The radio nucleus of the nearby dwarf galaxy NGC 4395

Dr. Jun Yang

Senior Research Engineer & VLBI Support Scientist

Onsala Space Observatory, Chalmers University of Technology, Sweden

15th EVN Symposium and Users' Meeting, UCC, Ireland, 2022 July 11-15

Research Team

2

Jun Yang¹, Joan M. Wrobel², Xiaolong Yang³, Zsolt Paragi⁴, Leonid I. Gurvits^{4,5}, Luis C. Ho^{6,7}, Kristina Nyland⁸, Lulu Fan^{9,10} and Daniel Tafoya¹

¹ Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden ² National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA ³Shanghai Astronomical Observatory, Shanghai, China ⁴Joint Institute for VLBI ERIC (JIVE), The Netherlands ⁵Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands ⁶Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing, China ⁷Department of Astronomy, School of Physics, Peking University, 100871 Beijing, China ⁸U.S. Naval Research Laboatory, 4555 Overlook Ave SW, Washington, DC 20375, USA ⁹CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, 230026 Hefei, China ¹⁰School of Astronomy and Space Sciences, University of Science and Technology of China, 230026 Hefei Anhui, China

Outline

Introduction

- Intermediate-Mass Black Holes (IMBHs)
- Status of searching for IMBH jets
- AGN in the dwarf galaxy NGC 4395
- Radio nucleus of NGC 4395
 - Multi-resolution and multi-frequency radio observations
 - Two-component radio structure
 - Non-detection of the sub-pc-scale jet base tracing the IMBH
 - Nature of the components E and C
 - Summary and outlook

1.1 IMBHs

Mass

4

• $10^2 - 10^6$ solar mass (M_{sun})

Location

low-mass (M_{*} ≤ 10⁹ M_{sun}) and low-luminosity stellar systems (stellar clusters, dwarf galaxies, hyper-luminous X-ray sources, tidal disruption events)

Status

- Found ~10 IMBHs with a mass of ≥10⁴ M_{sun} in dwarf AGNs (e.g. Baldassare+ 2020)
- Optical and X-ray observations selected several hundred accreting IMBH candidates (fraction < 1% in the sample of Reines+ 2013)

Radio counterparts for dwarf galaxies, ~0.3 % (Reines+ 2020)

Recent review papers: Greene+ 2020, Volonteri+ 2021, Reines 2022

IMBHs

5

-Key to study BH seed formation mechanisms

Simulation results (Volonteri+ 2008)

- Left panel
 - Direct collapse seeds, ~10⁴ M_{sun}
 - Large scatter for IMBHs
- Right panel
 - Population III star seeds, ~10² M_{sun}
 - Big drop for IMBHs
- Black points with error bars: observational data

Possible 192 IMBH jet populations and the distributions of their flux density. One color per population (Liodakis 2022)

- ✓ VLBI observations
 - ✓ Free from star-forming activity
 - ✓ Directly confirm accreting IMBHs
 - ✓ Probe disc-jet coupling during the mass gap
 - Measure jet parameters to constrain the models of sub-mJy IMBH jet populations

6 1.2 Status of searching for IMBH jets

- An outflow-like feature (E) in NGC 4395 (Wrobel & Ho 2006)
- VLA non-detection in POX 52 (Thornton+ 2008)
- Dwarf starburst dwarf galaxy Henize 2–10 (Reines & Deller 2012)
 - Non-detection in the VLBA observations
- Nearby dwarf galaxy NGC 404 (Paragi+ 2014)
 - Non-detection in the deep EVN observations
- Jet in dwarf galaxy SDSS J0906+5610 (Yang+ 2020)

Radio non-detections *≠* non-existences.

1.3 AGN in NGC 4395

- Distance: 4.3 Mpc (scale 1 mas = 0.021 pc)
- Very low-luminosity: $L_{bol} = 10^{40.3} 10^{41.7}$ erg s⁻¹ (Brum+ 2019)
- e-MERLIN observations: ~ 1 mJy at 1.5 GHz (Baldi+ 2021)
- Two-component structure at 15 GHz (Saikia+ 2018)
- IMBH mass: ~10⁴ ~10⁵ M_{sun}

- Recent reverberation measurement: $M_{bh} = 10^{4.0 \pm 0.4} M_{sun}$
- (including the systematic uncertainty, Woo+ 2019)
- No significant variability at 8.4 GHz on timescales from days to weeks (King+ 2013).
- No hint for starbursts in the entire nuclear region (Brum+ 2019)

⁸ 2. Radio nucleus of NGC 4395

2.1 Multi-resolution and multi-frequency radio observations

Array	Date	Frequency	Pl	Project Code
HSA	2008 May 4	1.4 GHz	Wrobel	BW089
EVN	2022 Jan 18	5.0 GHz	Yang	EY039
Jansky VLA	2016 Dec 15	12–18 GHz	Saikia	16B-189
ALMA	2018–2019	237 GHz	Seth	2017.1.00572.S

Non-simultaneous spectrum.

