VLBI studies with the International LOFAR Telescope

Dr. Leah Morabito EVN Symposium July 2022

Outline

- The LOw Frequency ARray (LOFAR)
- Why low frequencies?
- Extending to higher resolution
 - Long Baseline Calibrator Survey
 - Calibration strategy / demonstration
- Enabling science highlights
- Future work

The International LOFAR Telescope (ILT)

- Phased array operating <200 MHz
 - Low Band Antenna (LBA): 10 90 MHz
 - High Band Antenna (HBA): 110 240 MHz
- Large fractional bandwidth (48 MHz)
- Flexible spectral resolution
- Wide instantaneous field of view
- Multi-beaming capabilities
- Flexible angular resolution

The International LOFAR Telescope (ILT)

Comparison with other facilities

What low frequency brings to the table

- Synchrotron sources are brighter at low frequencies
- Only way to measure low frequency absorption
- Lower rest frequencies can be reached for high-redshift sources
- Anchor spectral modelling to assess spectral ageing

Spectral index has come up in the majority of talks this week!

LOFAR Two-metre Sky Survey

- Using HBA, Dutch stations
 - 6" resolution @ 150 MHz
- Wide area: Northern Sky
 - Data release 1 Shimwell et al. 2019
 - Data release 2 Shimwell et al. 2022
- Deep Fields
 - Lockman Hole
 - Boötes
 - ELAIS-N1
- Multi-wavelength data
 - Wide area cross-matched with optical, IR
 - Deep Fields have excellent ancillary data

Over 200 science papers using LoTSS data!

The main challenge at low frequencies

Before ionospheric correction

After ionospheric correction

More info on direction-dependent calibration: Tasse et al. (2014, 2017), Yatawatta (2015), van Weeren (2016)

Challenges in extending to higher resolution

- **Ionosphere:** requires directional dependent calibration
- **Data volume:** datasets are 4-20TB per observation
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **<u>Calibrators</u>**: need 'Goldilocks' calibrators for resolution / frequency
- **Source characteristics:** low-frequency absorption, source structure

How do we handle this?

Long Baseline Calibrator Survey (LBCS)

Covers entire Northern sky for HBA (Jackson et al, 2022, 2016)

- Multi-beaming with 3 MHz, 3 min observations of calibrator candidates
- ~30,000 sources in final catalogue, about 1 good calibrator per square degree

• Accepted commissioning proposal to extend to LBA (PI: Jackson)

Long Baseline Calibrator Survey (LBCS)

Quality indicators / metrics

Atmospheric coherence statistics

Reproducibility 1.0 - 0.9 DE603 DE604 DEGO FR606 SE607 UK608 DE609 PI 610 PI 611 0 F PL612 E613 ż Difference in S:N parameter Sources observed more than once:

results very similar for all baselines

Science with LBCS

Interplanetary Scintillation

In conjunction with MWA; J. Morgan

Calibration at high resolution has to handle lower signal to noise on long baselines

To cope with this a technique called *fringe-fitting* was developed to increase the solution intervals by solving for *delays* and *rates* in addition to a phase offset:

$$\Delta \phi_{\nu,t} = \phi_0 + \left(\frac{\delta \phi}{\delta \nu} \Delta \nu + \frac{\delta \phi}{\delta t} \Delta t \right)$$

Fringe-fitting algorithms have, until very recently, only been able to cope with *non-dispersive delays* (i.e., phase is linear with frequency)

Dispersive delays from Low Band Antenna (LBA) can be up to ~1 μ s!

Seeded as the set of t

Antenna DE605 (40) LL

Solution Interval

Use LOFAR-native tools to:

- Correct clock offsets ($\tau = 100 200 \text{ ns}$)
- Combine core stations into a 'super-station' to help anchor calibration / reduce data volume
- Solve for dispersive delay ($\tau \sim 200 300 \text{ ns}$)

Publicly available on github (Morabito et al. 2022)

Built as an extension to the processing for the LOFAR Two-metre Sky Survey (*Shimwell et al. 2017,2019,2022*)

Demonstration: P205+55

FoV ~ 5 deg² Field of view limited to 1.25° radius (by smearing and station beams)

- 1. Find dispersive delays on best LBCS in-field calibrator
- 2. Transfer to other LBCS calibrators
- 3. Propagate phase-referencing around the field

Demonstration: P205+55

Demonstration: P205+55

Astrometry and flux density scale

Compare original LoTSS image with 6" image made after transferring VLBI solutions to Dutch dataset

- LoTSS has 20 mas offset from PanSTARRS → radial offsets of high resolution image compared to LoTSS is 28 mas
- Flux density scatter around one-to-one line is 14% when comparing compact sources in LoTSS to 6" image

Enabling science

With this kind of resolving power, we can study:

- Jets launched from active galactic nuclei
- Jets interacting with the interstellar medium
- Star formation in nearby galaxies

Special issue of Astronomy & Astrophysics with 10 new articles (*published Jan 2022*)

- More than doubling the number of scientific results using LOFAR sub-arcsec resolution!
- Most papers lead by early career researchers

NEW TECHNIQUES DRIVE NEW SCIENCE

Using new data calibration techniques to make high-resolution images, astronomers are uncovering low frequency radio emission on never-before-seen scales. This is a gallery of new science results, revealing the shape of the radio emission in distant galaxies.

INTERNATIONAL LOFAR TELESCOPE

The LOw Frequency ARray (LOFAR) is a radio telescope with antennas spread across 8 European countries. It operates at frequencies around the FM radio band, where jets from black holes are particularly bright.

