15th EVN Symposium & Users Meeting July 14th 2022

Anatomy of an exo-aurora: the magnetosphere of a brown dwarf

Juan B Climent Post-doc at the University of Valencia, Spain and J. C. Guirado, M. A. Pérez-Torres, J. Marcaide

Vniver§itat 🗈 València

JB Climent

15th EVN Symposium & Users Meeting

 ★ They are extremely interesting by themselves (aurorae, powerful magnetic fields, fast rotators, etc)

- ★ They are extremely interesting by themselves (aurorae, powerful magnetic fields, fast rotators, etc)
- ★ As we'll see, aurorae occur at v(MHz) ≈ 2.8 B(Gauss), so detection = B determination → test dynamo models.

SPOILER: the seminal scaling law relating thermal energy convected in deep interiors to B strengths (Christensen et al. 2009) is not sufficient in UCDs!

- ★ They are extremely interesting by themselves (aurorae, powerful magnetic fields, fast rotators, etc)
- ★ As we'll see aurorae occur at v(MHz) ≈ 2.8 B(Gauss), so detection = B determination → test dynamo models
- ★ The knowledge gathered may lead to a direct detection of exoplanetary radio emission.

- ★ They are extremely interesting by themselves (aurorae, powerful magnetic fields, fast rotators, etc)
- ★ As we'll see aurorae occur at v(MHz) ≈ 2.8 B(Gauss), so detection = B determination → test dynamo models
- ★ The knowledge gathered may lead to a direct detection of exoplanetary radio emission.
- ★ A new way of detecting and characterizing exoplanets based on star-planet interaction (SPI).
 - Optical spectroscopy (Cauley et al. 2019)
 - Proxima Cen (Pérez-Torres et al. 2021).
 - B of exoplanets! → Exoplanets interiors and exteriors

- ★ They are extremely interesting by themselves (aurorae, powerful magnetic fields, fast rotators, etc)
- ★ As we'll see aurorae occur at v(MHz) ≈ 2.8 B(Gauss), so detection = B determination → test dynamo models
- ★ The knowledge gathered may lead to a direct detection of exoplanetary radio emission.
- ★ A new way of detecting and characterizing exoplanets based on star-planet interaction (SPI).
- ★ Allow us to start looking into magnetosphere plasma conditions. What is the origin of this plasma?
 - Flares from UCD
 - Satellites (Io-Jupiter case)
 - \circ Combination

Past detections and non-detections

28 at GHz (Williams 2018 and references therein; Guirado et al. 2018; Richey-Yowel et al. 2020; Kao & Pineda 2022) 1 at MHz (Vedantham et al. 2020)

JB Climent

15th EVN Symposium & Users Meeting

8

- Up to 10% exhibit radio emission at 1-10 GHz \star (Route & Wolszczan 2016).
- Perhaps up to 50% for fast rotators (vsin i >20 \star km/s; McLean et al. 2012).

-39°55′50

-56'00'

-56'10

JB Climent

15th EVN Symposium & Users Meeting

- ★ Up to 10% exhibit radio emission at 1-10 GHz (Route & Wolszczan 2016).
- ★ Perhaps up to 50% for fast rotators (vsin i >20 km/s; McLean et al. 2012).
- ★ They can possess strong magnetic fields of up to a few kG (e.g., Berdyugina 2017).

Hβ emission maps of LSR J1835+2359 (Berdyugina et al. 2017)

- ★ Up to 10% exhibit radio emission at 1-10 GHz (Route & Wolszczan 2016).
- ★ Perhaps up to 50% for fast rotators (vsin i >20 km/s; McLean et al. 2012).
- ★ They can possess strong magnetic fields of up to a few kG (e.g., Berdyugina 2017).
- ★ Low/moderate polarized quiescent emission + a highly polarized, rotationally modulated bursting emission: (gyro)synchrotron + ECMI.

VLBI observations of *UCD*

- ★ Only three published detections (Forbrich & Berger 2009, Zhang et al. 2020, Forbrich et al. 2016) but extremely useful:
 - Determine dynamical masses
 - Resolve whether the emission originates in one or both components
 - \circ ~ Provide precise Parallax and proper motion
 - Investigate the presence of exoplanets around them by astrometric campaigns. (Curiel et al. 2020)

New VLBI observations of UCD

- ★ Only three published detections (Forbrich & Berger 2009, Zhang et al. 2020, Forbrich et al. 2016) but extremely useful:
 - Determine dynamical masses
 - Resolve whether the emission originates in one or both components
 - Provide precise Parallax and proper motion
 - Investigate the presence of exoplanets around them by astrometric campaigns. (Curiel et al. 2020)
- ★ 5 GHz EVN campaign shows promising results with 4 detections.

hours	Name	Spectral Type
	${ m EQ~J1122}{+}2550$	T6
	LSR J1835+3259	M8.5
	LSPM J0036+1821	L3.5
	LP 349-25	M8+M9

★ Rotation period < 4 hours</p>

New VLBI observations of *UCD*

★ Only three published detections (Forbrich & Berger 2009, Zhang et al. 2020, Forbrich et al. 2016)						
 but extremely useful: O Determine dynamical ma O Resolve whether the emis O Provide precise Parallax a 		ma mis ax a T6 object with 3	The coolest UCD detected with VLBI: a T6 object with 30 M _{jup} .		1 components	
• Investigate the presence of exoplanets around them by astrometric campaigns. (Curiel et al.						
★ ⊂ G 3 ep	2020) Hz EVN campaign shows ochs: two double	s promising results wit Name	h 4 detect	tions.	The coolest UCD with pulses detected with VLBI arrays	
aete	detection	EQ J1122+2550		T6		
		LSR J1835+3259]	M8.5		
		LSPM J0036+182	1	L3.5 🖌		
		LP 349-25	M	[8+M9]		

6-hour observation in 2021 → two complete rotations!

```
EVN = great signal to noise
```


Right ascension (mas)

JB Climent

15th EVN Symposium & Users Meeting

Relative declination (mas)

Relative declination (mas)

6-hour observation in 2021 → two complete rotations!