Table 1. Summary of the flux density measurements of NGC 4395 in literature.

Freq. (GHz)	S _{int} (mJy)	$S_{\rm pk}$ (mJy beam ⁻¹)	FWHM (arcsec)	Array	Date	Structure	Reference
1.4	1.17 ± 0.14	$1.20{\pm}0.14$	5.4×5.4	VLA	1994 Jun 09	Unresolved	FIRST (Becker et al. 1995)
1.4	1.68 ± 0.09	1.54 ± 0.04	1.7×1.1	VLA	1999 Aug 29	Unresolved	Ho & Ulvestad (2001)
1.4	0.74 ± 0.04	0.36 ± 0.01	0.017×0.0072	HSA	2005 May 1	Elongated outflow	Natural weighting (Wrobel & Ho 2006)
1.5	1.05 ± 0.16	0.71 ± 0.10	0.27×0.24	e-MERLIN	2017.3-2019.3	Slightly extended	Low resolution (Baldi et al. 2021)
3.0	0.82 ± 0.24	0.82 ± 0.14	2.9×2.4	Jansky VLA	2020 Sep 12	Unresolved	VLASS 2.1 (Lacy et al. 2020)
5.0	$0.80 {\pm} 0.06$	0.68 ± 0.06	1.7×1.1	VLA	1999 Oct 31	Unresolved	Ho & Ulvestad (2001)
8.4	$0.56 {\pm} 0.02$	0.56 ± 0.02	0.29×0.26	Jansky VLA	2011.5-2011.7	Unresolved	16-epoch average (King et al. 2013)
15.0	0.23 ± 0.01	0.17 ± 0.01	0.13×0.12	Jansky VLA	2016 Dec 15	Two components	Saikia et al. (2018)

2.2 Two-component radio structure

2.3 Non-detection of the IMBH jet base

Method	RA (J2000)	$\sigma_{ m ra}$ (mas)	Dec. (J2000)	$\sigma_{ m dec}$ (mas)	Reference	
HSA <i>Gaia</i> DR3 Pan-STARRS1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		+33°32′48″715 +33°32′48″7110 +33°32′48″7063	6 1.4 4.9	Wrobel & Ho (2006) Gaia Collaboration et al. (2022) Chambers et al. (2016)	
^{F547M} HST	images (V	∾ V00+	► 201-9)	!N−F547M	N E	
•			10		× 4	
Cor	nt. Co	<u>nt.</u> +	Bicc [OIII]	onical or	utflow DIII]	
42	· · · · · · · · · · · · · · · · · · ·	• • •	42			
40 - (s/bu	BA CORES		40 (s/ba	_A C(ores in the second seco	
€ 38 - 9 - 9 -		-	پ ب 38 - ا - ا -			
36		- - - -	36 - ° ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		
28 0.60	30 32	34 1 Mau	28 0.60	30	32 34 + 0.78 log Max	

- Location of the IMBH
 - IMBH at the Gaia position
 - Absolute accuracy <10 mas</p>
 - Compact optical nucleus (size <100 mas)
 - No IMBH at the HSA position
 - 218 mas offset with respect to the Gaia position
 - EVN non-detection at 5 GHz
- Upper limits for the IMBH jet base
 - $5\sigma = 0.035 \text{ mJy beam}^{-1}$
 - $L_{5GHz} = 4.7 \times 10^{33} \text{ erg s}^{-1}$
- Tentatively support weak or no discjet coupling on VLBI scales (Fischer+ 2021)

2.4 Nature the components E and C

Component E

- Features
 - Optically thin spectrum
 - Spectral index: -0.64 ± 0.5
 - HSA size: 16 x 9 mas
 - Low brightness temperature (~10⁶ K)
 - No significant proper motion (<0.01 c)
- Probably formed by shocks
 - Dying ejecta or outflow from IMBH activity 1225 49.2
 - Consistent with [OII] outflow (Woo+2019)
 - High density environment (Brum+ 2019)

- Component C
 - Detected at SNR~4.5 by the ALMA at 237 GHz
 - Likely has a flat spectrum
 - Very low luminosity $L_R = 8.6 \times 10^{34} \text{ erg s}^{-1}$
 - Diffuse morphology with a size of ~1.4 pc
 - Possible nature: Thermal free-free emission from a clumpy torus (e.g. Netzer 2015) or the biconical [OIII] outflow (Woo+2019, Baslom & Laor 2021).

12 3. Summary

- Presented a more complete view for the radio nucleus of NGC 4395.
- Provided a tight upper limit (~10^{33.7} erg s⁻¹) for the radio luminosity of its potential sub-pc-scale jet base.
- Found a diffuse emission region (component C) surrounding the IMBH and possibly originating from free-free emission.

For more details, see the paper: Yang et al., MNRAS, stac1753

Outlook

- Jansky VLA observations between 10 and 45 GHz to study the component C.
- Future next-generation VLA observations at 4-12 GHz to further search for its jet base with a sensitivity of 0.1 µJy beam⁻¹.