The jet in 3C273

Low-v properties of jet in 3C273 (Harwood, Mooney et al., 2022)

Jets interacting with the interstellar medium

Restarted jets interacting with host galaxy (Kukreti et al., 2022)

Low-frequency spectra in young jet components show evidence for interaction with interstellar medium

Star formation in nearby galaxies

Nuclear emission in merging galaxy (*Ramírez-Olivencia et al. 2022*)

LOFAR images reveal diffuse emission in outflow powered by a starburst, possibly triggered by merger with galaxy hosting an active galactic nucleus

Extending to < 100 MHz with the LBA

Breaking the record! (Groeneveld et al. 2022)

These are the highest resolution images ever made below 100 MHz! They allow us to study the jet ages and conditions.

Enabling science: the cutting edge

Imaging of complete 5 deg² field of view for Lockman Hole Nature Astronomy, Sweijen et al. (2022)

- 8 hour observation
- 0.3" x 0.4" beam
- ~40 μJy/bm rms
- 250,000 cpu hours
- ~ 7 billion pixels!
- ~2,000 sources

89% of sources are still compact

Enabling science: the cutting edge

Imaging of complete 5 deg² field of view for Lockman Hole (*Sweijen et al. 2022*) <u>https://home.strw.leidenuniv.nl/~sweijen/lockman_aladin.php</u>

LOFAR wide-field high resolution imaging on Lockman Hole

Fun fact: This high resolution image contains about 7 billion pixels, almost as much as the FIRST survey!

Left: A hypical direction dependent calibrated dirigheepine image of the Dutch array at 6', using roughly 46 MHz of bandwidth. The RMS level is ~75 uJy/beam. Right: A 0.11/px direction dependent calibrated image at 0.4'x0.3', using 46 MHz of bandwidth, made with WSClean-IBG using both TEC and gain screens. Initial and self-calibration was done on an LBCS source upper left, just outside the first circle, followed by secondary self-calibration on 41 sources that had peak flux sensity 25 mJy/baem on the ''may. The RMS noise level is currently -30 JJy/beam neer the center.

Usage: The high-resolution view is locked to the low-resolution view. Pan around on the left image, and the high-resolution map will follow (the other way around does not work). The cyan circles indicate 1 deg and 2 deg diameter, respectively. The red circle indicates a 2.5 deg diameter

Enabling science: revisiting T_b at 150 MHz

Also depends on:

- redshift
- spectral index
- Electron temperature

Identified 795 AGN via brightness temperature in Lockman Hole

- **66 new** + the rest confirmed by SED fitting
- AGN identifications are reliable!

Evidence for mix of radio emission mechanisms in radio quiet AGN

- including that some are *composite* SFG / AGN sources

Morabito et al. (submitted)

Future Work

Post-processing LoTSS at sub-arcsec resolution will provide the *first sub-arcsecond Northern sky survey*

Future Work

Wide area

- Starting in H-ATLAS
- Imaging LoTSS > 10mJy/beam
- Building screens (think MultiView!)

<u>Deep fields (full FoV)</u>

- Lockman, Boötes, ELAIS-N1
- Intermediate resolution ~1"
- Initial imaging + going deeper

LOFAR2.0

• LOFAR2.0 Ultra Deep Observation: Euclid Deep Field North (*PIs: Best, Morabito*)

Future Work

LOFAR is complementary to VLBI at GHz frequencies but ...

We are in uncharted territory and will undoubtedly need:

- Spatially matched information from GHz freqs (e.g., e-MERLIN)
- Higher resolution to understand new results (e.g., EVN, VLBA, etc.)
- Polarisation information (Mahatma, O'Sullivan)

Summary

• We are capable of performing sub-arcsecond imaging below 200 MHz with LOFAR, and this is already enabling new science.

• Over the next few years as we start surveying the Northern sky, expect more new and exciting results!

• Complementary higher frequency observations will be crucial to help us understand our new results

Extra slides

			2

Brightness temperature at 150 MHz

- Identified 795 (790) high brightness temperature sources in Lockman Hole
 - 83% are otherwise identified as AGN (91% when using only peak intensity)
 - 66 new AGN identifications!
- Comparison to SED fitting shows:
 - 22% of detected radio-quiet AGN and 12% of star-forming galaxies have high brightness temperatures
 - → implies mixture of different radio emission mechanisms in populations
- Detected vs. detectable sources split below 2 mJy
 - Consistent with mixed populations of sources at low flux densities

Using brightness temperature measurements with sub-arcsecond ILT observations is a reliable way to select AGN, in particular when ancillary data is inadequate

How much of the radio emission is due to AGN?

For unresolved, non-radio excess sources, we make the simple assumption that:

• L_{AGN} = peak intensity, high resolution map

• L_{SFR} = (total flux density, 6" resolution map) - LAGN

L_{AG}	$_N/L_{SFR}$		
Class	Median		
RQAGN	$0.89{\pm}0.69$		
SFG	$0.79{\pm}0.42$		
Unclass	$1.07 {\pm} 0.64$		
Total	$0.90{\pm}0.55$		
-	1 -		
L_{AG}	$_N/L_{total}$		
L_{AG} Class	N/L_{total} Median		
$\frac{L_{AG}}{\text{Class}}$ RQAGN	$\frac{N/L_{total}}{Median}$ 0.47±0.21		
$\begin{array}{c} L_{AG.} \\ \hline \\ Class \\ \hline \\ RQAGN \\ SFG \\ \end{array}$	$\frac{N/L_{total}}{Median}$ 0.47 ± 0.21 0.44 ± 0.14		
$L_{AG.}$ Class RQAGN SFG Unclass	$\frac{N/L_{total}}{Median}$ 0.47±0.21 0.44±0.14 0.49±0.16		

Jets from active galactic nuclei

Timmerman et al., 2022)

Spectral information - aided by LOFAR - shows rings are consistent with the active galactic nuclei intermittently turning 'on' and 'off'