Rotation average LCP and RCP are different. But they are averaged!

JB Climent

15th EVN Symposium & Users Meeting

LSR]1835+3259. Fact Sheet.

★ Extended structure (>17 R*) during two consecutive rotations.

Relative declination (mas)

Relative declination (mas)

6-hour observation in 2021 → two complete rotations!

Rotation average LCP and RCP are different. But they are averaged!

JB Climent

15th EVN Symposium & Users Meeting

LSR]1835+3259. Fact Sheet.

- ★ Extended structure (>17 R $_*$) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.
- ★ The bursts or pulses:
 - Occur at slightly different rotation phases.
 - Are different in total LCP flux
 - Have different LCP post-flare behaviour

LSR]1835+3259. Fact Sheet.

- ★ Extended structure (>17 R $_*$) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.
- ★ The bursts or pulses:
 - Occur at slightly different rotation phases.
 - Are different in total flux
 - Have different LCP post-flare behaviour. **LCP post-flare maps are different between** rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.

JB Climent

LSR]1835+3259

15th EVN Symposium & Users Meeting

JB Climent

15th EVN Symposium & Users Meeting

LSR]1835+3259. Fact Sheet.

- ★ Extended structure (>17 R $_*$) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.
- ★ The bursts or pulses:
 - Occur at slightly different rotation phases.
 - Are different in total flux
 - Have different LCP post-flare behaviour. LCP post-flare maps are different between rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.
- ★ 30-minutes maps during the bursts show:
 - The morphology varies from one rotation to another.
 - Both LCP and RCP maps present extended structures
 - During the first rotation, bursting emission (LCP) and quiescent emission (RCP) do not coincide spatially!

How do we explain this Fact Sheet?

Remember: Maps are registered. We are using phasereferencing

JB Climent

How do we explain this Fact Sheet?

JB Climent

15th EVN Symposium & Users Meeting

LSR]1835+3259. Fact Sheet.

- ★ Extended structure (>17 R∗) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.

- ★ The bursts or pulses:
 - Occur at slightly different rotation phases.
 - Are different in total flux
 - Have different LCP post-flare behaviour. LCP post-flare maps are different between rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.
- ★ 30-minutes maps during the bursts show:
 - The morphology varies from one rotation to another.
 - Both LCP and RCP maps present extended structures
 - During the first rotation, bursting emission (LCP) and quiescent emission (RCP) do not coincide spatially!

LSR]1835+3259. Fact Sheet.

- ★ Extended structure (>17 R $_*$) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.
- ★ The bursts or pulses:

JB Climent

- Occur at slightly different rotation phases.
- Are different in total flux
- Have different LCP post-flare behaviour. LCP post-flare maps are different between rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.
- ★ 30-minutes maps during the bursts show:
 - The morphology varies from one rotation to another.
 - Both LCP 🦉 and RCP maps present extended structures
 - During the first rotation, bursting emission (LCP) and quiescent emission (RCP) do not coincide spatially!

We haven't discussed the origin of the pulses yet!

 ★ Saur et al. (2018) proposed that these pulses are driven by internal processes.

JB Climent

LSR J1835+3259. Fact Sheet. Loop hypothesis.

- ★ Extended structure (>17 R_*) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.

- Occur at slightly different rotation phases.
- Are different in total flux
- Have different LCP post-flare behaviour. LCP post-flare maps are different between rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.
- ★ 30-minutes maps during the bursts show:
 - The morphology varies from one rotation to another.
 - Both LCP and RCP maps present extended structures
 - During the first rotation, bursting emission (LCP) and quiescent emission (RCP) do not coincide spatially!

Hallinan et al (2015) raised \star the possibility of an external origin: star-planet interaction.

15th EVN Symposium & Users Meeting

LSR J1835+3259. Fact Sheet. Exoplanet hypothesis.

- ★ Extended structure (>17 R_*) during two consecutive rotations.
- ★ Lightcurve shows quiescent and bursting emission.
- ★ The bursts or pulses:
 - Occur at slightly different rotation phases.
 - Are different in total flux
 - Have different LCP post-flare behaviour. LCP post-flare maps are different between rotation periods.
- ★ The time intervals when LCP fluxes peak show extended structures.
- ★ 30-minutes maps during the bursts show:
 - The morphology varies from one rotation to another.
 - Both LCP 👌 and RCP maps present extended structures
 - During the first rotation, bursting emission (LCP) and quiescent emission (RCP) do not coincide spatially!

Conclusions

- ★ The field of radio emission from low-mass objects with VLBI at GHz is still in its infancy (specially UCD) but with promising results.
- ★ Thanks to great sensitivity and resolution achieved by the EVN we can:
 - Measure much-needed dynamical masses.
 - Provide accurate parallax and proper motion
 - Resolve the magnetosphere.
 - Investigate the presence of exoplanets by proper motion or star-planet interaction.
- ★ EVN observations of LSR J1835 point towards a unifying model for the radio emission of this UCD: radiation belts (quiescent component) + exoplanet induced aurorae (bursting emission).

THANK YOU cliojuan@uv.es