Spectral Analysis of Parsec-Scale Jet in M87

Observational Constraint on the Magnetic Field Strengths in the Jet

Hyunwook Ro (Yonsei Univ. / KASI)

hwro@yonsei.ac.kr

Motoki Kino (Kogakuin Univ./NAOJ), Bong Won Sohn (KASI), Kazuhiro Hada (NAOJ), Jongho Park (ASIAA), Masanori Nakamura (Hachinohe C), Yuzhu Cui (TDLI), Kunwoo Yi (SNU) and EAVN AGN SWG

Ro et al. 2022 A&A, Submitted

15th EVN Symposium 13 July 2022

M87 jet

- 1mas ~ 130 r_s (D_L = 16.7 Mpc, M_{BH} = 6.5×10⁹ M_{\odot})
- Jet width profile: $R(z) \propto z^{0.56}$ (e.g., Hada et al. 2013)
- Velocity profile: $\Gamma(z) \propto z^{0.16}$ (e.g., Park et al. 2019)
- The magnetic field strength of the radio core was estimated by various methods (e.g., Zamaninasab et al. 2014; Kino et al. 2015; EHT collaboration et al. 2019, 2021)
 - Core is highly magnetized (~100G at ~1 r_s ; Kino et al. 2015)

Observational constraints on jet magnetic field strengths

• Jet base (radio core; $z \leq 100r_s$)

- Size and flux measurement of core: $B \propto \theta^4 v_m^5 S_m^{-2}$ (e.g., Kino et al. 2015)

- **Core-shift** :
$$B \propto \left(\frac{\Delta r_{\text{core},\nu_1,\nu_2}}{\nu_1^{-1}-\nu_2^{-1}}\right)^{\frac{3}{4}}$$
 (e.g., Zamaninasab et al. 2014)

Motivations and Question

 Previous studies estimated the magnetic field strengths of notable individual components (radio core, HST-1)

<u>Q</u>: How to estimate the distribution of B field strengths of the jet?</u>

• Analyze the spectral evolution along the jet to constraint on the magnetic field distribution and non-thermal electron injection of the jet on the scale of $\geq 1000r_s$

 High quality spectral index maps of the M87 jet are obtained by quasisimultaneous 22GHz and 43GHz observations using KaVA (KVN and VERA) large program and VLBA archival data

Observations

1. KaVA (KVN and VERA Array)

- Observation time: 2016 February 2016 June, 9 epochs (~130 hours in total)
- Quasi-simultaneous observations: 22 and 43 GHz observations interval within 1-2 days
- Typical beam size: 1.2 mas (22GHz), 0.6 mas (43GHz)

2. VLBA archival data

- A total of **five observations**: two in **2010 and** three in **2014**
- Simultaneous multi-frequency observations 22 and 43GHz
- Typical beam size: 0.8 mas (22GHz), 0.4 mas (43GHz)

⁹ epochs, quasi-simultaneous at 22/43 GHz observations in 2016

Making spectral index maps

- Convolved beam size: 1.2mas circular beam
 - Aligning images at different frequencies
 - $r_{\rm core} \propto \nu^{-0.94}$ (Hada et al. 2011)
 - $\Delta r_{\rm core}(22 43 \,{\rm GHz}) \sim 0.036 \,{\rm mas}$

Spectral index maps of M87 jet

• Spectral indices can be obtained up to ~10 mas from the core

 More than double than had been previously observed (Ly et al. 2007; Niinuma et al. 2014; Kravchenko et al. 2020)

Relative R.A. from the 22GHz core [mas]

Spectral index distribution of M87 jet

Spectral index distributions of the M87 jet up to 10 mas (\sim 4500 r_s)

Two interesting features in the region further than ~2 mas

- 1. The spectral indices **decrease rapidly** with distance (from $\alpha \sim -0.7$ to $\alpha \sim -2.5$)
- The spectral index seems to stop declining at ~6 mas

Spectral index distribution model

 $z_f = 10$ mas (~4500r_{s.} $\tau_f = 2.2 \times 10^8$ s) $z_i = 2 \text{mas} (\sim 900 \text{r}_{\text{s}}, \tau_i = 0 \text{s})$ • $\Gamma(z) \propto z^{0.16}$ (Park et al. 2019) Bulk jet velocity and Jet radius • $R(z) \propto z^{0.56}$ (e.g., Hada et al. 2013) • travel time, adiabatic loss Toroidal magnetic field • $B(z) \propto \frac{1}{R\Gamma} = B_i \left(\frac{z}{2mas}\right)^{-0.72}$ magnetic flux is conserved • B_i : the magnetic field strength at z_i • $Q(z) = Q_i \left(\frac{z}{2 \max}\right)^{-q}$ Non-thermal electron injection - $Q_i \propto \gamma^{-2.4}$ (10¹ < γ < 10⁵) • q = 0 : continuous injection in the same amount as Q_i Transfer equation: evolution of $N(\gamma, \tau)$ • $q = \infty$: **no injection** after the initial • $\frac{\partial N(\gamma,\tau)}{\partial \tau} + (\nabla \cdot \nu)N(\gamma,\tau) + \frac{\partial}{\partial \gamma}[b(\gamma,\tau)N(\gamma,\tau)] = Q(\gamma,\tau)$ injection • $0 < q < \infty$: continuous injection, $R d\tau$ • $\tau(z)$: travel time along the jet $3 m_{\rho} c 8$ but the amount of injection decreases with distance • $\alpha = (p+1)/2$ (p: the slope of $N(\gamma)$)

How to explain the observed spectral index distribution?

Models with 0 <**q** $< \infty$ reproduce the observations

Constraining magnetic field strength

Constraining magnetic field strength: parameter space

Summary

- 1. The **spectral index distribution** of the M87 jet are investigated by KaVA and VLBA at 22-43GHz
 - The spectrum index **decreases rapidly** from $\alpha \sim -0.7$ to $\alpha \sim -2.5$ and **stops decreasing** at ~6mas
- 2. We **modeled** the spectral index distribution
 - If the amount of the electron injections **decreases with distance**, the observed distributions is well reproduced
 - Comparing the model with the observations, we conclude the distribution of the B field strengths at 2 - 10 mas (~ 900r_s - ~ 4500r_s) to be

$$B(z) = (0.3 - 1.0G) \left(\frac{z}{2 \text{ mas}}\right)^{-0.72}$$

- 3. We **compare** the B field strength distribution with previous studies
 - Our result is in good agreement with the estimates of the radio core, but an order of magnitude higher than that of HST-1