Mpc).

Highly luminous thermal emission $(3.5 \times 10^{44} \text{ erg s}^{-1})$, first TDE with putative neutrino (0.2 PeV) association (Stein et al. 2021).

Non-thermal emission

Central engine powering outflow and enabling neutrino production (Stein et al. 2021). VLA 2 -12 GHz (42 - 178 d): accelerating outflow (0.12 c -0.21 c), region size $\approx 7 \times 10^{16}$ cm, kinetic energy $\approx 2 \times 10^{50}$ erg.

eMERLIN 1.4 and 5 GHz (upto 180 days): uncertainty ~ 6 mas) from the phase centre (Cannizarro et al. 2021).

ALMA mm — radio wavelengths: outflow (~ 0.07 c), region size $\leq 6 \times 10^{16}$ cm, kinetic energy of $\geq 5 \times 10^{48}$ erg (Cendes et al. 2021).

Non-thermal emission and neutrino production: relativistic jet or nonrelativistic outflow?

Schematic of expected EM components and potential compact, stationary source (1- σ astrometric neutrino emission scenarios. Image credits: Hayasaki, K. 2021, Nature Astronomy.

Neutrino production

- Acceleration of protons by internal shocks in relativistic jet, neutrino production through interaction with photospheric X-rays (Winter & Lunardini 2021).
- Vicinity of optical/UV dense photosphere. High energy photons (X-rays and γ -rays) absorption and sufficient neutrino flux requires a viewing angle of 10 — 30 degrees (off-axis jet; Liu et al. 2020).

EVN observations: imaging and astrometry

5 GHz monitoring (mas; pc-scale): three epochs between 200 — 324 days post TDE (upto 20 EVN telescopes).

Compact unresolved structure; flux density < 1 mJy, brightness temperatures < 10⁸ K.

Radio-quiet (radio luminosity of 3.6×10^{38} erg s⁻¹; similar to ASASSN-14li, CNSS J0019+00); one of three **thermal emission dominated** TDEs with VLBI monitoring.

Astrometry: stationary (< 0.17 mas), proper motion of 0.94 ± 0.65 mas yr⁻¹ ($3.2 \pm 2.2 c$; $1 - \sigma$) indicates no relativistic expansion \rightarrow radio afterglow likely from outflow - CNM interaction.

Compact unresolved emission Decelerated non-relativistic expansion Outflow powered radio emission 5 GHz light curve fit: rising slope $\alpha_R = 2.4 \pm 0.9$, declining slope $\alpha_D = -2.6 \pm 1.3$, peak flux density $S_P = 1.2 \pm 0.2$ mJy(at $t_p = 152.8$ d).

Assuming region size $R \propto t^{\alpha}$, comparing velocity $v \propto t^{\alpha-1}$ to VLBI constraint, $\alpha \ge 0.59$ (lower limit \rightarrow decelerated expansion).

With $\alpha = 0.59$ and electron injection index p = 2.7, expected optically thin flux density decline slope $\alpha_D = -2.8$ (consistent with light curve).

 Any early phase ultra-relativistic expansion restricted to < 18 days (Lorentz factor < 2 on comparing Blandford-McKee solution to VLBI size constraints).

Inferences: Outflow & TDE

Flux density evolution

- Transition of self-absorption frequency $(\nu_a \propto t^{-2.3\alpha})$ through the 5 G H z observation band $(\nu_a \approx 4.6 \text{ GHz at } t_p = 152.8 \text{ d}).$
 - Rapid transition of flux density post peak to optically thin regime.

TDE

- Disrupted stellar mass of $0.1 2.1 M_{\odot}$.
- Penetration factor (tidal radius of SMBH/pericenter distance) ~1 (extremely close approach).

Outflow and emission region

- Outflow velocity of 0.25 0.39 *c* during peak decelerates to $\approx 0.1 c$.
- Peak outflow rate $\approx (3-5) \times 10^{-2} M_{\odot} \text{yr}^{-1}$, density contrast (CNM/outflow) ≥ 32.3 .

Region size $\ge 5 \times 10^{16}$ cm (3 × 10⁴ R_s), magnetic field strength of 0.2 G, energy output $\approx 10^{50}$ erg.

Inferences: neutrino production

Accretion disk

- Production of PeV neutrinos possible during transition from super-Eddington to radiatively inefficient regime.
- Associated timescale is however ~ 565 d, rendering this scenario less likely.

Base of outflow

Optically thick photosphere (with size $\approx 16 R_S$ during neutrino detection at ~ 175 d) where protons (constituting cosmic rays) accelerated to PeV energies. Detected muon neutrino energy is ~ 1% of this, and sufficient time availability for hadronic interactions.

Summary: (*Mohan et al. 2022, ApJ, 927, 74*)

- **AT2019dsg:** thermal emission dominated luminous TDE (relatively radio quiet), potential PeV neutrino detection.
- **Origin of non-thermal emission and neutrino production:** relativistic jet or non-relativistic outflow?
- EVN 5 GHz monitoring (200 324 d post TDE): compact & unresolved (few mas size), stationary (proper motion ≤ 1.4 σ), radio afterglow from outflow medium interaction.
 - **Modeling:** decelerated expansion with velocity $v \propto t^{-0.31}$, flux density decline from synchrotron radiation model consistent with observations (slope of -2.6).
 - **Non-relativistic outflow** (rate of $\approx (3-5) \times 10^{-2} M_{\odot} \text{yr}^{-1}$) decelerating from 0.25 0.39 *c* to $\approx 0.1 c$ due to interaction with medium.
 - Disrupted **stellar mass** of $0.1 2.1 M_{\odot}$ approaching very close to the SMBH.
 - Neutrino production: associated with base of outflow.